







# Fusion of sensor and robot

November 15, 2022

Haruhisa Fukano, Fujitsu

Masao Shimizu, Ph.D., Professor, RITSUMEIKAN UNIVERSITY

Jeff Brower, CEO, Signalogic, Inc.



## **Self introduction**





#### Haruhisa Fukano

Fujitsu TSC member, LF Edge Akraino Project

- Current work
  - Business and architecture planning about edge computing
- Career:
  - Heterogeneous computing R&D
  - FPGA design for NW equipment
- Favorite things:
  - Camping

# Introduction





Masao Shimizu, Ph.D. Professor, RITSUMEIKAN UNIV

- Robot hand R&D using electronic device
- Career:
  - R&D about application of sensors to medicine and industry
  - Sensor device R&D
- Favorite things: Aikido



Jeff Brower CEO, Signalogic

- Real-time ASR (automatic speech recognition) in edge computing and telecom applications
- Deep learning
- Telecom
- HPC, supercomputing
- Signal and image processing and algorithms

# **Agenda**



- What is Industry 5.0?
- Robot Challenges in Industry 5.0
- Solutions for these challenges
  - What is SSES (Sensor-Rich Soft End-Effector System)?
  - What is light weight ASR (Automatic Speech Recognition)?
- Activities at Akraino
  - CPS Robot blueprint family
  - Robot basic architecture based on SSES blueprint
- PoC in food factory
- Activities in future

# **Industrial Revolutions**





powers







Industry1.0

mechanization,

Water and steam

mass production, electric power, assembly line

Industry2.0

Industry3.0

computers, automated production, electronics Industry4.0

cyber-physical systems, IoT, networking, machine learning Industry5.0

mass customization, human-robot collaboration

1800

1900

2000

Today

Beginning

# Key attributes of Industry5.0



- 1. Human and robot collaboration
- Improve productivity of complex tasks that only human can do.
   →Expect the spread of robots to various industries.
- 2. Mass customization
- Automated mass production by robot
- Customization according to consumer preferences
  - → Provide new value

# Robots play important role in realizing industry5.0.



# Can we use today's robot in industry5.0?

# **Robot Challenges in Industry 5.0 1/2**

#### Robot today



· Object: standardized, uniform

Field circumstance: stable







- diverse shapes, flexibility, frictional properties
- · ever-changing



Challenge: Autonomous handling control by robot

# **Robot Challenges in Industry 5.0 2/2**



#### Robot today



- Isolated from human
- Programmed routine



Robot in Industry 5.0



The author of this photo by unknown author is licensed to CC BY

- Work with human in same field
- Act flexibly

Challenge: Rapid communication with human

# Solution for these challenges



Challenge 1 - Autonomous handling control by robot

#### **Solution**

Flexible robot handling for various objects under various environments "SSES (Sensor-rich Soft End-effector System)"

Challenge 2 - Rapid communication with human

**Solution** 

Reliable and low-latency speech recognition



# What is SSES?

11

# SSES (Sensor-Rich Soft End-Effector System)



Ritsumeikan University and other companies research and develop SSES in SIP 1

- SSES Approach
  - Enhancement of cognitive ability
    - Sensor-rich technology for multi-dimensional data acquisition
    - AI/IoT technology with force/contact information
    - IoT maintenance and inspection technology
  - New Mechanical
    - Flexible manipulators using polymer materials
    - Advanced 3D printing technology



Figure: SSES architecture(https://sip-sses.net/)

<sup>&</sup>lt;sup>1</sup> Cross-Ministerial Strategic Innovation Promotion Program
A program for R&D and practical application of science and technology that will revitalize economy and industry, with investment from Japan Cabinet Office.

# **SSES** from network perspective



SSES has two data path

Real-time feedback path

Latency: 1ms

Immediately reflected in robot

control

IoT data path

Latency: 100ms~

 Analyze by cloud AI and update robot control in non-real-time



# **R-CPS** (Reconstructable basic system for Cyber Physical System)



- Data collection/analysis and feedback to physical space for SSES
- Construct and reconstruct various systems easily and at low cost



# SSES use case and demo



Remove dishes from table



**Dishwashing** 



Serve on plate

All video from SIP SSES project https://sipsses.net/publicinformation/

# SSES (Sensor-rich Soft End-effector System)



### Japan Cabinet Office invests in R&D on flexible robot handling "SSES" through SIP <sup>1</sup>



#### SIP Symposium 2021

https://www.sip2021.go.jp/docs/02\_briefing\_paper\_SIP2021.pdf



#### SIP R&D Plan

https://www.nedo.go.jp/content/100903325.pdf

<sup>&</sup>lt;sup>1</sup> Cross-Ministerial Strategic Innovation Promotion Program



# What is Signalogic ASR Engine?

# **ASR (Automatic Speech Recognition)**



### Signalogic developed light weight ASR engine

- Capabilities
  - Ourgent/safety voice commands; e.g. "stop"
  - Operating commands; e.g. "change mode"



### **ASR Features**



- Light weight
  - ~50W power consumption, no fans
  - Consumes one Atom CPU core(x5-E3940)
  - 20k word vocabulary

#### Noise removal

 Spectral subtraction and sound classification minimize robot background noise;
 e.g. servo motors, wheels



Roomba onboard ASR demo

Accurately recognize voice commands in the field, regardless of internet connectivity – prioritize human safety



# **Activity in open community**

20

# **Activity in LF Edge Akraino project**



| Signalogic.

Publishes solutions as OSS stack "Blueprints" for everyone to use

Akraino community creates edge computing use case OSS stacks





**FUÏITSU** 

RITSUMEIKAN

# What is Akraino Blueprint?





LF Edge - long form - MASTER

# **CPS Robot Blueprint family overview**



- There are many challenges and use cases, and solutions will be a combination of elemental tech
- We launched CPS Robot Blueprint family in the Akraino community
- Focus is on "Robot basic architecture Blueprint" to provide OSS stack based on SSES/R-CPS



### Robot basic architecture based on SSES Blueprint



- Open software stack for
  - Collect sensor/robot data
  - Analyze data
  - Feedback to robot control

- Received Akraino award
  - OBlueprint of the year 2022





# **Detail of blueprint in Akraino R6**







Documents are available on wiki

Robot basic architecture based on SSES - Akraino - Akraino Confluence

- Architecture document
- Installation/Test document

You can easily build data collection function

# Detail of blueprint in Akraino R7



- Enhance functionality
  - Data processing
  - Data analysis

Release basic data processing and analysis software libraries to support a variety of use cases

Light weight, high performance ASR



# Basic data processing and analysis software



- Data processing and analysis methods differ depending on use case
- Software library accelerates implementation of data processing and analysis



# Basic data processing and analysis software



| Classification     | function        | Summary                                                                        |
|--------------------|-----------------|--------------------------------------------------------------------------------|
| Data<br>processing | read_db_env     | Returns the environment data for the specified time period.                    |
|                    | detect_change   | Detect the point of change in data for a specified time period.                |
|                    | resample        | Resampling Input time series data.                                             |
|                    | calc_maxminavg  | Calculate the maximum, minimum, and average values for a specified time priod. |
|                    | integral        | Calculate integral of Input time series data.                                  |
| Data analysis      | kmeans          | Classify time series data by k-means method.                                   |
|                    | plt_overrap_fig | Create a chart that overlays multiple time series data.                        |
| others             | diagnose        | Graph the reception period of R-MSM data and detect reception errors.          |



# **Proof of Concept in food factory**

# Proof of Concept in food factory



- Theme: detect signs of AGV (Automatic Guided Vehicle) course-out (i.e. off course)
  - O Road surface of a food factory is unstable due to humidity, drainage gradient, etc.
  - Difficult to operate AGVs stably without course-out
  - Confirmed that R-CPS and Basic data process and analysis SW can detect course-out indicators



### **Robot Blueprint activities in future**



- Enhance current blueprint functionality
  - Autonomous optimization of Robot;
     e.g. Parameter optimization of PID control
  - 1. Store data measured by sensors
  - Analyze data in cloud for better parameters
  - 3. Feedback new parameters
  - Interface with Robot arm and hand
    - There are various kind of arm and hands depends on use cases
    - Need to absorb difference of HW
    - ROS2 is a candidate solution

Welcome participants

Contact: fukano.haruhisa@fujitsu.com





# **Appendix**

32

- Showcase objectives:
  - Promote LF Edge projects and highlight edge computing use case
  - Increase user adoption of LF Edge projects
- Showcases
  - Robotics (Akraino)
     IoT (Fledge, eKuiper, Akraino)
  - Clean Energy (EVE, Alvarium)
     MEC (Akraino)
  - Retail (EdgeX, OpenHorizon, SDO)
     Factory, Plant (Fledge, EVE)

We are exhibiting in LF Edge booth at ONE summit

# **Acknowledgements**



This work was supported by the Cabinet Office (CAO) and the Cross-ministerial Strategic Innovation Promotion Program (SIP), "An intelligent knowledge processing infrastructure, integrating physical and virtual domains" (funding agency:

Cabinet Office

https://www.cao.go.jp/index-e.html



https://www.nedo.go.jp/english/index.html



https://www.jst.go.jp/sip/en/index.html



