Small Language Model (SLM) for Device Al

Akraino Robotics Blueprint, Release 8 Enhancement

Device Al speech recognition challenges at the edge

- Device AI applications need to run ASR¹
 - On very small form-factor devices (e.g. pico ITX)
 - With unreliable or no cloud connection
 - > Under difficult conditions, including background noise, urgent or stressed voice input, and background talkers
 - Robotics servo motor and other mechanical noise increases difficulty

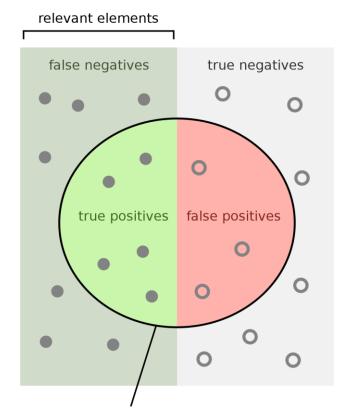
Precise Command Problem

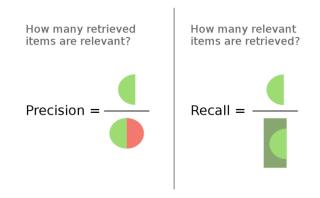
- Machine-readable APIs must be precise
- False positives must be carefully minimized
- Under difficult conditions, efficient open source ASRs such as Kaldi and Whisper produce "sound-alike" errors, for example:

"in the early days a king rolled the stake"

which must be corrected to

"in the early days a king ruled the state"


- > Sound-alike errors are problematic for safety and emergency situations
 - > Internet / cloud connection cannot be assumed. Phones may be useless
 - A first responder may use a portable hand-held device and give commands to a robotaxi such as "get off the road in that turn-out up ahead and shut down"



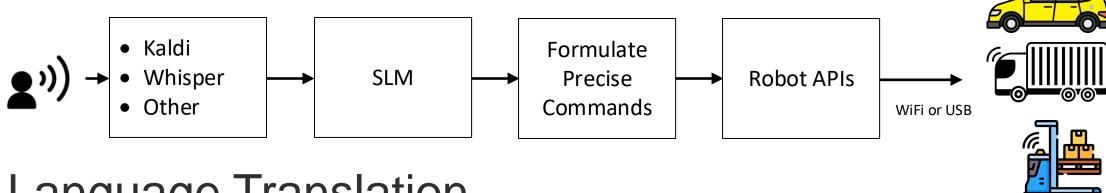
retrieved elements

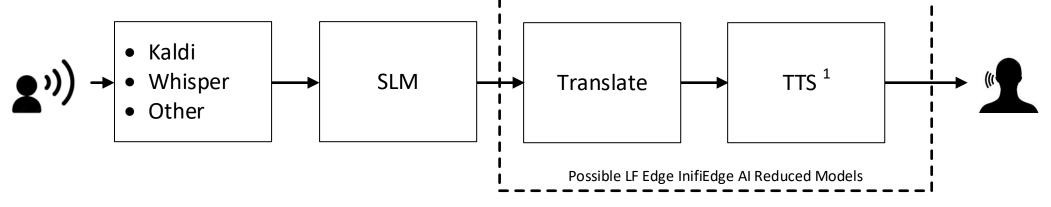
Use Cases

- Factory floor personnel need to give urgent commands
 - forklifts
 - hands-free equipment (e.g. food processing)
- First responders need to communicate with disabled or confused robotic vehicles
 - robotaxis
 - > semi trucks
- Language Translation
 - sound-alike correction in text prior to translation
 - independent of ASR model

Requirements

- Must correct sound-alike errors independently of ASR model without re-training, tuning, compression, or other reduction
- Very small form-factor, under 15 W
 - for example using two (2) Atom CPU cores
- > Real-time must run every 300 to 500 msec
- Backwards / forwards context of 3-4 words
 - unlike an LLM, wide context window, domain knowledge, and extensive web page training are not needed
- > Compliant with emerging teleoperation standards
 - California included teleoperation as part of its regulation for driverless vehicles in 2018
 - > NIST conference in 2020
 - WiFi or USB port interfaces typical




Teleoperation and Autonomous Vehicles Overview		
	Key Information	Other Information
What is	Remote operation of a machine at a distance	Similar to remote control
teleoperation?	Requires wireless link to machine	Or wired link if machine is nearby
	First concepts in 1870s; wire-guided torpedoes	Nikola Tesla-1898: Radio-controlled boat
3 levels of AV	Remote monitoring of AVs	Monitoring of AV fleet driving
teleoperation	Remote assistance to AVs	Driving assist for a short time
	Remote driving of AVs	Driving for a substantial time
Why is it needed?	As human backup to driverless vehicles	To be part of most AV regulations
	To manage and learn from edge cases	Transfer edge cases to known cases
	To gain early AV deploy with acceptable safely	Only for specific AV use-cases
Teleoperation	California approval granted in February 2018	Driverless AVs require teleoperation
regulation	California operational use started in April 2018	AZ, FL, MI, OH, TX too; More will follow
status	Countries: Canada, Finland, Japan, Netherlands	Sweden, UK; More will follow
	Shanghai and other Chinese cities	Teleoperation expected in China
Teleoperation	Sidewalk AVs: Most common usage	Examples: Kiwibot, Postmates
use-cases	Trucks: AV on highway; last mile teleoperation	Examples: Einride, Hub-to-hub AVs
	Robotaxis: Regulation and edge case	Zoox has remote operation patent
	Others: Forklifts, excavators, yard trucks, combine	Testing, trials, some deployment
	Shared electric scooters	To return to base & charging stations
Teleoperation	Designated Driver: Assisted & remote driving	Teleoperation for Texas A&M shuttle
startups	DriveU: Assisted & remote driving teleoperation	Member: Israeli teleoperation consortium
	Ottopia: Assisted & remote-driving teleoperation	Partners: BMW, Denso, EasyMile, others
	Phantom Auto: Focus on remote driving use-cases	Forklifts, yard trucks and similar clients
Make or buy	Top AV software platform: own teleoperation	Likely integrated with AV software driver
teleoperation?	 Many companies will buy teleoperation software 	From multiple teleoperation startups
Teleoperation	Teleoperation standards likely to happen	AV software driver variety is big barrier
standards	Best chance is high level standards	At functional or operational level
Teleoperation	First conference on teleoperation (virtual)	November 13, 2020 by NIST
Forum	NIST Vehicle Teleoperation Forum NIST	40 speakers; 8+ hours of video sessions
Teleoperation	TC is a non-profit business organization	Founded December 2020
Consortium	30+ companies, universities, organizations	Website: Teleoperation Consortium
NIST=National Institute of Standards and Technology		
Source: Egil Juliussen, May 2021		

Technology Overview – Dataflow

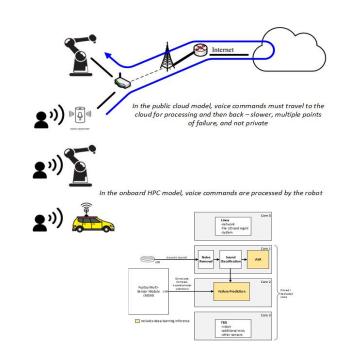
> Robotaxi

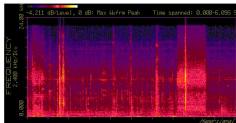
Language Translation

² Text-to-Speech

Technology Overview – Training and Inference

- Conventional CPUs
 - > Arm, x86
 - > no GPUs, no HBM
- Conventional memory, 8 GB min
- Training
 - frequency domain representations of 10,000 text words becomes an image recognition problem
 - > non-linear memory space, self-organizing, sound-alikes are near each other
 - extremely fast
 - > no gradient descent or other high complexity algorithms
- Inference
 - > content addressable memory series of spans and local searches





Status and Next Steps

- > Working now
 - > Kaldi ASR running on one Atom core in real-time
 - pico ITX board (Atom x5-E3940)
 - > 20,000 word vocabulary
- SLM under development
 - > live demo next step
 - pico ITX board
 - > planning for Akraino Fall Summit

