
Making Akraino Successful

Frank Zdarsky
Senior Principal Software Engineer
Office of the CTO, Red Hat

2018-08-23



Akraino Edge Stack Summit 2018, 2018-08-232

Key Success Drivers

● Clarity of mission (the “WHY”) -- aspirational but not open-ended
● Clarity of deliverables (the “WHAT”) -- each with clear business value for its users
● Goal-oriented approach (the “HOW”) -- focussed on deliverables, not process



Akraino Edge Stack Summit 2018, 2018-08-233

Classifying Open Source Community Projects

… by main type of deliverable:

● development project
○ focus on developing a component / system → code, documentation
○ ex.: OpenStack, Kubernetes, ONAP, ODL, EdgeX

● integration project
○ focus on enabling integration → e2e test & tools, RFEs or patches for e2e 

functional gaps, code for auxiliary components enabling e2e use case
○ typically not prescribing integration → code as basis for project distributions
○ ex.: OPNFV

● specification project
○ focus on interface/protocol specification → spec, reference implementation
○ ex.: OCI



Akraino Edge Stack Summit 2018, 2018-08-234

Classifying Open Source Community Projects

… by industry focus:

● industry-specific (ex.: OPNFV, ONAP)
● industry-agnostic (ex.: OpenStack, Kubernetes, ODL)

… by {internal, external} project coupling:

● loosely coupled (ex.: Kubernetes + eco-system projects under CNCF)
● tightly coupled (ex.: ONAP, most of OpenStack)

… by community health

● diverse and development-centric user and developer community
● imbalanced and/or discussion-centric user and developer community



Akraino Edge Stack Summit 2018, 2018-08-235

Open Source Project “Anti-Patterns”

● Confusing *project* with *product*.
○ agility vs stability goal conflict
○ features vs {backporting, multi-release upgrades, …} dev resource prioritization
○ premature security hardening, performance tuning, ...

● Forcing coordinated releases on time-based release cycles without need.
○ Binds 100%+ dev resources for months prior to release for small marketing gain.
○ Often surfaces problem of tight sub-project / component coupling.

● Establishing “Conformance Testing Program” in non-specification projects.
● Reinventing instead of improving / working with eco-system.
● Carrying patches against upstreams / not enforcing strict “upstream-first” best-practice.
● Developing & maintaining integration code outside of projects to be integrated.



Akraino Edge Stack Summit 2018, 2018-08-236

Input to TSC Governance Discussions

● Overall guiding principles:
○ Community needs “ownership” of its deliverable, freedom to define its evolution.
○ Community needs to be inclusive (→ contributions not limited to membership) and 

diverse (→ quotas per company on privileged roles).
○ Privileged roles should be time-limited and require renewal by default.

● TSC Member role:
○ define overall technical architecture & direction, resolve technical dispute, set 

quality standards & best-pratices, prioritize work to keep the project focussed
○ elected from and by ATCs

● TSC Co-Chair role:
○ representative, moderator, facilitator, steward... not leader!
○ elected from and by TSC Members



Akraino Edge Stack Summit 2018, 2018-08-237

Input to TSC Governance Discussions (cont.)

● Committer role:
○ define technical direction of a sub-project, ability to commit
○ promoted from the ATCs by the existing Committers of that sub-project based on 

the ATC’s proof of of expertise, experience, and contributions.
● Active Technical Contributor (ATC) role:

○ promoted from Contributor after a significant, measurable number of technical 
contributions (code, reviews, docs) over a defined measurement period

● (Sub-)Project Lifecycle:
○ high bar for new projects (narrow scope, clear motivation + problem statement + 

objectives + KPIs, contributor diversity), regular progress/maturity review



Akraino Edge Stack Summit 2018, 2018-08-238

Input to Blueprint Definition Discussions

● Why Blueprints? Means to drive convergence, facilitate building/operating edge stacks.
○ for users: tested deployment config as basis for customization and procurement
○ for vendors: opportunity to target development on fewer deployment configs

● How many? What level of detail? 1 BP per pod? per use case? per (use case, vendor)?
○ need to separate outcomes (POD, HW+SW stack, enabled workloads; want *few*) 

from implementations (CPU Arch A vs B, OpenStack C vs D, …; will have *many*).
● ⇒ BPs should focus on the outcome (WHAT), avoid prescribing implementation (HOW)!

○ enables technical innovation/evolution, multiple solutions per BP
● How do “seed code” and BPs relate to each other?

○ Airship is advanced e2e impl., but w/ Airship-specific design choices & data model
● ⇒ BPs need to generalize, start from architecture-level requirements; seed code is one 

implementation (reference implementation?) of it.



THANK YOU

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews


