IEC Blueprint of Akraino Edge Stack and Related Work

Aug 19, 2019

Agenda

- > Edge Computing & Akraino of LF
- > IEC Introduction
- > IEC Reference Stack
- > IEC Types
- > IEC Status & CI
- > Future Work

LF Akraino

- The Akraino community was proud to announce the availability of <u>release 1</u> on June 6th. The community experienced a rapid growth within a year, in terms of membership and community activities. Akraino received broader contributions from 60% of the LF Edge 60+ members and other developers across the globe in R1.
- Akraino community came up with a brilliant way to solve this integration challenge with the Blueprint model. Akraino community will be the sole supplier of the Blueprints to LF Edge projects and intent to address

Functional View: R1 Blueprints in Akraino Edge Stack

Why Akraino Edge Stack?

The Akraino Edge Stack community delivers fully integrated, "ready and proven" Edge Stacks

Multiple Opensource but no integrated solution to address Edge use cases

Before Akraino Edge Stack

Akraino Blueprints - Incubation Projects

Note: Company shown is company requested the Blueprint creation. Further contributions comes from the community (many). See the Akraino Wiki for the full details.

LF Edge - Founding projects

Bringing several Edge verticals and domains under one umbrella

- <u>Akraino Edge Stack</u> is creating an open source software stack that supports high-availability cloud services optimized for edge computing systems and applications;
- <u>EdgeX Foundry</u> is focused on building a common open framework for IoT edge computing.
- <u>Home Edge Project</u>, seed code contributed by Samsung Electronics, is a new project that concentrates on driving and enabling a robust, reliable, and intelligent home edge computing framework, platform and ecosystem running on a variety of devices in our daily lives.
- <u>Open Glossary of Edge Computing</u> provides a concise collection of terms related to the field of edge computing.
- <u>Project EVE (Edge Virtualization Engine)</u>, contributed by ZEDEDA, will create an open and agnostic standard edge architecture that accommodates complex and diverse on- and off-prem hardware, network and application selections.

Emerging Technologies in IOT and Networks

are demanding lower latency and accelerated processing at the edge

Akraino Blueprints and Arm's Involvement

- 20+ blueprint projects proposed in Akraino
- Arm proposed and is leading Integrated Edge Cloud (IEC) as PTL
 - IEC Type 1: small deployment
 - IEC Type 2: medium deployment
- Arm is participating the following as committers
 - SDN Enabled Broadband Access (SEBA)
 - Radio Edge Cloud (REC)
 - Edge Light & IoT (ELIOT)
 - Micro MEC
- Arm is also discussing feature projects with partners in Akraino

Blueprint Family	Blueprint Species Name	Submitter	Target
Network Cloud	SDN Enabled Broadband Access (SEBA)	AT&T	RI
	Serverless	AT&T	RI
	Unicycle Blueprint (SR-IOV)	AT&T	RI
	Rover Blueprint	AT&T	R2
	Real Time Edge Media Processing	Radisys	RI
	Network Cloud and TF Integration	Juniper	RI
	OVS-DPDK Unicycle (Dell)	Ericsson	RI
Integrated Edge Cloud	IEC Type 1: small deployment	Arm	RI
	IEC Type 2: medium deployment	Arm	RI
	IEC Type 4: AR/VR Oriented Edge Stack	HTC, Arm	R2
	IEC Type 3: Autonomous vehicles as the edge(Proposal)	DiDi, Arm	R2
	IEC Type 5: AI on the edge(Proposal)	Baidu, Arm	R2
Edge Light & IoT	ELIoT 2: LVV Edge	Huawei	RI
	SD-WAN	Huawei	RI
Kubernetes Native Infrastructure for Edge	Provider Access Edge	Red Hat	RI
	Industrial Edge	Red Hat	RI
Micro MEC	Micro MEC Type 1,2,3	Nokia	R2
Radio Edge Cloud	Radio Edge Cloud	Nokia	RI
Far Edge Cloud	Starling X Far Edge Distributed Cloud	WindRiver	RI
Time Critical Edge Compute	Time Critical Edge Compute	Intel	RI

IEC Introduction

- IEC (Integrated Edge Cloud) is a platform that enables new functionalities and business models on the network edge. It targets telco applications and medium deployment of Edge Cloud. In this release it is based on Kubernetes and Calico and installation is automated with the foundation building and the focus on SEBA use-case.
- > Edge use case to address
 - > Telco/enterprise Edge cloud for example, MEC or branch office data center...
 - Telco/enterprise remote edge locations edge platform with limited resources, for example, SD-WAN, IoT gateway...

Announcing Arm Neoverse

IEC Reference Stack

Heterogeneous Architecture

- VM, container, bare metal
- Servers and customized Edge platforms
- Virtualized NFs and Physical NFs
- Accelerator interface
- **Resource constraints**
- Kubernetes
- SDN Controller for K8s
- **HW Accelerations**
- Integrated accelerators
- PCIe/CCIX attached accelerator (Smart NICs...)

IEC Wiki

- IEC Blueprints Installation Overview
- IEC CI/CD
- IEC Documentation
- IEC Engineering Plan
- IEC Gerrit
- IEC Hardware Requirement
- IEC Internal Verification and Validation Lab Setup
- IEC Jira
- IEC mailing list
- IEC Meetings
- IEC Type 1 for Integrated Edge Cloud (IEC) Blueprint Family
- IEC Type 2 for Integrated Edge Cloud (IEC) Blueprint Family
- IEC Type 4: AR/VR oriented Edge Stack for Integrated Edge Cloud (IEC) Blu...

Use Case: SDN-Enabled Broadband Access(SEBA) on IEC

- Small deployment of edge and cloud environment
- > Support virtualized access at carrier network
- Lower latency for end users, less load on network
- > Fully utilize the compute power of edge devices

IEC Type 1

- SEBA: SDN-Enabled Broadband Access
- R-CORD: Residential Central Office Re-Architected as Datacenter
- VOLTHA: virtual OLT hardware abstraction
- ONOS: Open Network Operating System
- Arm-based Platform
 - Edge devices and customized Edge
 - platforms

An IEC Type 1 Sample Platform with small devices, SEBA use case is enabled on this system with a k8s cluster

S Use Case Attributes	Description
Use Case	Small deployment of edge end and cloud environment.
Blueprint proposed Name	IEC Type 1
Initial POD Cost (capex)	•The defining factor is power consumption < 50 W •The cost of the POD will depend on peripherals and case
Scale & Type	A single-board computer that meets the power limit
Applications	IEC applications
Power and memory restrictions	•Less than 24 W for the SoC •Less than 16GB of memory
Infrastructure orchestration	ONAP Edge Automation/Kubernetes Edge Cloud orchestration
SDN	Calico container networking, or SR-IOV, OVS-DPDK or VPP-DPDK (Contiv/VPP)
Workload Type	•Containers
Additional Details	Submitter to provide additional use case details

IEC Type 1

Features

- Platform works on aarch64 architecture, typically arm64 SoC with low power consumption;
- It supports both single node deployment and a 3-node deployment
- Deployment is can be automated from a jumpserver<u>https://jenkins.akraino.org/view/iec/</u>
- The SEBA on arm use-case is enabled and integrated with the IEC Type1 platform(Smallest SEBA itw?)
- The installation scripts which deploys Kubernetes cluster, Calico CNI, Helm/Tiller and related verifying Kubernetes applications/services with 1 master and 2 slave nodes. The scripts can be run from the jumpserver, or with manual installation from the servers on which it run. The installation methods is introduced in <u>IEC Blueprints Installation</u> <u>Overview</u>.
- Currently IEC uses
- project <u>Calico</u> as the main container networking solution which provides high performance, rich network policy, widely supported from Linux system and easy installation. In the future, Contiv/VPP or OVN-Kubernetes can be used as a high performance substitute since those 2 solutions can support DPDK enabled high speed interface access.

IEC Type 2

Features

- Platform works both on x86_64 and aarch64 architectures
- It supports both single node deployment and a 3-node deployment
- Deployment is automated in CI with <u>https://jenkins.akraino.org/view/iec/</u>
- The SEBA (on arm) use-case is integrated with the IEC platform

Typical Platform Software	Version
OS	Ubuntu16.04/18.04
docker	18.06.1-ce
Kubernetes	v1.13.0
calico	v3.3.2
etcd	v3.3.9

- The IEC supported hardware are edge servers mainly based on arm64, such as Marvell ThunderX series, Ampere Arm64 servers; the desired network connections are above 10Gbit/s which may satisfy most current IEC applications requirement.
- The installation scripts which deploys Kubernetes cluster, Calico CNI, Helm/Tiller and related verifying Kubernetes applications/services with 1 master and 2 slave nodes. The scripts can be run from the jumpserver, or with manual installation from the servers on which it run. The installation methods is introduced in <u>IEC Blueprints Installation Overview</u>.
- Currently IEC uses project <u>Calico</u> as the main container networking solution which provides high performance, rich network policy, widely supported from Linux system and easy installation. In the future, Contiv/VPP and OVN-Kubernetes may be used as a high performance substitute since those 2 solutions can support DPDK enabled high speed interface access.
- IEC support <u>Akraino CI/CD</u> requests: IEC Daily jobs (scheduled to run recurrently) deploy IEC using one of the agreed installers; run testing suites; collect logs and publish them.

Ampere eMAG 64bit Arm Server

IEC Type1,2 Status & CI

- <u>Approved blueprint of Akraino Edge Stack Integration</u> <u>Projects(Blueprints)</u>
- Code upstreamed to Akraino IEC repo: https://gerrit.akraino.org/r/admin/repos/iec
- Provide IEC foundation installation document and scripts
- <u>SEBA use case have been enabled and integrated on IEC</u> platform
- <u>Setup Initial CI/CD environment:</u> https://jenkins.akraino.org/view/iec/
- Weekly meeting
- IEC Wiki:

https://wiki.akraino.org/display/AK/Integrated+Edge+Cloud+ %28IEC%29+Blueprint+Family

IEC Installation Guide:

https://wiki.akraino.org/display/AK/IEC+Installation+Guide

Future Work(Provisional)

- <u>Telco Appliance</u> support enhancement(DamnNet, REC, uMEC);
- High performance data plane acceleration with DPDK, VPP(Contiv/VPP);
- Integrated Restful API to support management, deployment and control;
- More use cases, such as vCDN, edgeAI, TARs
- Other IEC Types support and integration
- KubeFlow, Kubeedge support

For More Information, Please Visit www.akraino.org

谢谢! Thank You!

