Small Language Model (SLM) for Device Al

Akraino Robotics Blueprint, Release 8 Enhancement

Device AI speech recognition challenges at the edge

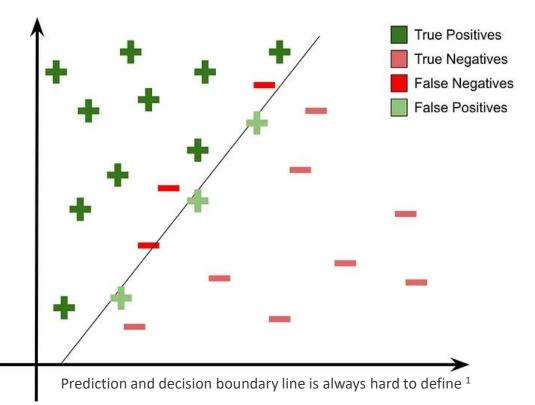
> Device AI applications need to run ASR ¹

- > On very small form-factor devices (e.g. pico ITX)
- > With unreliable or no cloud connection
- Under difficult conditions, including background noise, urgent or stressed voice input, and background talkers
- Robotics servo motor and other mechanical noise increases difficulty

FUITSU

Precise Command Problem

- > Machine-readable APIs must be precise
- > Minimizing false positives is crucial
- Under difficult conditions, efficient open source ASRs such as Kaldi and Whisper produce "sound-alike" errors, for example:


"in the early days a king rolled the stake"

```
which must be corrected to
```

"in the early days a king ruled the state"

- > Sound-alike errors are problematic for safety and emergency situations
 - > Internet / cloud connection cannot be assumed. Phones may be useless
 - A first responder may use a portable hand-held device and give commands to a robotaxi such as "get off the road in that turn-out up ahead and shut down"
 - > Sometimes generalized in ASR research as "substitution errors"

¹ https://medium.com/@Sanskriti.Singh/an-emphasis-on-the-minimizationof-false-negatives-false-positives-in-binary-classification-9c22f3f9f73

Use Cases

- > Factory floor personnel need to give urgent commands
 - > forklifts
 - > hands-free equipment (e.g. food processing)
- First responders need to communicate with disabled or confused robotic vehicles
 - > robotaxis
 - > semi trucks
- > Language Translation
 - > sound-alike correction in text prior to translation
 - > independent of ASR model

Requirements

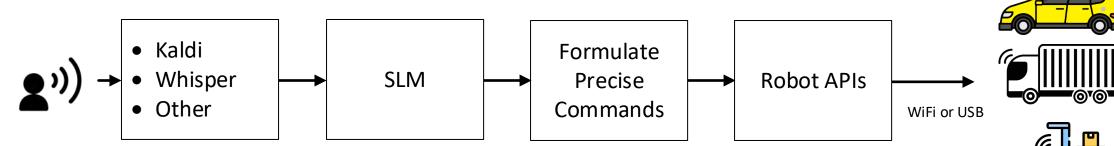
- Must correct sound-alike errors independently of ASR model without re-training, tuning, compression, or other reduction
- > Very small form-factor, under 15 W
 - > for example using two (2) Atom CPU cores
- > Real-time must run every 300 to 500 msec
- > Backwards / forwards context of 3-4 words
 - > unlike an LLM, wide context window, domain knowledge, and extensive web page training are not needed
- > Compliant with emerging teleoperation standards
 - California included teleoperation as part of its regulation for driverless vehicles in 2018

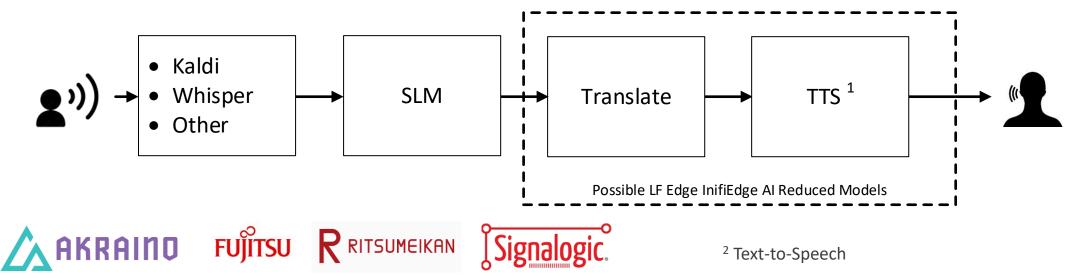
R RITSUMEIKAN

> NIST conference in 2020

AIND

> WiFi or USB port interfaces typical


FUÏITSU


	Key Information	Other Information
What is teleoperation?	Remote operation of a machine at a distance	Similar to remote control
	 Requires wireless link to machine 	 Or wired link if machine is nearby
	 First concepts in 1870s; wire-guided torpedoes 	Nikola Tesla-1898: Radio-controlled boa
3 levels of AV teleoperation	Remote monitoring of AVs	 Monitoring of AV fleet driving
	 Remote assistance to AVs 	 Driving assist for a short time
	 Remote driving of AVs 	 Driving for a substantial time
Why is it needed?	 As human backup to driverless vehicles 	 To be part of most AV regulations
	 To manage and learn from edge cases 	Transfer edge cases to known cases
	 To gain early AV deploy with acceptable safely 	 Only for specific AV use-cases
Teleoperation	 California approval granted in February 2018 	 Driverless AVs require teleoperation
regulation	 California operational use started in April 2018 	• AZ, FL, MI, OH, TX too; More will follow
status	 Countries: Canada, Finland, Japan, Netherlands 	 Sweden, UK; More will follow
	 Shanghai and other Chinese cities 	 Teleoperation expected in China
Teleoperation	 Sidewalk AVs: Most common usage 	 Examples: Kiwibot, Postmates
use-cases	 Trucks: AV on highway; last mile teleoperation 	 Examples: Einride, Hub-to-hub AVs
	 Robotaxis: Regulation and edge case 	 Zoox has remote operation patent
	Others: Forklifts, excavators, yard trucks, combine	 Testing, trials, some deployment
	 Shared electric scooters 	 To return to base & charging stations
Teleoperation	 Designated Driver: Assisted & remote driving 	 Teleoperation for Texas A&M shuttle
startups	 DriveU: Assisted & remote driving teleoperation 	Member: Israeli teleoperation consortiun
	 Ottopia: Assisted & remote-driving teleoperation 	 Partners: BMW, Denso, EasyMile, other
	 Phantom Auto: Focus on remote driving use-cases 	Forklifts, yard trucks and similar clients
Make or buy	 Top AV software platform: own teleoperation 	 Likely integrated with AV software driver
teleoperation?	 Many companies will buy teleoperation software 	 From multiple teleoperation startups
Teleoperation standards	 Teleoperation standards likely to happen 	• AV software driver variety is big barrier
	 Best chance is high level standards 	 At functional or operational level
Teleoperation	 First conference on teleoperation (virtual) 	 November 13, 2020 by NIST
Forum	 NIST Vehicle Teleoperation Forum NIST 	 40 speakers; 8+ hours of video sessions
Teleoperation	 TC is a non-profit business organization 	Founded December 2020
Consortium	 30+ companies, universities, organizations 	Website: Teleoperation Consortium
	NIST=National Institute of Standards ar	nd Technology
	Source: Egil Juliussen, May 2	2021

Technology Overview – Dataflow

> Robotaxi

> Language Translation

Technology Overview – Training and Inference

Conventional CPUs

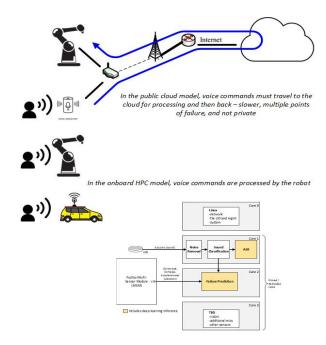
- > Arm, x86
- > no GPUs, no HBM
- > Conventional memory, 8 GB min

FUJITSU RITSUMEIKAN

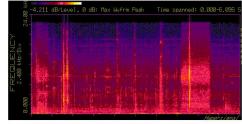
- > Training
 - > frequency domain representations of 10,000 text words becomes an image recognition problem
 - > non-linear memory space, self-organizing, sound-alikes are near each other
 - > extremely fast
 - > no gradient descent or other high complexity algorithms
- > Inference

KRAINO

> content addressable memory – series of spans and local searches


Status and Next Steps

- > Working now
 - Kaldi ASR running on one Atom core in real-time
 - > pico ITX board (Atom x5-E3940)
 - > 20,000 word vocabulary
- > SLM under development
 - > live demo next step
 - > pico ITX board


AKRAINO

> planning for Akraino Fall Summit

FUITSU R RITSUMEIKAN

