# Small Language Model (SLM) for Device Al

#### **Akraino Robotics Blueprint, Release 8 Enhancement**



### **Device AI speech recognition challenges at the edge**

#### > Device AI applications need to run ASR <sup>1</sup>

- > On very small form-factor devices (e.g. pico ITX)
- > With unreliable or no cloud connection
- Under difficult conditions, including background noise, urgent or stressed voice input, and background talkers
- Robotics servo motor and other mechanical noise increases difficulty

FUITSU





# **Precise Command Problem**

- Machine-readable APIs must be precise
- False positives must be carefully minimized
- Under difficult conditions, efficient open source ASRs > such as Kaldi and Whisper produce "sound-alike" errors, for example:

"in the early days a king rolled the stake"

which must be corrected to

"in the early days a king ruled the state"





- Sound-alike errors are problematic for safety and emergency situations
  - Internet / cloud connection cannot be assumed. Phones may be useless
  - A first responder may use a portable hand-held device and give commands > to a robotaxi such as "get off the road in that turn-out up ahead and shut down"



### **Use Cases**

- > Factory floor personnel need to give urgent commands
  - > forklifts
  - > hands-free equipment (e.g. food processing)
- First responders need to communicate with disabled or confused robotic vehicles
  - > robotaxis
  - > semi trucks
- > Language Translation
  - > sound-alike correction in text prior to translation
  - > independent of ASR model









# Requirements

- Must correct sound-alike errors independently of ASR model without re-training, tuning, compression, or other reduction
- > Very small form-factor, under 15 W
  - > for example using two (2) Atom CPU cores
- > Real-time must run every 300 to 500 msec
- > Backwards / forwards context of 3-4 words
  - > unlike an LLM, wide context window, domain knowledge, and extensive web page training are not needed
- > Compliant with emerging teleoperation standards
  - California included teleoperation as part of its regulation for driverless vehicles in 2018

**R** RITSUMEIKAN

> NIST conference in 2020

AIND

> WiFi or USB port interfaces typical

FUÏITSU



| Teleoperation and Autonomous Vehicles Overview      |                                                                          |                                                                |
|-----------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|
|                                                     | Key Information                                                          | Other Information                                              |
| What is                                             | <ul> <li>Remote operation of a machine at a distance</li> </ul>          | <ul> <li>Similar to remote control</li> </ul>                  |
| teleoperation?                                      | <ul> <li>Requires wireless link to machine</li> </ul>                    | <ul> <li>Or wired link if machine is nearby</li> </ul>         |
|                                                     | <ul> <li>First concepts in 1870s; wire-guided torpedoes</li> </ul>       | Nikola Tesla-1898: Radio-controlled boat                       |
| 3 levels of AV                                      | <ul> <li>Remote monitoring of AVs</li> </ul>                             | <ul> <li>Monitoring of AV fleet driving</li> </ul>             |
| teleoperation                                       | <ul> <li>Remote assistance to AVs</li> </ul>                             | <ul> <li>Driving assist for a short time</li> </ul>            |
|                                                     | <ul> <li>Remote driving of AVs</li> </ul>                                | <ul> <li>Driving for a substantial time</li> </ul>             |
| Why is it                                           | <ul> <li>As human backup to driverless vehicles</li> </ul>               | <ul> <li>To be part of most AV regulations</li> </ul>          |
| needed?                                             | <ul> <li>To manage and learn from edge cases</li> </ul>                  | <ul> <li>Transfer edge cases to known cases</li> </ul>         |
|                                                     | <ul> <li>To gain early AV deploy with acceptable safely</li> </ul>       | <ul> <li>Only for specific AV use-cases</li> </ul>             |
| Teleoperation                                       | <ul> <li>California approval granted in February 2018</li> </ul>         | <ul> <li>Driverless AVs require teleoperation</li> </ul>       |
| regulation                                          | <ul> <li>California operational use started in April 2018</li> </ul>     | • AZ, FL, MI, OH, TX too; More will follow                     |
| status                                              | Countries: Canada, Finland, Japan, Netherlands                           | <ul> <li>Sweden, UK; More will follow</li> </ul>               |
|                                                     | <ul> <li>Shanghai and other Chinese cities</li> </ul>                    | <ul> <li>Teleoperation expected in China</li> </ul>            |
| Teleoperation                                       | <ul> <li>Sidewalk AVs: Most common usage</li> </ul>                      | <ul> <li>Examples: Kiwibot, Postmates</li> </ul>               |
| use-cases                                           | <ul> <li>Trucks: AV on highway; last mile teleoperation</li> </ul>       | <ul> <li>Examples: Einride, Hub-to-hub AVs</li> </ul>          |
|                                                     | <ul> <li>Robotaxis: Regulation and edge case</li> </ul>                  | <ul> <li>Zoox has remote operation patent</li> </ul>           |
|                                                     | Others: Forklifts, excavators, yard trucks, combine                      | <ul> <li>Testing, trials, some deployment</li> </ul>           |
|                                                     | <ul> <li>Shared electric scooters</li> </ul>                             | <ul> <li>To return to base &amp; charging stations</li> </ul>  |
| Teleoperation                                       | <ul> <li>Designated Driver: Assisted &amp; remote driving</li> </ul>     | <ul> <li>Teleoperation for Texas A&amp;M shuttle</li> </ul>    |
| startups                                            | <ul> <li>DriveU: Assisted &amp; remote driving teleoperation</li> </ul>  | Member: Israeli teleoperation consortium                       |
|                                                     | <ul> <li>Ottopia: Assisted &amp; remote-driving teleoperation</li> </ul> | • Partners: BMW, Denso, EasyMile, others                       |
|                                                     | <ul> <li>Phantom Auto: Focus on remote driving use-cases</li> </ul>      | <ul> <li>Forklifts, yard trucks and similar clients</li> </ul> |
| Make or buy                                         | <ul> <li>Top AV software platform: own teleoperation</li> </ul>          | Likely integrated with AV software driver                      |
| teleoperation?                                      | <ul> <li>Many companies will buy teleoperation software</li> </ul>       | <ul> <li>From multiple teleoperation startups</li> </ul>       |
| Teleoperation                                       | <ul> <li>Teleoperation standards likely to happen</li> </ul>             | <ul> <li>AV software driver variety is big barrier</li> </ul>  |
| standards                                           | <ul> <li>Best chance is high level standards</li> </ul>                  | <ul> <li>At functional or operational level</li> </ul>         |
| Teleoperation                                       | <ul> <li>First conference on teleoperation (virtual)</li> </ul>          | November 13, 2020 by NIST                                      |
| Forum                                               | <ul> <li>NIST Vehicle Teleoperation Forum   NIST</li> </ul>              | • 40 speakers; 8+ hours of video sessions                      |
| Teleoperation                                       | <ul> <li>TC is a non-profit business organization</li> </ul>             | Founded December 2020                                          |
| Consortium                                          | <ul> <li>30+ companies, universities, organizations</li> </ul>           | Website: Teleoperation Consortium                              |
| NIST=National Institute of Standards and Technology |                                                                          |                                                                |
| Source: Egil Juliussen, May 2021                    |                                                                          |                                                                |

### **Technology Overview – Dataflow**

> Robotaxi



### > Language Translation



# **Technology Overview – Training and Inference**

#### Conventional CPUs

- > Arm, x86
- > no CPUs, no HBM
- > Conventional memory, 8 GB min

FUJITSU RITSUMEIKAN

- > Training
  - > frequency domain representations of 10,000 text words becomes an image recognition problem
    - > non-linear memory space, self-organizing, sound-alikes are near each other
    - > extremely fast
    - > no gradient descent or other high complexity algorithms
- > Inference

KRAINO

> content addressable memory – series of spans and local searches

# **Status and Next Steps**

- > Working now
  - Kaldi ASR running on one Atom core in real-time
  - > pico ITX board (Atom x5-E3940)
  - > 20,000 word vocabulary
- > SLM under development
  - > live demo next step
  - > pico ITX board

AKRAINO

> planning for Akraino Fall Summit

FUITSU R RITSUMEIKAN





