

ENABLING CLOUD-HOSTED INTELLIGENCE FOR REAL-TIME IOT APPLICATIONS

Professor Ken Birman Cornell University Dept. of Computer Science

DERECHO IS A PLATFORM TO ENABLE MACHINE INTELLIGENCE FOR THE "INTERNET OF THINGS"

IoT <u>devices</u> simply don't have enough power and lack the big picture.

Use the cloud-edge could host machine intelligence, enabling real-time reactivity using consistent, recently-acquired context.

AN EVOLVING CLOUD

Early generation of cloud solutions: Web pages, advertising

New generation: mobile intelligence, vision, speech understanding

Question to ask: Does today's cloud infrastructure fit new demand?

TODAY: A VERY "LONG" PIPELINE

Data acquisition.... Global File System... Hadoop jobs

NEW: MOVE ML TO THE EDGE OF THE CLOUD

THE EDGE REQUIRES SPEED + CONSISTENCY

For real-time IoT data, the Derecho-based storage service (FFFS_{v2}) offers optimal temporal accuracy and strong read consistency, lock free.

A Derecho

DERECHO: UNDERLYING PLATFORM

KEN BIRMAN (KEN@CS.CORNELL.EDU) 7

... or your spiffy new smart IoT services

MASSIVELY PARALLEL REAL-TIME USES

Derecho is a tool for creating intelligent stateful μ -services, like the Freeze Frame File Server, or this "MapReduce" service HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2018SP 8

... OUR MODEL: STATE MACHINE REPLICATION IN GROUPS (ATOMIC MULTICAST OR DURABLE LOGGING)

MAP-REDUCE IN A SHARDED GROUP

IMPLEMENTATION: DERECHO = RDMC/SMC + SST

Derecho group with members {A, B, C} in which C is receive-only

A, B and C each have a replica of the SST

	Susp	oected	Proposa	1	nCommi	Ack		nRec	eived		Wedged		
	Suspe	ected	Proposal		nCommit		Acke	d	n		eived	Wedged	
	Suspecte	d	Proposal	n	Commit	A	Acked	nR	Received		Wedge	d	F
F	Т	F	4: -B		3		4	5	5 3		Т		F
F	F	F	3		3		3	4		4	F		F
F	F	F	3		3		3	5		4	F		

Control is done using knowledge programming on the SST

Data moved on RDMA multicast

SHARED STATE TABLE: DIRECT RDMA WRITES WITH NO LOCKING (SEQUENTIAL CACHE-LINE CONSISTENCY)

R	e	ol	ic	ated	d at																				
members					Suspected		Proposal	nCommit	Acked	nReceiv	ved	Wedg	ed	RDA	AA en	abl	es	A t	o writ	e dire	ectly				
							Α	F	Т	F	4: -B	3	4	5	3	Т			to the	re	olic	as	on B c	ind C	
							F	F	F	3	3	3	4	4	F	_									
Update own row								F	F	F	3	3	3	5	4	F									
R	Read-only copy of other rows																								
A	F	T	F	4: -B	3	4	5 3 0		F															_	
В	F	F	F	3	3	3	4 4 0		F						Suspected F		Proposal	nCommit	Acked	nReceived			Wedged		
с	F	F	F	3	3	3	5 4 0		F					A F	Т	F	4: -B	3	4	5	3	0	т	-	
														BF	F	F	3	3	3	4	4	0	F	-	
														C F	F	F	3	3	3	5	4	0	F		

SST PROGRAMMING MODEL

Lock-free, but we store monotonic values in the cells. If you miss some updates you can still deduce that they occurred.

Enables monotonic aggregation and even a monotonic form of knowledge-based reasoning (K(\mathscr{P}), K¹(\mathscr{P}), ...).

Result? Highly efficient batched receiver-side decision-making.

Multicast

RDMC: AN RDMA <u>MULTICAST</u>

Binomial Tree

Binomial Pipeline

Final Step

RDMC SUCCEEDS IN OFFLOADING WORK TO HARDWARE

Trace a single multicast through our system... Orange is time "waiting for action by software". Blue is "RDMA data movement".

Group Size

Cool discovery: Derecho outperforms even on standard TCP.

DERECHO: SCALING (56GB/S RDMA)

DERECHO PARTICIPANTS

Sagar Jha

Jonathan Behrens* Matt Milano

Weijia Song

Theo Gkountouvas

Robbert

Derecho: Fast State Machine Replication for Cloud Services. S Jha, J Behrens, T Gkountouvas, M Milano, W Song, E Tremel, S Zink, K Birman, and R van Renesse. 2019. ACM Trans. Comput. Syst. (~March 2019).

RDMC: A Reliable Multicast for Large Objects. J Behrens, S Jha, K Birman, E Tremel. IEEE DSN '18, Luxembourg, June 2018.

* Behrens was a Cornell ugrad, now at MIT pursuing his PhD