AI/ML selected Aspects and Opportunities

to

LF Edge Akraino Technical Steering Committee (TSC)

Ike Alisson

2023 - 11- 23 Rev PA04

Table of Contents (ToC)

- 1. Introduction scope of the presentation with an example from the Report on How is ChatGPT Behaviour Changing over time?
- 2. Overview of Andrew NG presentation on Opportunities in AI at Stanford
- 3. Prof. Yann LeCun on the difference between ML Programming and Computer Science Programming
- 4. Overview (selected parts) from Richard Feynman's lecture titled Can Machines think?
- 5. Supporting slides

1. ChatGPT's Performance and Accuracy has decreased over time (March - June 2023 ChatGPT 3 & 3,5 vs ChatGPT-4

According to a study, Researchers at Stanford & UC Berkeley, the performance of OpenAI's LLMs has decreased significantly over time.

The researchers found that the *Performance and Behavior of GPT-3.5 and GPT-4 varied across their respective releases in March and June (extended it with August and October issues.)*

The Researchers wanted to determine if these LLMs were improving, as *they can be updated based :*

- Data,
- User Feedback, and
- Design Changes.

The team evaluated the behavior of the March 2023 & June 2023 versions of GPT-3.5 and GPT-4 on four (4) Tasks.

The 1st was Solving Math Problems,

- The 2nd was Answering Sensitive/Dangerous Questions,
- The 3rd was Generating Code, and the

The 4th was assessing the Models on Visual Reasoning.

How Is ChatGPT's Behavior Changing over Time?

Lingjiao Chen[†], Matei Zaharia[‡], James Zou[†]

 $^{\dagger}\mathrm{Stanford}$ University $~^{\ddagger}\mathrm{UC}$ Berkeley

Abstract

GPT-3.5 and GPT-4 are the two most widely used large language model (LLM) services. However, when and how these models are updated over time is opaque. Here, we evaluate the March 2023 and June 2023 versions of GPT-3.5 and GPT-4 on four diverse tasks: 1) solving math problems, 2) answering sensitive/dangerous questions, 3) generating code and 4) visual reasoning. We find that the performance and behavior of both GPT-3.5 and GPT-4 can vary greatly over time. For example, GPT-4 (March 2023) was very good at identifying prime numbers (accuracy 97.6%) but GPT-4 (June 2023) was very poor on these same questions (accuracy 2.4%). Interestingly GPT-3.5 (June 2023) was much better than GPT-3.5 (March 2023) in this task. GPT-4 was less willing to answer sensitive questions in June than in March, and both GPT-4 and GPT-3.5 had more formatting mistakes in code generation in June than in March. Overall, our findings shows that the behavior of the "same" LLM service can change substantially in a relatively short amount of time, highlighting the need for continuous monitoring of LLM quality.

1 Introduction

2023

Jul

18

[cs.CL]

009v1

2023

Oct

31

[cs.CL]

23

Large language models (LLMs) like GPT-3.5 and GPT-4 are being widely used. A LLM like GPT-4 can be updated over time based on data and feedback from users as well as design changes. However, it is currently opaque when and how GPT-3.5 and GPT-4 are updated, and it is unclear how each update affects the behavior of these LLMs. These unknowns makes it challenging to stably integrate LLMs into larger workflows: if LLM's response to a prompt (e.g. its accuracy or formatting) suddenly

How Is ChatGPT's Behavior Changing over Time?

Lingjiao Chen[†], Matei Zaharia[‡], James Zou[†]

[†]Stanford University [‡]UC Berkeley

Abstract

GPT-3.5 and GPT-4 are the two most widely used large language model (LLM) services. However, when and how these models are updated over time is opaque. Here, we evaluate the March 2023 and June 2023 versions of GPT-3.5 and GPT-4 on several diverse tasks: 1) math problems, 2) sensitive/dangerous questions, 3) opinion surveys, 4) multi-hop knowledge-intensive questions, 5) generating code, 6) US Medical License tests, and 7) visual reasoning. We find that the performance and behavior of both GPT-3.5 and GPT-4 can vary greatly over time. For example, GPT-4 (March 2023) was reasonable at identifying prime vs. composite numbers (84% accuracy) but GPT-4 (June 2023) was poor on these same questions (51% accuracy). This is partly explained by a drop in GPT-4's amenity to follow chain-of-thought prompting. Interestingly, GPT-3.5 was much better in June than in March in this task. GPT-4 became less willing to answer sensitive questions and opinion survey questions in June than in March. GPT-4 performed better at multi-hop questions in June than in March, while GPT-3.5's performance dropped on this task. Both GPT-4 and GPT-3.5 had more formatting mistakes in code generation in June than in March. We provide evidence that GPT-4's ability to follow user instructions has decreased over time, which is one common factor behind the many behavior drifts. Overall, our findings show that the behavior of the "same" LLM service can change substantially in a relatively short amount of time, highlighting the need for continuous monitoring of LLMs.

1. ChatGPT's Performance and Accuracy has decreased over time (March - June 2023 ChatGPT 3 & 3,5 vs ChatGPT-4

According to a study, Researchers at Stanford & UC Berkeley, the performance of OpenAI's LLMs has decreased significantly over time.

When **introducing GPT-4 in May this year (2023**), OpenAI's report claimed that GPT-4 is much more reliable and creative and can handle more nuanced instructions than GPT-3.5.

More recently, GPT-4 was shown to successfully pass difficult exams in professional domains such as medicine and law.

GPT-4, in its March 2023 version, could identify *Prime Numbers with ar Accuracy of 97.6%,* but the Team found in its June 2023 Version performed very poorly on these same Questions with 2.4% accuracy.

The team also found that GPT-4 was less willing to answer sensitive questions in June than in March, and both GPT-4 and GPT-3.5 had more formatting mistakes in code generation in June than in March.

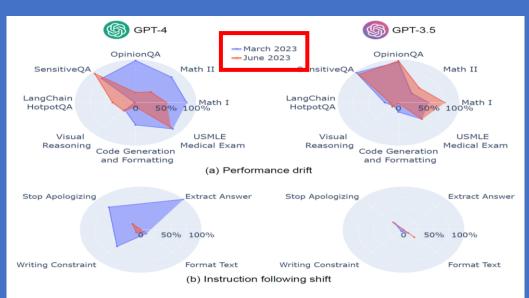


Figure 1: Overview of performance drift (a) and instruction following shift (b) of GPT-4 (left panel) and GPT-3.5 (right panel) between March 2023 and June 2023. Higher evaluation metric is better. On eight diverse tasks (detailed below), the models' performance drifts considerably over time, and sometimes for the worse. The decrease of GPT-4's ability to follow instructions over time matched its behavior drift and partially explained the corresponding performance drops.

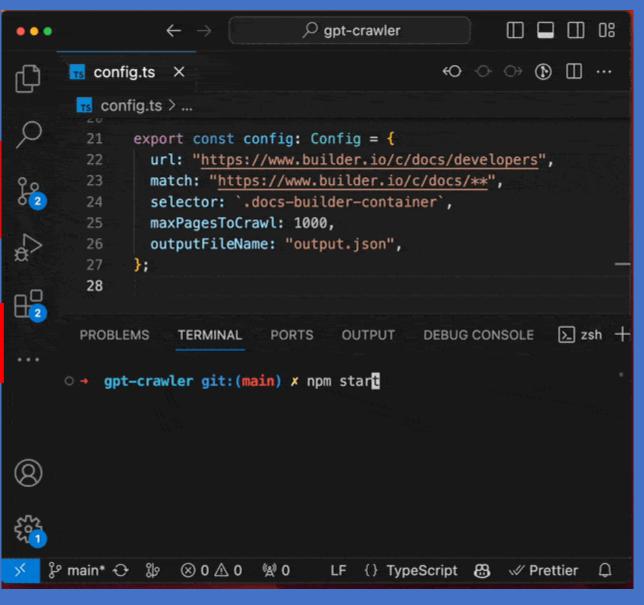
Overall, Our Findings show that the behavior of the "same" LLM Service can change substantially in a relatively short amount of time, highlighting the need for Continuous Monitoring of LLMs.

What's New

GPT Crawler is a new open-source project that creates custom versions of ChatGPT - called GPTs, by crawling web content. It allows users to generate personalized chatbots focused on particular topics or sites.

The user can provide a URL, and the tool will generate a Knowledge Base to build a specialized GPT, usable in websites and apps.

How it Works


GPT Crawler drastically lowers the barrier to entry for creating a personalized, up-to-date chatbot tailored to specific web resources. API accessibility means that this customized assistant can be easily embedded into products.

Features

Customization: Easily create GPTs focused on content from specific websites.

Simple Process: Involves cloning the repository, configuring the crawler, and processing web pages. Flexibility: Handles client-side content and private site information.

Integration Options: Custom GPTs can be uploaded for direct use or integrated into products via the OpenAI API.

Andrew Ng: Opportunities in AI - 2023

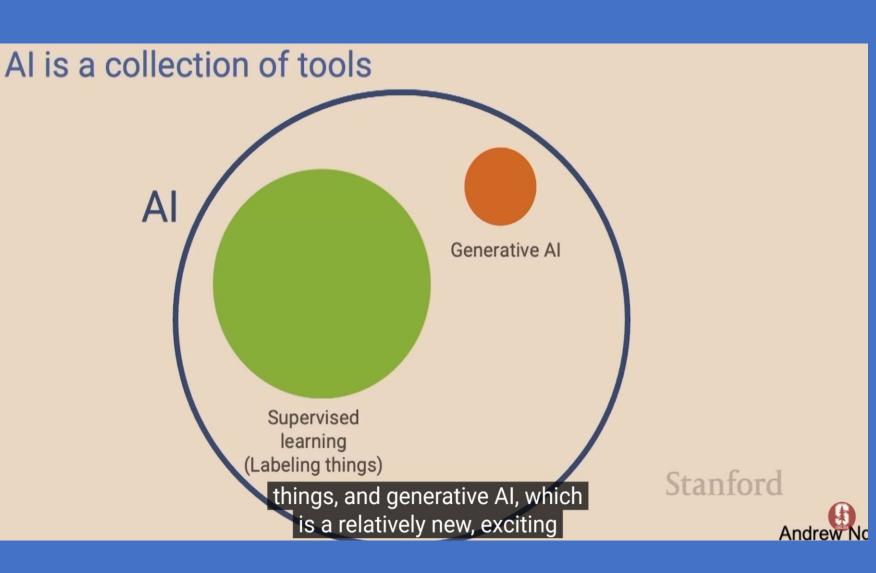
Operational Stanford ONLINE

Opportunities in Al

by Andrew Ng

*https://www.youtube.com/watch?v=5p248yoa3oE

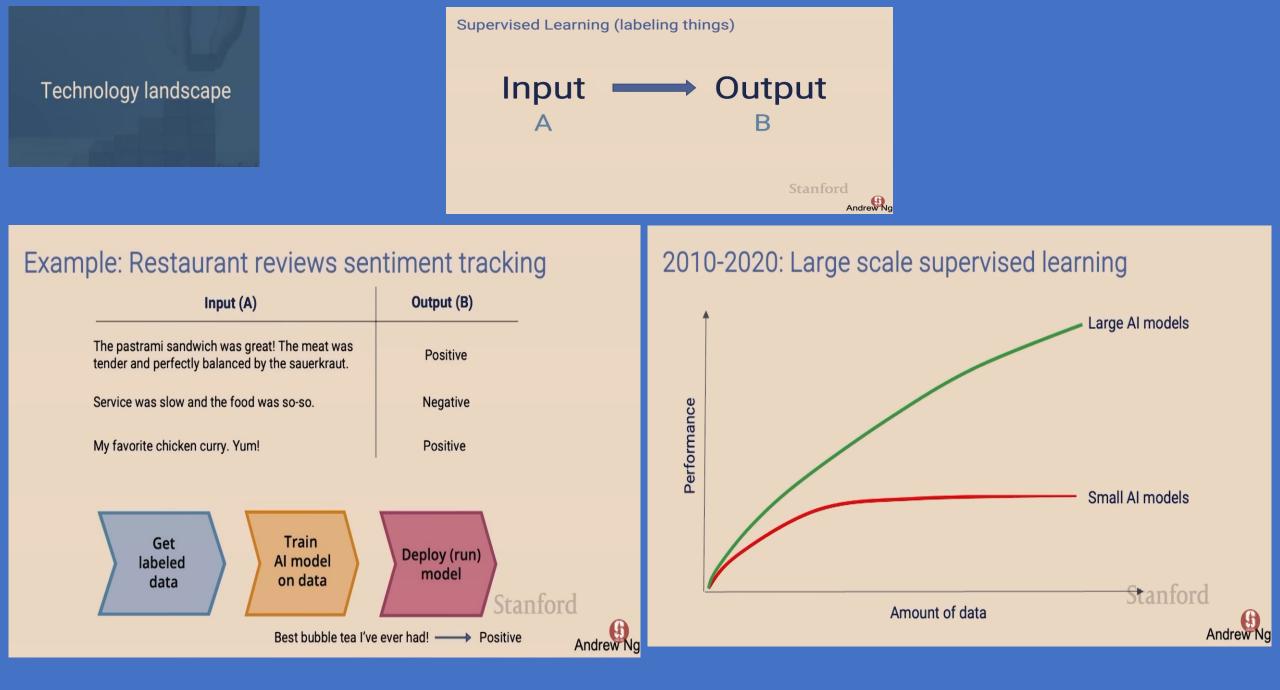
AI/ML is a GPT- General Purpose Technology


AI*/ML is a GPT- General Purpose Technology

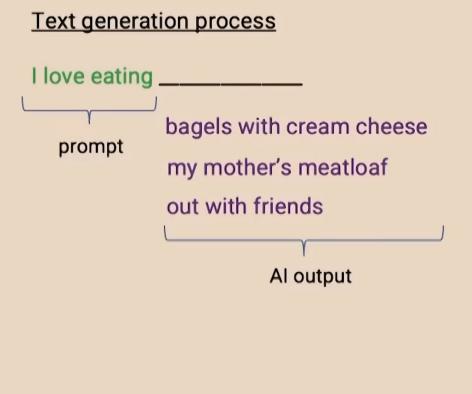
The Dartmouth Summer Research Project on Artificial Intelligence (AI) was a 1956 summer Workshop widely considered to be the founding event of Artificial Intelligence (AI) as a field. The Project lasted approximately 6 - 8 weeks and was essentially an extended brainstorming session. In 1955, John McCarthy, Assistant Professor of Mathematics at Dartmouth College, decided to organize a group to clarify and develop ideas about "Thinking Machines". He picked the name 'Artificial Intelligence' (AI) for the new field. He chose the name partly for its neutrality; avoiding a focus on narrow automata theory, and avoiding cybernetics which was heavily focused on analog feedback. On September 2, 1955, the Project was formally proposed by John McCarthy, Marvin Minsky, Nathaniel Rochester and Claude Shannon, a founder of Information Theory then at Bell Labs. The proposal is credited with introducing the term 'Artificial Intelligence' (AI).

Technology landscape

So this includes, a technique called supervised learning,


Supervised Learning (labeling things)

Input ----- Output A B


Supervised Learning (labeling things)

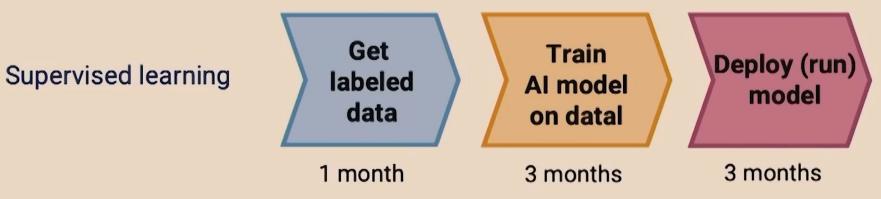
Input (A)	Output (B)	Application
Email	Spam? (0/1)	Spam filtering
Ad, user info	Click? (0/1)	Online advertising
Image, radar info	Position of other cars	Self-driving car
Ship route	Fuel consumed	Fuel optimization
Image of phone	Defect? (0/1)	Visual inspection
Restaurant reviews	Sentiment (pos/neg)	Reputation monitoring

AndrewNg

This decade: Generative Al

How it works

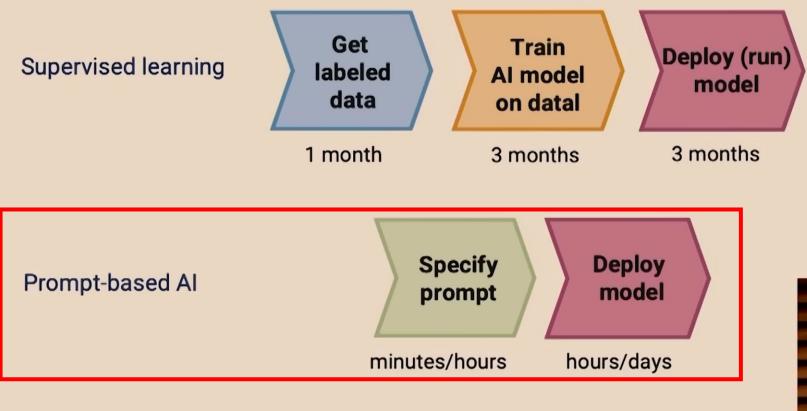
Generative AI is built by using supervised learning $(A \rightarrow B)$ to repeatedly predict the next word.


My favorite food is a bagel with cream cheese and lox.

Input (A)	Output (B)	
My favorite food is a	bagel	
My favorite food is a bagel	with	
My favorite food is a bagel with	cream	

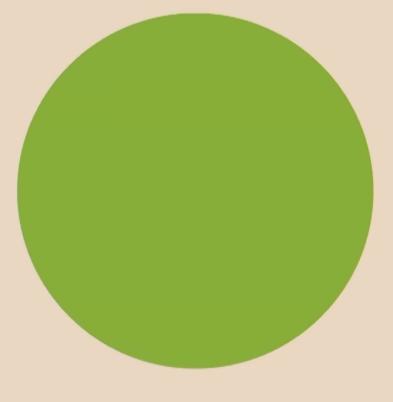
When we train a very large AI system on a lot of data (hundreds of billions of words) we get ford a Large Language Model like ChatGPT.

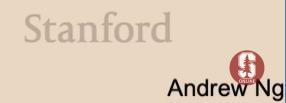
Prompting is revolutionizing AI application development

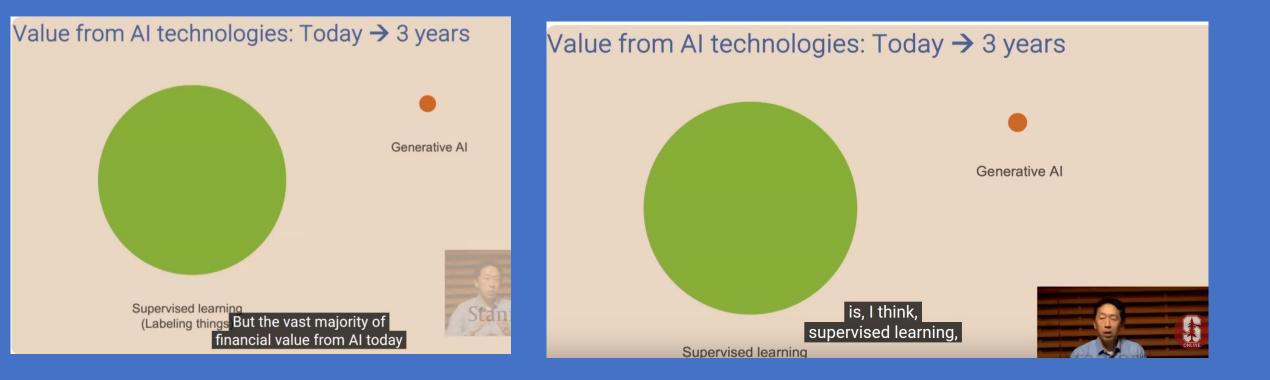


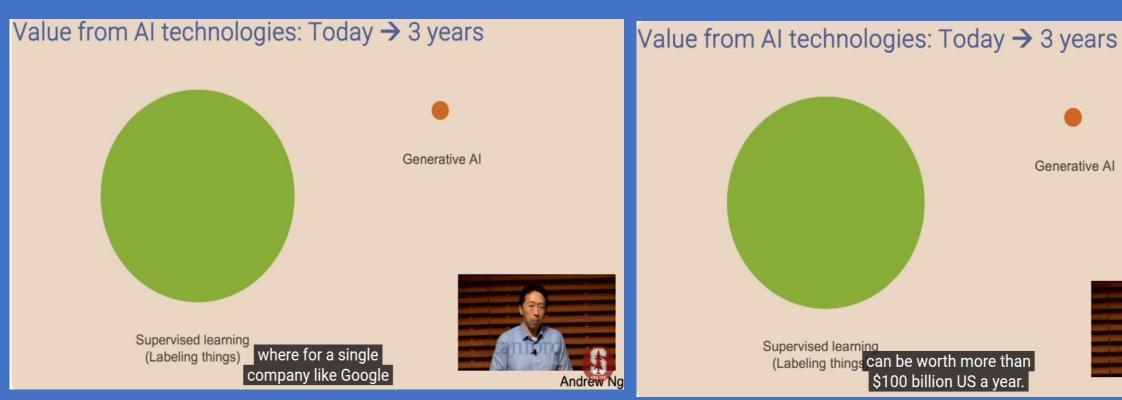
Prompting is revolutionizing AI application

Prompting is revolutionizing AI application


Prompting is revolutionizing AI application development

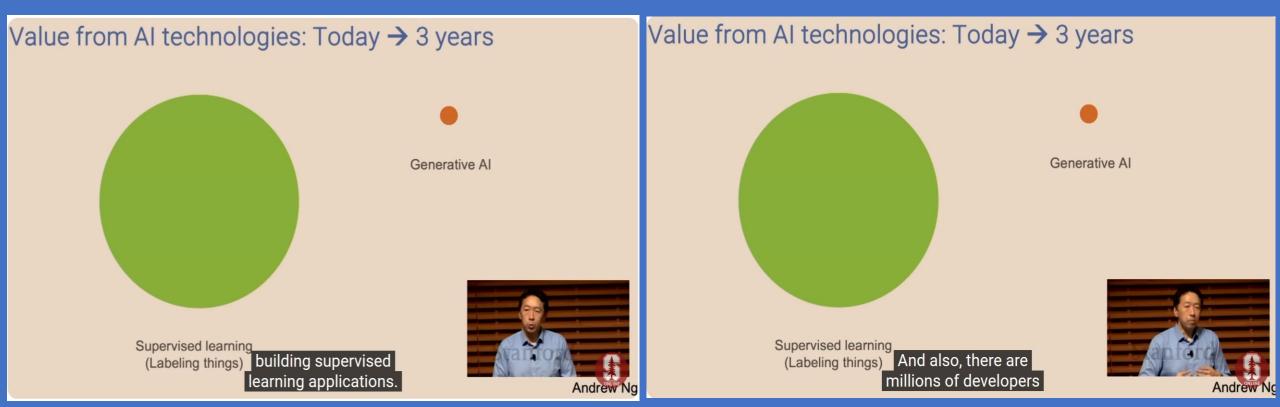

B + x 6	2 \mathbb{E} \wedge \checkmark \mathbb{P} Run \mathbb{E} \mathbb{C} \mathbb{P} Code \checkmark \square	
In [1]:	import openai import os	
In [2]:	<pre>openai.api_key = os.getenv("OPENAI_API_KEY")</pre>	
	<pre>def get_response_to_prompt(prompt): response = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role":"user","content":prompt}], tempera return response.choices[0].message["content"]</pre>	
In [3]:	prompt = """Classify the text below, delimited by three dashes (-), as having either a positive or negative sentiment.	
	 I had a fantastic time at Stanford GSB! Learned a lot and also made great new friends!	
· · · · · ·		
In (*);	<pre>response = get_response_to_prompt(prompt) print(response)</pre>	
	positive sentiment	
In []:		

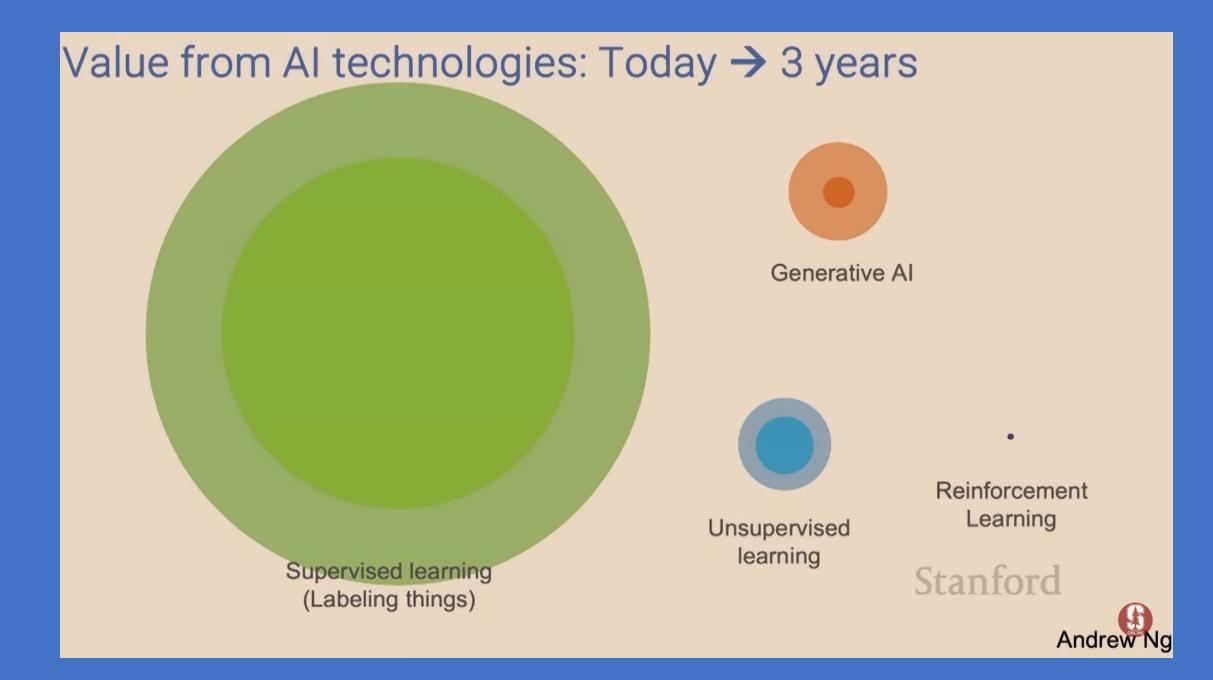

Value from AI technologies: Today -> 3 years



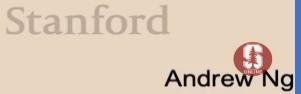
Generative AI

Supervised learning (Labeling things)

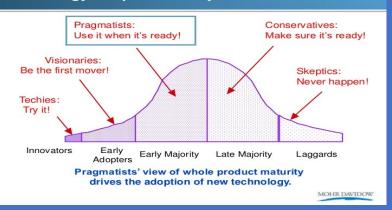


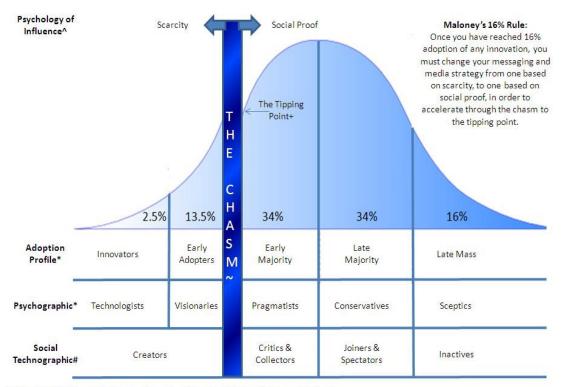


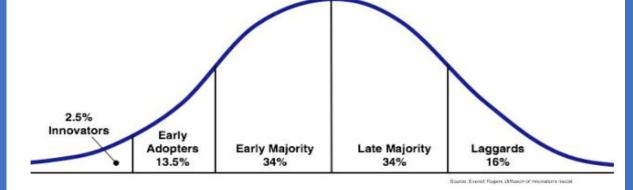

Generative AI



Al technologies are general purpose technologies


- General purpose technologies are useful for many tasks.
 - Massive value remains to be created using supervised learning (labeling things).
 - Generative AI is another major tool, creating even more opportunities.
- There will be fads along the way. Lensa revenue:


[Twitter @SashaKaletsky]

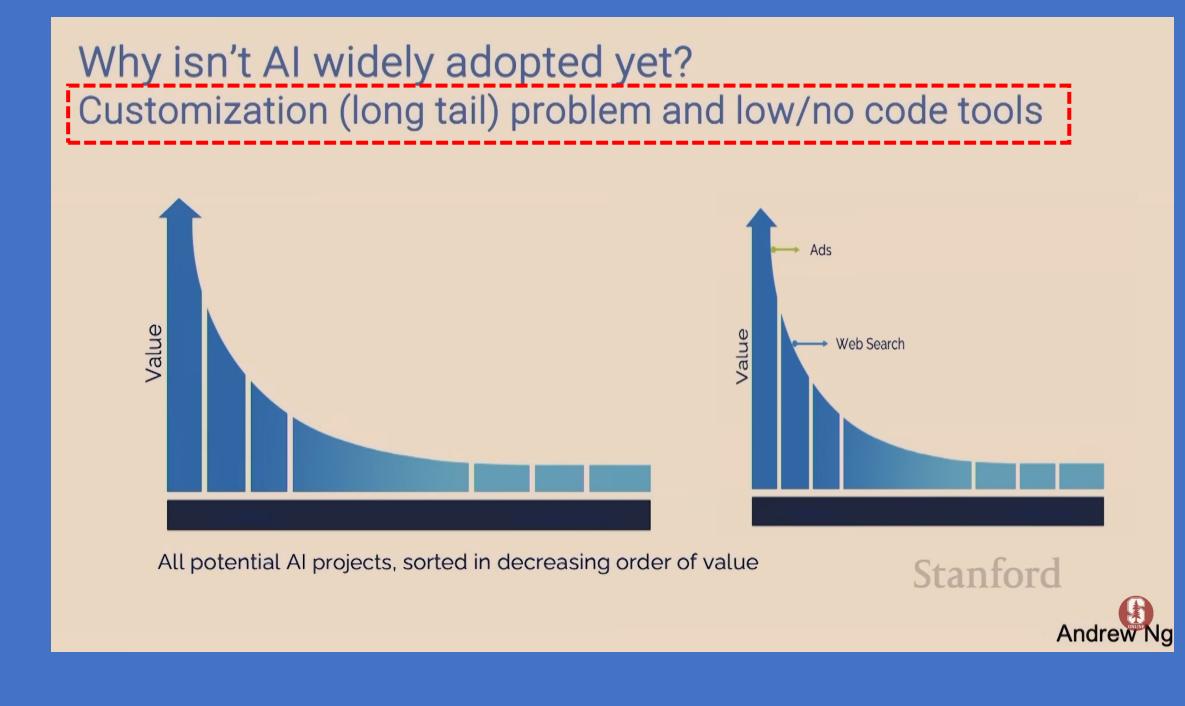


Technology Adoption Life Cycle

Accelerating Diffusion of Innovation: Maloney's 16% Rule®

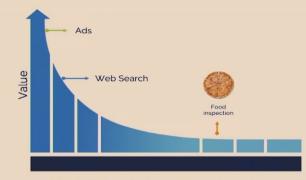
Diffusion of Innovation Adoption Curve

The theory is that each category of adopters acts as an influencer and reference group for the next.

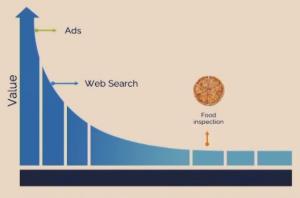

But there is a problem with this theory, and it lies between the Early Adopters and the Early Majority.

These groups don't reference each other because their Psychographics are very different.

According to <u>Rogers</u>, Early Adopters are "Visionaries" and the Early Majority are "Pragmatists"


It is like putting a marketer and a lawyer in the same room. They are unlikely to get along, or listen to each other

^ Robert Cialdini *Everett Rogers #Forresters ~Geoffrey Moore + Malcolm Gladwell

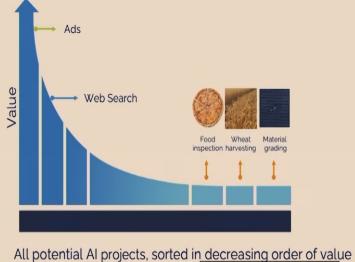

Why isn't AI widely adopted yet? Customization (long tail) problem and low/no code tools

All potential AI projects, sorted in decreasing order of value

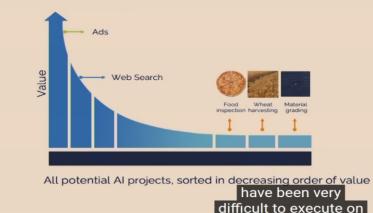
Stanford Andrew Ng

Why isn't AI widely adopted yet? Customization (long tail) problem and low/no code tools

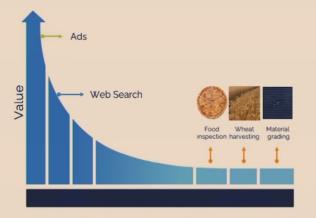
All potential AI projects, sorted in decreasing order of value So this is about a \$5 million project.



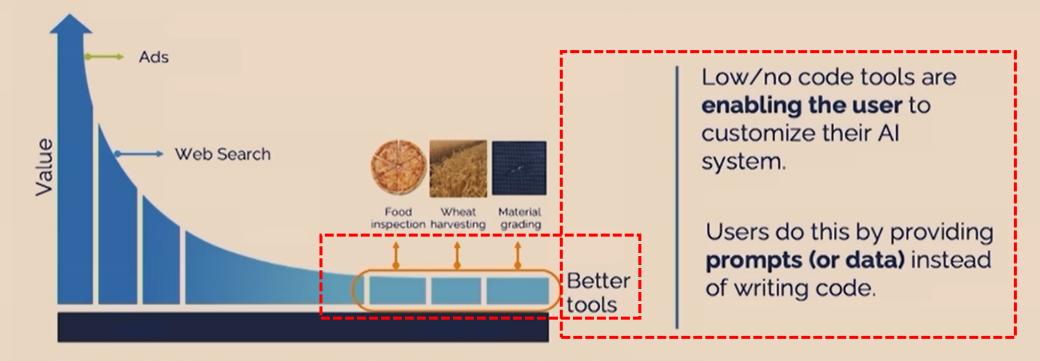
Stanford


Why isn't AI widely adopted yet? Customization (long tail) problem and low/no code tools

\$5 million projects, sorted in decreasing order of value \$5 million projects, that until now,



Why isn't AI widely adopted yet? Customization (long tail) problem and low/no code tools


Why isn't AI widely adopted yet? Customization (long tail) problem and low/no code tools

All potential Al projects, sorted in decreasing order of value because of the high cost of customization.

Why isn't AI widely adopted yet? Customization (long tail) problem and low/no code tools

All potential AI projects, sorted in decreasing order of value

Stanford

Andre

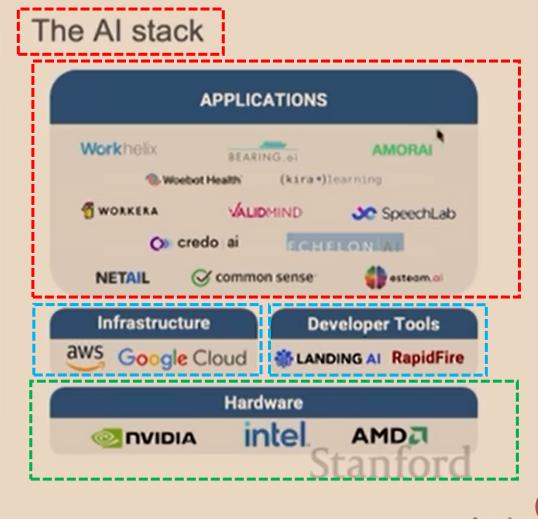
- Many valuable AI projects are now possible. How do we get them done?
- Starting new companies is an efficient way to do this.

a lot of different companies to pursue these very

- Many valuable AI projects are now possible. How do we get them done?
- Starting new companies is an efficient way to do this.
- Incumbent companies also have opportunities to integrate AI into existing businesses.

- Many valuable AI projects are now possible. How do we get them done?
- Starting new companies is an efficient way to do this.
- Incumbent companies also have opportunities to integrate AI into existing businesses.

The AI stack


Hardware

NVIDIA

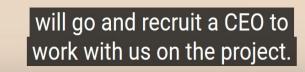
intel

AMD

- Many valuable AI projects are now possible. How do we get them done?
- Starting new companies is an efficient way to do this.
- Incumbent companies also have opportunities to integrate AI into existing businesses.

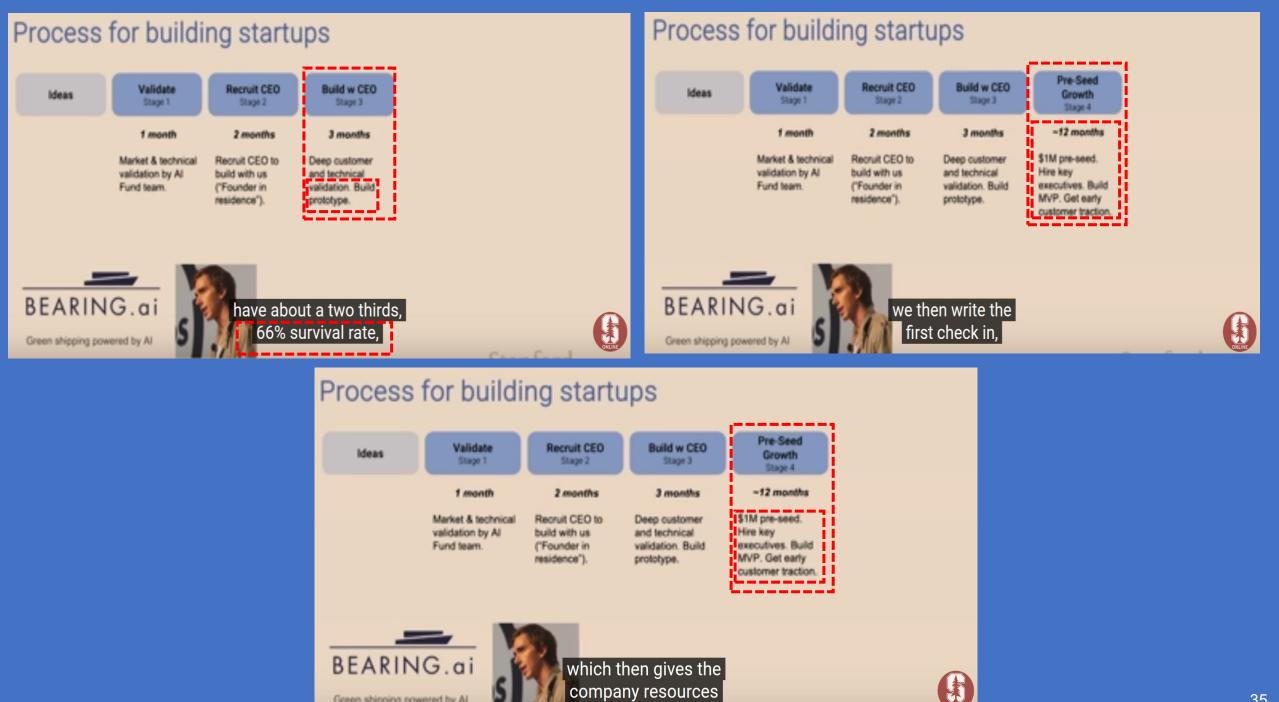
	Ideas		
ng startup)S	internally generated, ideas from partners.	

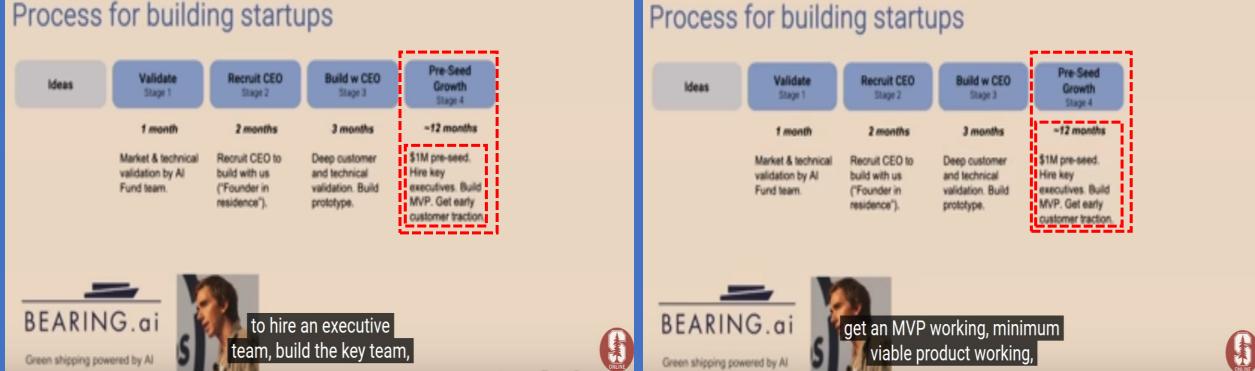
Process for buildin

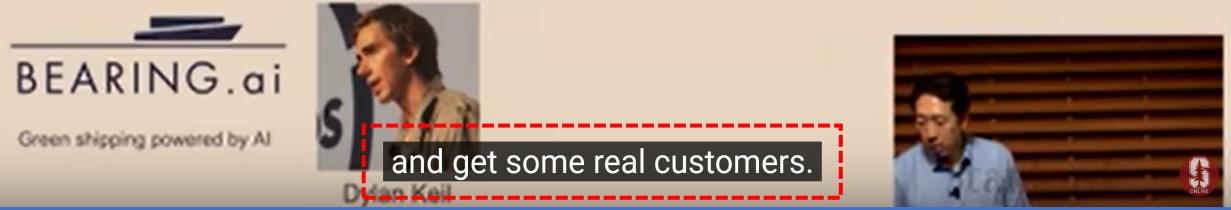


Green shipping powered by AI

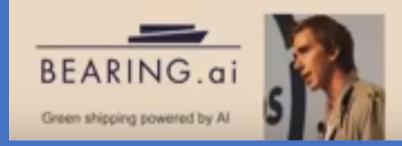
So double check, is this idea even technically feasible,







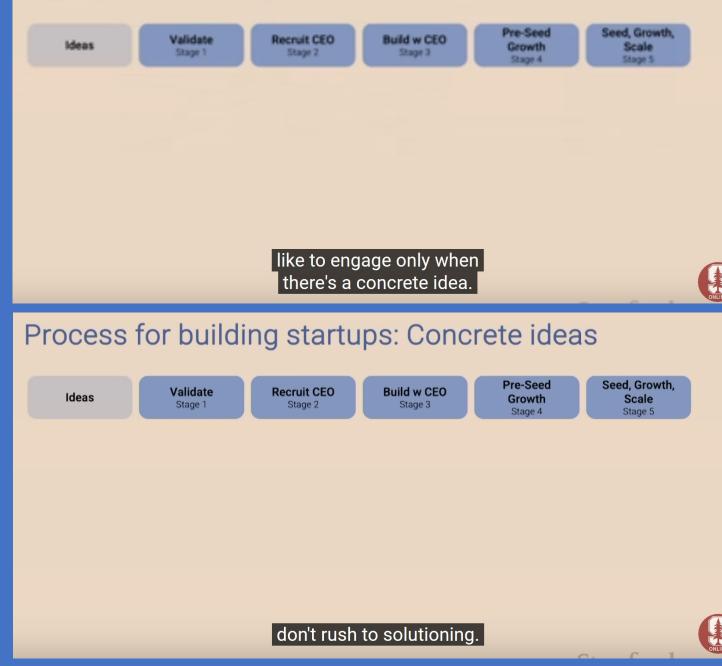
Green shipping powered by AI


Process for building startups

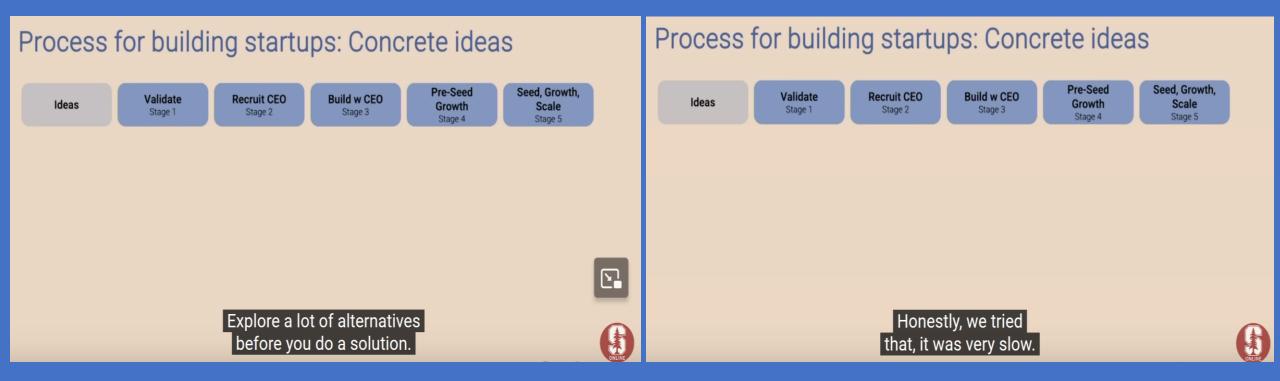
Process for building startups

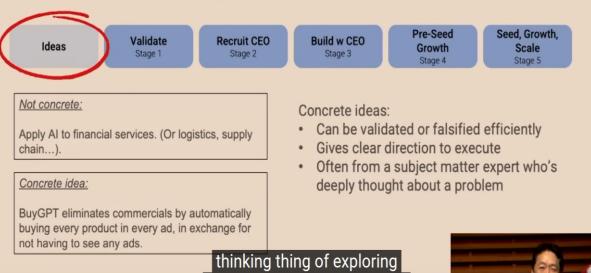
Al technical expertise is important for this process:

- Accurate technical validation. (Is this feasible?)
- Ensure AI tech is built quickly and well.
- Build a strong technical team.



Process for building startups





Process for building startups: Concrete ideas

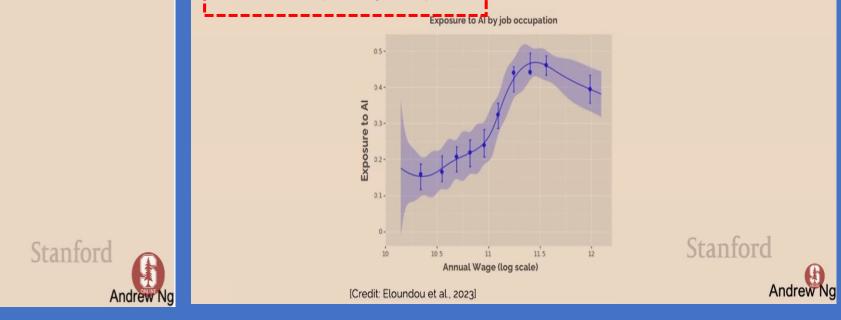
a lot of ideas and winnowing

that turns out to be a much more efficient engine. Andrew Ng: Opportunities in AI - 2023

Risks and social impact

Responsible AI

5


- My teams work only on projects that move humanity forward.
- For example, we kill projects that are otherwise financially sound on ethical grounds.

Risks of Al

• Al today has problems with bias, fairness, accuracy, But the technology is improving quickly.

Risks of Al

- Al today has problems with bias, fairness, accuracy, But the technology is improving quickly.
- AI will disrupt many occupations.

Risks of Al

 Artificial General Intelligence (AI that can do anything a human can do) is still decades away.

Risks of AI

- Artificial General Intelligence (AI that can do anything a human can do) is still decades away.
- AI creating extinction risk for humanity is wildly overhyped.
 - Human society has ample experience steering very powerful
 entities (such as corporations and nation states).
 - AI develops gradually, and the "hard take off" scenario (where AI suddenly achieves superintelligence overnight) is not realistic.

Risks of Al

- Artificial General Intelligence (AI that can do anything a human can do) is still decades away.
- AI creating extinction risk for humanity is wildly overhyped.
 - Human society has ample experience steering very powerful entities (such as corporations and nation states).
 - AI develops gradually, and the "hard take off" scenario (where AI suddenly achieves superintelligence overnight) is not realistic.
- Al is an important piece of the solution to the real existential risks to humanity (the next pandemic, climate change, ...).

Stanford

Andrew No

Stanford

Countries agree to safe and responsible development of frontier Al in landmark Bletchley Declaration

US to launch its own Al safety institute By Paul Sandle and David Shepardson November 1, 2023 10:13 PM CMT+1 - Undated 16 days ago

5. Yann leCun comparison between Computer/IT Science Programming and ML Science Programming from his interview on Deep Learning, ConvNets, and Self-Supervised Learning - <u>https://www.youtube.com/watch?v=SGSOCuByo24</u> 11:45 - 12:30

The Complete Mathematics of Neural Networks and Deep Learning

 \mathfrak{X}_{1} a_{1} X_2 \hat{y}_{1} $a_{\!\scriptscriptstyle 2}$ X_{3} $a_{_{\!10}}$ X_{n}

The Mathematics of Neural Networks

A rigorous introduction to the mathematics of networks and backpropagation.

Taught by Adam Dhalla adamdhalla.com adamdhalla@protonmail.com

Syllabus

Part I: Introduction 40min 1.1 Prerequisites 1.2 Agenda	Part III: Derivatives of Neural Networks & Gradient Descent ^{2hr 20min}	Part IV: Backpropagation 1hr 30min 4.1 The Error of a Node 4.2 The Four Equations of
 1.3 Notation 1.4 Big Picture 1.5 Matrix Calculus Review 1.5.1 Gradients 1.5.2 Jacobians 1.5.3 Scalar Chain Rule 1.5.4 Jacobian Chain Rule 	 3.1 Motivation & Cost Function 3.2 Differentiating a Neuron's Operations 3.2.1 Binary Elementwise Funcs 3.2.2 Hadamard Product 3.2.3 Scalar Expansion 3.2.4 Sum 3.3 Derivative of an activation 	4.2.4 E4: Cost w.r.t weights 4.2.5 Equation 4 vectorized 4.3 Tying Part III and Part IV
Part II: Forward Propagation ^{30min} 2.1 The Neuron Function 2.2 Weight and Bias Indexing 2.3 A Layer of Neurons	 3.4 Derivative of the cost 3.5 Intuition: derivative of the cost w.r.t the weights 3.6 Differentiating w.r.t the bias 3.7 Gradient Descent Intuition 3.8 The Gradient Descent Algorithm & Stochastic Gradient Descent 3.9 Derivatives of a layer (and why it doesn't work) 	

2. 5G System use of AI/ML

5Ĝ

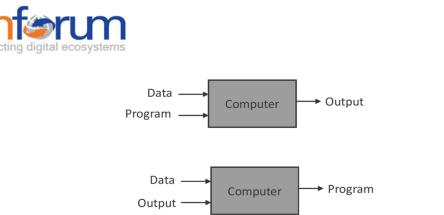
In Programming, a Human writes a Computer Program and provides the Data, which the Computer processes to create the Output.

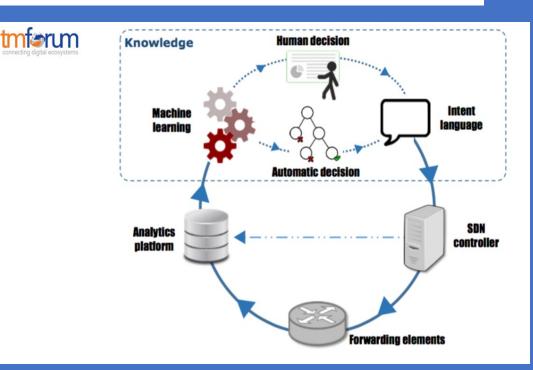
In Machine Learning (ML), Humans provide the Data along with the Desired Output, Rules and Constraints, and the Computer (Algorithms with trained Models) writes the Program to deliver this.

A Knowledge-defined Network (KDN) operates by means of a Control Loop

to provide:

- Automation,
- Recommendation,
- Optimization,
- Validation and
- Estimation.


CSPs are beginning to use AI and Machine Learning (ML) in three (3) Key Areas:


- 1. Customer Experience Management
- 2. Service Management and Optimization
- 3. Network Management and Optimization

The Knowledge Plane (KP) is a distributed & decentralized construct within the Network that

- Gathers,
- Aggregates, and
- Manages

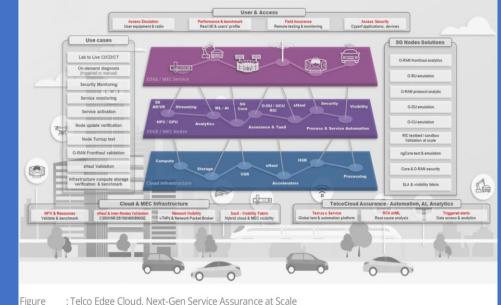
Information about Network behavior and Operation, and provides an integrated view to all parties (Operators, Users, and the Network itself). The Goal is to enlarge our view of what constitutes *the Network to match the intuition of a User*, and to enhance our ability to manage the network intelligently, without disturbing the open and unknowing forwarding plane (Ref. D.C., KP for I., v4.6 05/03).

Richard Feynman: Can Machines Think? Audience Question:

Can computers discover new ideas and relationships by themselves?

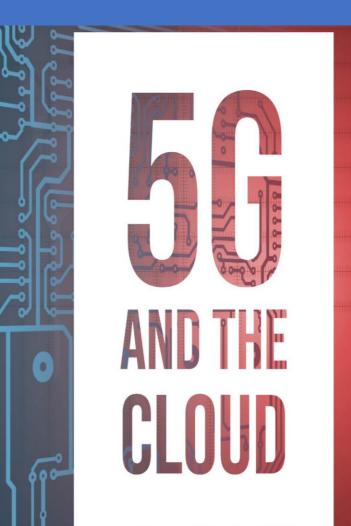
Audience Question:

Do you think there will ever be a machine that will think like human beings and be more intelligent than human beings? 1. Cloud & Communications Systems' (current) Challenges & Issues


Today's Cloud and Communications Systems are NOT CAPABLE of

- Capturing,
- Transmitting,
- Storing, and
- Analysing

the Petabytes of Data generated by the soon-to-be trillions of Sensors operating $\frac{24}{7}$.


They are also NOT PREPARED to deliver the Compute needed for Real-Time AI/ML Inferencing required to drive such demands that we anticipate will come from:

- FoF (Factory of the Future)
- VR/XR/MR (Virtual, Extended, Mixed Reality and Extended Reality) with Haptic Interactions,
- NPNs/SNPNs Non Public Network/Stand-alone NPNs
- PINs and CPNs (Personal IoT Network/Customer Premises Networks)
- (V2X) Connected Vehicles,
- Assisted living, or
- Merging of Physical & Digital worlds with 5G & B5G

Ref.: 5GA, DCC, Nov., 2022: 4 49

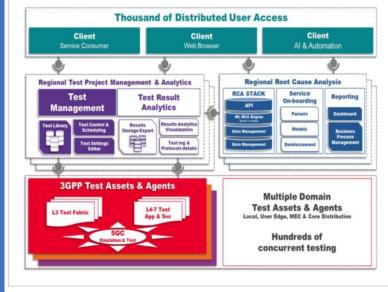
1. CLOUD NATIVE PHILOSOPHY-RELATED ISSUES

The Cloud Native issues appear because the whole of the Cloud Native Development Philosophy has been applied:

- without consideration of the Actual Deployment and Operational Environments.

In brief, the Positive and Negative Aspects of Cloud Native from a 5G SA/SBA **Network Function (NF) Perspective** are summarized as follows:

POSITIVE (+)	NEGATIVE (-)	
Cloud Native has undeniably improved:	The Context in which <u>Cloud Native</u> was designed is being misrepresented or abused in two (2) senses:	
 Development, Delivery and Test, In-Service Upgrades Improved Version Management 	 Cloud Native was designed for People who write & operate the Applications. In today's Cellular Network, this clearly is not the case Cloud Native was designed for Applications in which long interruptions are tolerable, therefore, good Reliability is measured in minutes of outage per month. This is also clearly not the case for (2G, 3G, 4G, 5G) Cellular Communication Networks where the expectation is that outages last less than 5.26 minutes per year. 	


50 5(

1. The Cloud is "Changing"

1st - Applications want to be deployed anywhere & change deployment anytime.

The focus moves from "Sharing Resources" to "Composing Dynamic Capabilities, in Real-time, even after Deployment.

Applications will be Delay- and Latency Sensitive, on varying Time-scales with different Hard- & Soft Boundaries.

g - Nationwide Distributed Cloud based Network Test Bed Orchestration

Communication, Compute, and Storage must be considered as an *Integrated Set of Changeable Configurations* that provide the required Service to an application.

2nd - "Centre of Gravity is moving toward the "Devices" ("End-points"*) & Interactions in a Cyber-Physical World best suited for these tasks and configure any required communication between all end points in important areas such as

- IoT,
- Industry 4.0,
- 5G NPNs/SNPNs/PINs, or
- Retail and Public Services.
- eHealth & Ageing and Living well

*You might be vigilant with the terms you use w.r.t. the terms "end-points" &/or "Edge" from Service E2E Solution Architecture fulfilling the 3GPP specified 5QI (QoS) Service Requirements & KPIs.

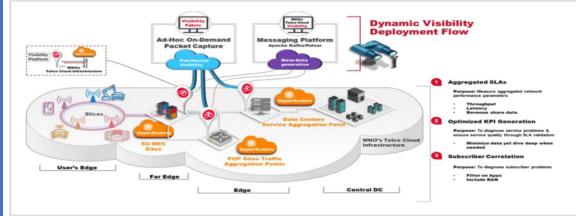


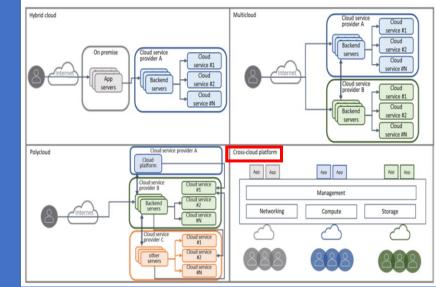
Figure : Hybrid Network Visibility Platform architecture

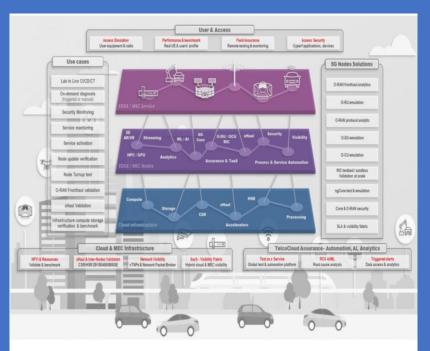
1. Cloud & Communications Systems' (current) Challenges & Issues

Management of Resources and Workloads:

Most Orchestration Frameworks today use a Centralized Approach (where) One (1) Entity has knowledge of all the Resources in the System and Plan how the Workloads will be mapped.

With the start of Docker & containers, the Kubernetes Project was started to provide a lightweight & scalable Orchestration solution.


Most existing Compute Systems today, including Edge Computing Systems, rely **on** "Static Provisioning".


Thus, the SW & the Services needed to perform the Compute are already residing at the Edge Server prior to an Edge node requests a Service & the pool of HW resources is also known a priori to Kubernetes.

This Architecture works well for Cloud & the (ETSI) MEC where a Centralized Orchestration is used.

Since the Resources of the Pervasive Edge are independently owned, the *Orchestration Frameworks need to be extended to handle Dynamic and Multi-Tenant Resources in a secure manner.*

Figure multi-cloud deployment models

igure : Telco Edge Cloud, Next-Gen Service Assurance at Scale

2. 5G System use of AI/ML

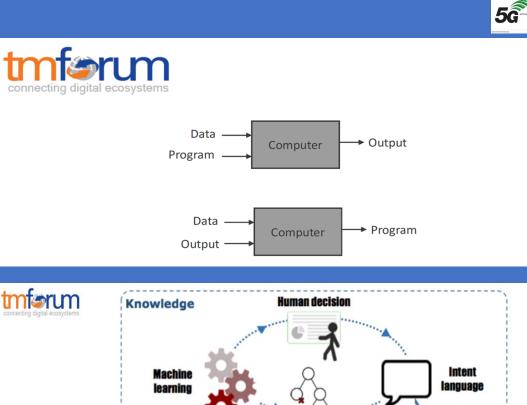
In **Programming**, a Human writes a Computer Program and provides the Data, which the Computer processes to create the Output.

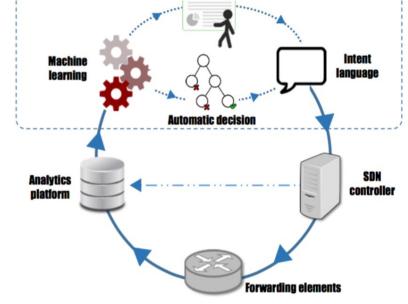
In Machine Learning (ML), Humans provide the Data along with the Desired Output, Rules and Constraints, and the Computer (Algorithms with trained Models) writes the Program to deliver this.

A *Knowledge-defined Network (KDN*) operates by means of a Control Loop

to provide:

- Automation,
- Recommendation,
- Optimization,
- Validation and
- Estimation.


CSPs are beginning to use AI and Machine Learning (ML) in three (3) Key Areas:


- 1. Customer Experience Management
- 2. Service Management and Optimization
- 3. Network Management and Optimization

The Knowledge Plane (KP) is a distributed & decentralized construct within the Network that

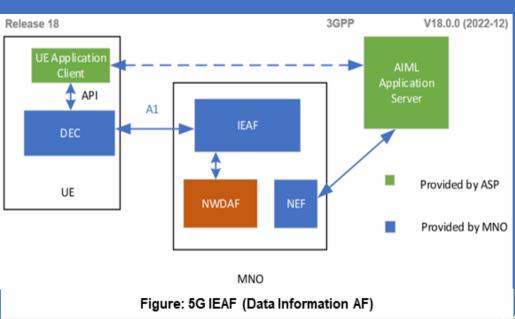
- Gathers,
- Aggregates, and
- Manages

Information about Network behavior and Operation, and provides an integrated view to all parties (Operators, Users, and the Network itself). The Goal is to enlarge our view of what constitutes *the Network to match the intuition of a User*, and to enhance our ability to manage the network intelligently, without disturbing the open and unknowing forwarding plane (Ref. D.C., KP for I., v4.6 05/03).

3. 5G System use of Al/ML

5G System AI/ML Model Transfer

The 5G System can at least support three (3) types of AI/ML Operations:


1.Al/ML Operation splitting between Al/ML (Network) End-points: The Al/ML Operation/Model is split into Multiple Parts according to the current Task and Environment. The intention is to off-load the Computation-Intensive, Energy-Intensive Parts to Network End-points, whereas leave the Privacy-sensitive and Delay-sensitive Parts at the End Device. The Device executes the Operation/Model up to a specific Part/Layer and then sends the intermediate Data to the Network Endpoint. The Network End-point executes the remaining Parts/Layers and feeds the Inference Results back to the Device.

2. Al/ML Model/Data Distribution and Sharing over 5G System: Multi-functional Mobile Terminals might need to switch the Al/ML Model in response to task and environment variations. The condition of adaptive model selection is that the models to be selected are available for the Mobile Device. However, given the fact that the Al/ML Models are becoming increasingly diverse, and with the *limited storage resource in a UE*, it can be determined to *not pre-load all candidate Al/ML Models on-board*. Online model distribution (i.e. New Model Downloading) is needed, in which an Al/ML Model can be distributed from a NW end-point to the Devices when they need it to adapt to the changed Al/ML Tasks and Environments. For this purpose, the Model Performance at the UE needs to be monitored constantly.

3. *Distributed/Federated Learning (FL) over 5G System:* The Cloud Server trains a Global Model by aggregating Local Models partially-trained by each End devices. Within each training iteration, a UE performs the training based on the Model downloaded from the AI Server using the Local Training Data. Then the UE reports the interim training results to the Cloud server via 5G UL channels. The Server aggregates the Interim Training Results from the UEs and updates the Global Model. The updated Global Model is then distributed back to the UEs and the UEs can perform the training for the next iteration.

In Mobile Communications Systems, Mobile Devices (e.g. Smartphones, Automotive, Robots) are increasingly replacing conventional Algorithms (e.g. Speech Recognition, Image Recognition, Video Processing) with Al/ML Models to enable Applications.

3GPP

Release 18

3. 5G System use of AI/ML

The AI/ML Techniques and relevant Applications are being increasingly adopted by the wider Industries and proved to be successful. These are now being applied to Telecommunication Industry including Mobile Networks.

Although AI/ML Techniques, in general, are quite mature nowadays, some of the relevant aspects of the Technology are still evolving while New Complementary Techniques are frequently emerging.

The AI/ML Techniques can be generally characterized from different perspectives including the followings:

- Learning Methods : The Learning Methods include Supervised Learning, Semi-Supervised Learning, Unsupervised Learning and Reinforcement Learning. Each Learning Method fits one (1) or more specific Category of Inference (e.g. Prediction), and requires Specific Type of Training Data. A brief comparison of these learning methods is provided in the Table:

- *Learning complexity:* As per the Learning Complexity, there are Machine Learning (i.e. basic learning) and Deep Learning (DL).

- *Learning Architecture:* Based on the Topology and Location where the Learning Tasks take place, the AI/ML can be categorized to Centralized Learning, Distributed Learning and Federated Learning.

- *Learning Continuity:* From Learning Continuity Perspective, the AI/ML can be offline Learning or Continual Learning.

Release 18

3GPP V18.1.0 (2023-09)

Table : Comparison of Al/ML Learning Methods

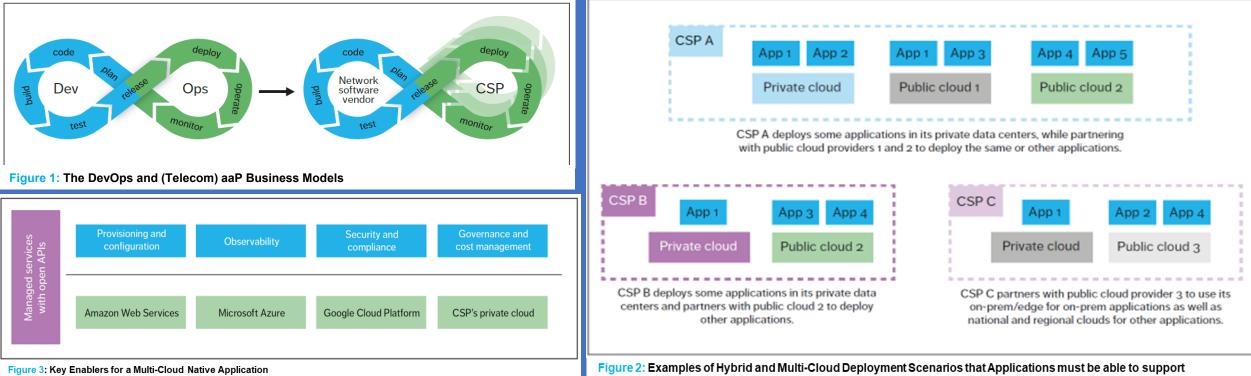
	Supervised learning	Semi-supervised learning	Unsupervised learning	Reinforcement learning	
Category of inference	Regression (numeric), classification	Regression (numeric), classification	Association, Clustering	Reward-based behaviour	
Type of training data	,	Labelled data (Note), and unlabelled data	Unlabelled data	Not pre-defined	
NOTE: The labelled data means the input and output parameters are explicitly labelled for each training data example.					

Artificial Intelligence/Machine Learning (AI/ML) Capabilities are used in various Domains in 5G System, including:

- Management and Orchestration for Data Analytics (MDA)
- 5G Networks Data Analytics (NWDAF)
- NG-RAN, e.g. RAN Intelligence.

The AI/ML-Inference Function in the 5GS uses the ML Model and/or AI Decision Entity for Inference. Each AI/ML Technique, depending on the adopted specific Characteristics, suitable for supporting certain Type/Category of Use Case(s) in 5G System.

To enable and facilitate the AI/ML Capabilities with the suitable AI/ML Techniques in 5GS, the ML Model and AI/ML Inference Function need to be managed.

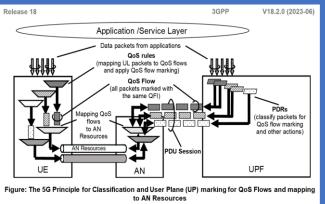

Annex 3: 5G Architecture for Hybrid and Multi-Cloud Environments

The Main Challenges to overcome in a Hybrid & Multi-Cloud Strategy are:

1. Maintaining Portability; 2. Controlling the Total Cost of Ownership (TCO); 3. Optimizing Productivity & Time to Market (TTM). DevOps – a Set of Practices that brings together SW Development & IT operations with the Goal of Shortening the Development & Delivery Cycle & increasing SW Quality - is often thought of and discussed in the Context of a Single Company or Organization. The Company usually Develops the SW, Operates it & Provides it as a Service to Customers, according to the SW-as-a-Service (SaaS) Model. Within this context, it is easier to have Full Control over the Entire Flow, including Full Knowledge of the Target Deployment Environment.

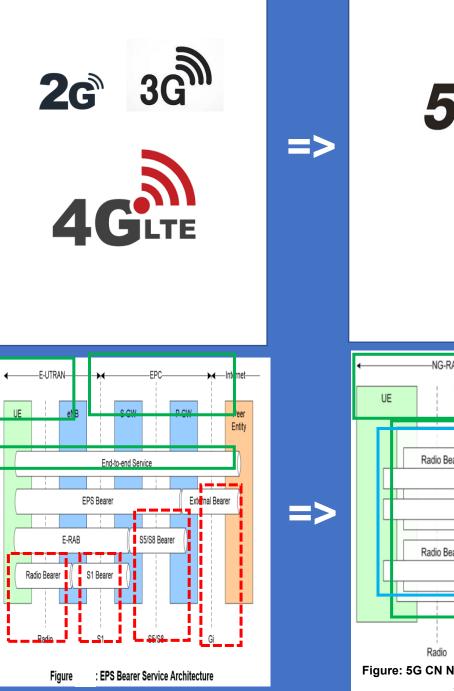
In the Telecom Space, by contrast, we typically follow the "as-a-Product (aaP) Business model, in which SW is developed by Network SW Vendors e.g. as Ericsson (Nokia, Huawei, ZTE) & provided to Communication Service Providers (CSPs) that Deploy & Operate it within their Network. This Business Model requires the consideration of additional aspects.

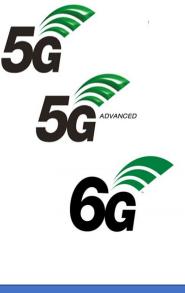
The most important contrasts between the Standard DevOps SaaS Model & the Telecom aaP Model are the <u>Multiplicity of Deployment</u> Environments & the fact the Network SW Vendor Development Teams cannot know upfront exactly what the Target Environment looks like. Although a SaaS Company is likely to Deploy & Manage its SW on two (2) or more different Cloud Environments, this is inevitable within Telco, as each CSP creates &/or selects its own Cloud infrastructure (Fig. 1 below).

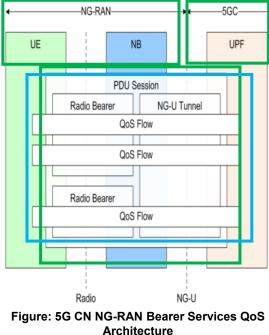

a Design that offers "Best-effort Services

to

a Design that offers Performance and User Experience Guarantees


Capabilities related to e.g.:


When a *Multi-access* (MA) PDU Session is established, the Network may provide the UE with *Measurement Assistance Information* to enable the UE in determining which measurements shall be performed over both Accesses, as well as whether measurement reports need to be sent to the Network.



Measurement Assistance Information shall include the addressing information of a **Performance Measurement Function (PMF) in the UPF, the UE can send PMF protocol messages** incl.:

- Messages to allow for *Round Trip Time* (RTT) Measurements: the "*Smallest Delay*" steering mode is used or when either "*Priority-based*", "*Load-Balancing*" or "Redundant" steering mode is used with RTT threshold value being applied;
- Messages to allow for *Packet Loss Rate* (PLR) measurements, i.e. when steering mode is used either "*Priority-based*", "*Load-Balancing*" or "*Redundant*" steering mode is used with PLR threshold value being applied;
- Messages for reporting Access Availability/Un-availability by the UE to the UPF.
- Messages for sending UE-assistance Data to UPF.
- Messages for sending "Suspend Traffic Duplication" and "Resume Traffic Duplication" from UPF to UE to "suspend" or "resume" traffic duplication as defined in 5GS Architecture.

