

Akraino Use Case: Robotics

LF Edge at OCP Summit 2023 Akraino Summit 2023

Akraino Robotics Blueprint Use Case

Contents

- Organizations Participating
- LF Edge and Akraino
- Challenges & Motivation
- Use Case Description
- Achievements & Results
- About Akraino

Organizations Participating

Ritsumeikan Univ

- comprehensive university with 18 faculties and 20 graduate schools
- students study social sciences, humanities and natural sciences
- 3rd largest number of students in Japan

• Fujitsu

- information & communications technology equipment and services firm
- providing IT & IT infrastructure and other services

Signalogic

- solutions for high capacity, high reliability media
- deployed in HPC, telecom, lawful intercept, deep learning, and applications

LF Edge & Akraino

Akraino

- LF Edge open source community creating application blueprints for Edge Computing
- spanning edge computing use cases in 5G, AI, Edge IaaS/PaaS, IoT, and robotics
- for both provider and enterprise edge domains

Cyber-Physical Systems (CPS) Akraino Blueprints

- Robot Basic Architecture
 - based on Ritsumeikan and Fujitsu SSES (Sensor-rich Soft End-effector System)
- Smart Data Transaction
 - for cloud management and orchestration of robotics systems

Synergies with LF Edge communities

- EdgeX Foundry
 - enables nearby IoT gateways to allow robot communication via WiFi or Bluetooth
- EVE
 - collect and transmit 9-axis sensor data to cloud algorithms for failure prediction
 - robots require continuous monitoring and maintenance

Challenges & Motivation

Industry 5.0

- massive, automated customization
- human + robot "co-working", expanding from conventional assembly line to agriculture, food preparation, and other mfg with high degree of human interaction
- achieving Industry 5.0 objectives faces key challenges ...

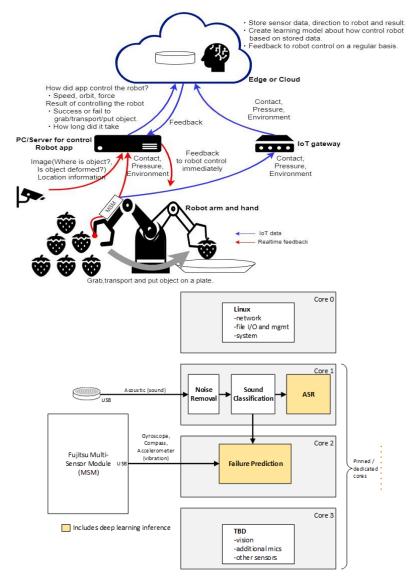
Non-uniform objects

- robots must handle objects with diverse shapes, frictional properties, and range of weight and thickness
- widely variable environment due to wetness, clutter, customers, etc.

Human interaction

- robots must communicate quickly and reliably with people
- human safety is paramount, robots must handle emergency voice commands
 - large vocabulary is required commands are unpredictable in wording, sequence, and level of stress (emotion)
- cannot be cloud dependent no dependencies on WiFi or Internet connectivity

Use Case Description



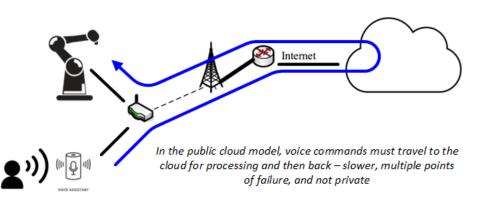
Sensor + robot fusion

- touch and tactile data are collected using multiple sensors
- analyzed by cloud AI algorithms
- fed back to the robot to achieve delicate handling according to each object

Failure prediction

- 24/7 failure prediction is required for robot maintenance and human safety
- relies on vibration and acceleration data from 9-axis sensor data
- also incorporates acoustic information (microphones)

Use Case Description, cont.



Speech recognition

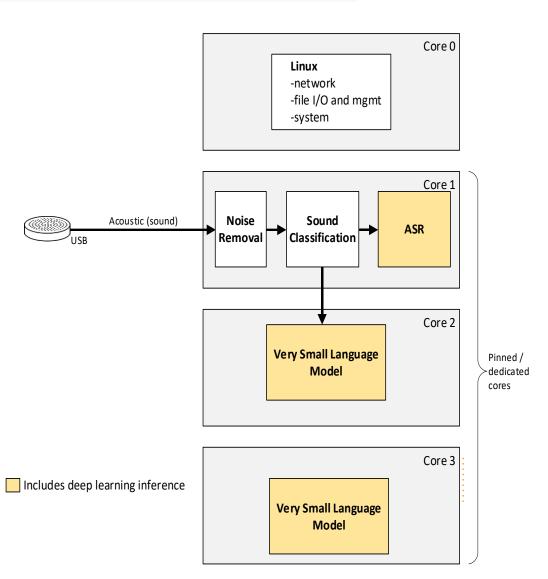
- robots must recognize "immediate and urgent" voice commands in order to prioritize human safety
- if someone shouts "stop now" the robot must stop — regardless of who is the speaker, level of background noise, or other circumstance
- robots must accept verbal instructions. As examples, a factory with a rugged, wet, and fast-paced environment cannot use keyboards and phone apps; a robotaxi must react to alerts shouted by nearby drivers

No cloud dependencies

- cloud has many points of possible failure
- we must be able to instruct robots and automated cars in critical situations, regardless of cloud connectivity

In the onboard HPC model, voice commands are processed by the robot

Current Work Area



Very Small Language Model (VSLM)

- robots must recognize conversational commands, without restrictions on vocabulary and word sequence
- the typical speech recognition engine (e.g. Kaldi, Whisper) tends to generate frequent sound-alike errors. For example "a King ruled the state" might be recognized as "a King rolled the stake". ChatGPT can easily fix such errors, but we need a very small model, not 1000s of GPUs
- we have two (2) x86 cores and 8
 GB mem available for this

Which model ?

- currently no small model that we tested can do this
- we are investigating further and also working internally on alternative types of training that may reduce the model size

Achievements & Results

Multiple sensor prototype

- handles dishes without breakage
- 9-axis sensor electronic design
- real-time ARM + FPGA SoC processor
- progress ongoing in reducing size, weight, and energy use

Roomba demo

- voice commands to control a Roomba
- noise removal (vacuum, servo motors)
- quad-core pico ITX server with no fans, "dead bugged" on a Roomba 680
- no cloud dependency, no separate voice assistant (i.e. no Alex, Cortana, etc.)

About Akraino

LF Edge project

- open source community creating application blueprints for Edge Computing
- spanning edge computing use cases in 5G, AI, Edge IaaS/PaaS, IoT, and robotics
- all blueprints tested by the community and ready for adoption as-is, or can be used starting points for customizing new blueprints

To get involved

- Akraino contact the Technical Steering Committee at <u>tsc@lists.akraino.org</u>
- CPS Blueprint Family contact <u>fukano.haruhisa@fujitsu.com</u> or <u>jbrower@signalogic.com</u>