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A Little Bit about Myself

m B.S, M.S., X1’an Jiaotong University
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Professor, CS, UC Davis

m MSRA, 2012- 2014

m Cellular resource management, opportunistic

scheduling

m Cognitive radio networks
m Mobile resource management and personalization
m Data-driven approaches in networking



Cellular Network Configuration

A large number of parameters to configure
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Cellular Network Configuration

m A large # of parameters  m Performance metrics

> BS transmission power > Total throughput

> Thresholds for handover > Average data rate

> Max. # of users > Edge user performance
> Antenna direction > Resource utilization rate

> Eftc. > Eftc.



Example: Handover

m Performance metric
> Edge UE throughput
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Challenges

s Complex mapping from configurations (and
network state) to network performance

m Traditional approach
> By human expert

> Labor intensive and suboptimal
* Hours/days to tune on configuration based on experience
* Tune one or two parameters each time
* Hundreds of parameters

m As aresult, most cells set the configurations to
default values



Our Study

m Machine-learning-based approaches to automate
this process

m Challenges:
> Lots of data and still a cold start

> Network performance 1s a highly complex (and
noisy) function of configurations and cell states

> Limited amount of exploration

* Network operators are risk-averse

* Limited configuration adjustment frequency (e.g., one
adjustment a day)

* Limited duration for adjustment (e.g., two weeks)



Our Approach

m Collaborative learning

m Formulate the problem as a transfer contextual multi-
armed bandit problem

m Prove that the regret bound can be significantly reduced
m Develop a practical algorithm to decompose the policy of
a cell into common and cell-specific components

> the common component utilizes transfer learning and faster
policy convergence;

> the cell-specific component addresses dissimilarities amongst
different cells

m A live field with 1700+ cells

> 20% of performance improvement




Problem Formulation- Contextual Bandit

m A cellular network of N cells

m Adjust configurations in T time steps

si: state of Cell i at time t (e.g., number of users, channel quality)

at: chosen parameter configuration values of Cell i at time t (e.g., transmission power)
fi: unknown true performance function of Cell i (depends on sf and a})

yt: noisy observation of network performance of Cell i at time ¢ (e.g., cell throughput)

yi = fi(si.al) + &
m Objective: minimize the overall regret

win 373 {um (st a’)} ~ filshal)

t
ap: Vit i



Contextual Bandits & Cell Configuration

m Balance the tradeoff between exploitation and
exploration

> Existing algorithms: LinUCB, Thompson Sample,
epsilon-greedy, etc.

m Generally, for a cell at a given time

> Observe cell state; e.g., # of users, channel quality,
traffic volume

> Choose a configuration based on the learned
performance model and action selection policy

> Observe the noisy performance measurement
> Update the learned model
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Transfer Learning for Fast Convergence

m Key challenge: each cell has only limited
chances for exploration

> EX: one configuration each day

> Exploration limited to two weeks

m [Learning bandit independently converges
slowly

> # of exploration limited per cell
» Large # of parameters and their combinations
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Transferable contextual bandit

m Share data among cells to accelerate the
learning of the performance model

transfer learning

Target Domain
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Fast Convergence by Transfer Learning

m The bound of the instantaneous regret at each
step can be reduced by a discounting factor y<1
leveraging data from other cells
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Scaled regret bound at
slot t with transfer
learning

Scaled regret bound at
slot t without transfer
learning

m The sped-up 1s more significant when

> # of transferred samples >> # of original samples 1n
the target cell
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From Theory to Practice

m Collaborative learning: utilize data from all cells
to learn the performance model for each cell

m Key 1dea: consider both common behavior and
cell-specific behavior

> Decompose the model into a common part and a
cell-specific part

> User data from all cells to learn the common part

> Use each cell’s own data to learn the cell-specific
part
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Collaborative Contextual MAB Framework

Collaborative Learning Based Framework

Common Feature Extraction > Common Model
% v
Indivi | Cell'
Feature Selection nedividual Cell's
Model
T v
Data Layer: Cellular Network Action Selection and
Status and Performance Data Coordination
T v

Cellular Network Mangement System
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Model Decomposition

State decomposition: S=8x8.
si = (s!,8!), where 8/ € S and §! € S.
« Common features: st =WT's!

« Cell-specific features: s; = (I - WWh)s;
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Performance Decomposition

y, = h(s;,a;) + gi(s;. a;) + €

/ \

Common Cell-specific
behaviors behaviors
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Model Learning

Extract common features (data from all cells):

W* = arg ma‘xz Z leov (W s ) |17
w :
i t

Learn the common model (data from all cells):

N t—1
hi_, = arg m}}n Zl ; i, — h(WTsE al)||3 + Ay,
Learn the cell-specific model:
. e . ~1 ] 7T ;
Calculate prediction residual of the common model: 4 =y — hi_(W's},. a;)
t—1
. . * oo Tl ~1 i i 2 \C'
Learn regression model of the residual: gt—1 = argmin > gt =g (st al) [3+AC,,
=1
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Action Selection

Lok * ~q 7 * 1 1 L
a;” = argmax hi_,(s;.a") + g ,_i(s;.a"), wp. 1 —e,

a;* ~ U(|A|) w.p. e,
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Evaluation — Trace-driven Simulation

Datasets collected from cellular networks of a metropolitan city:
« Single-parameter dataset:
- data from 297 cells over 17 days

« one parameter configuration related to handover is adjusted once each day for each cell
- performance metric is edge UE ratio (less-than-5M-ratio)

« one sample is collected each hour for each cell, including cell state measurements, configured
parameter, value of the performance metric

« Multi-parameter dataset:
- data from 185 cells over 14 days

- two parameter configurations related to uplink power control are adjusted once each day for
each cell

- performance metric is edge UE ratio

- one sample collected each hour for each cell (including cell states measurements, configured
parameter, value of the performance metric)
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Multi-Parameter Simulation Results

Cell Mean Regret Over Time
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Evaluation- Live Field Test

PARAMETERS OPTIMIZED IN REAL NETWORK TEST

Parameter

Meaning

A

An upper bound on the uplink reception power; used for
uplink power control

vw

Target initial downlink BLER; used for deciding down-
link modulation and coding scheme (MCS)

Controls how MCS is adjusted to utilize unoccupied
resource blocks (RBs)

Controls the initial MCS of users

Mmoo 0O

Controls the MCS adjustment speed

Adjusted 5 parameter configurations within two weeks in April 2018
Each configuration has around 10 possible values
One adjustment for each cell for each day is allowed
1700+ cells in a metropolitan city tested
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Results

m Metric: edge UE ratio (the smaller the better)

Default configuration before testing

\ Less than 5SMbps ratio
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Summary

m Collaborative-learning-based approach for
cellular network configuration

m Contextual bandits with transfer learning for
better data efficiency

m Models decomposed to accommodate common
and cell-specific behavior

m Significant performance improvement



Our Related Work

Cellular network configuration based on MAB and
Gibbs-sampling
Mobile prefetching based on user-profiling

Data-driven resource allocation for cellular user
experience improvement

Prediction-based 360-video transmission
Opportunistic bandits for efficient learning
Constrained contextual bandits and dueling bandits
Deep-learning-based RF fingerprinting

Encrypted traffic classification

Security issues of ML algorithms

Network slicing and NOMA pairing



Challenges and Opportunities

m Opportunities:

> Networks are large engineered complex systems —
beyond white-box modeling

> Environment: highly dynamic and partially
observable

> All layers and all players
m Challenges:
> Data, data, data
> Evaluation/experimentation
> Interpretability, safety, security, privacy
> Does not always outperform existing algorithms
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