Machine Learning Meets Cellular Networks

Xin Liu

Computer Science Department

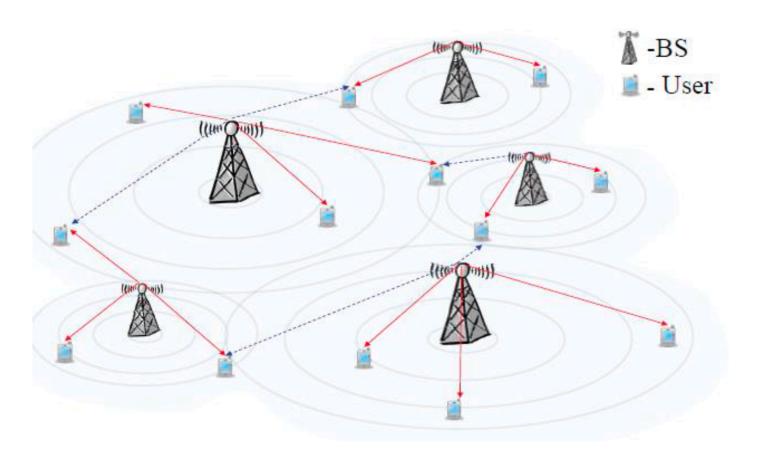
University of California, Davis

A Little Bit about Myself

- B.S, M.S., Xi'an Jiaotong University
- Ph.D., Dept. of EE, Purdue University
- Post-doc, UIUC
- Professor, CS, UC Davis
- MSRA, 2012- 2014
- Cellular resource management, opportunistic scheduling
- Cognitive radio networks
- Mobile resource management and personalization
- Data-driven approaches in networking

Cellular Network Configuration

A large number of parameters to configure

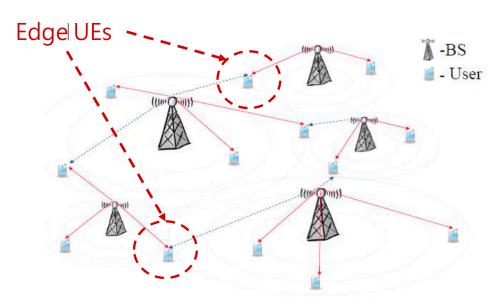


Cellular Network Configuration

- A large # of parameters
 - > BS transmission power
 - > Thresholds for handover
 - Max. # of users
 - > Antenna direction
 - > Etc.

- Performance metrics
 - > Total throughput
 - Average data rate
 - > Edge user performance
 - > Resource utilization rate
 - > Etc.

Example: Handover



- Performance metric
 - > Edge UE throughput
- Parameter conf.
 - > A2-threshold-RSRP
 - > Defined in LTE
- Impact on performance
 - > Too small
 - Too large

Challenges

- Complex mapping from configurations (and network state) to network performance
- Traditional approach
 - > By human expert
 - Labor intensive and suboptimal
 - Hours/days to tune on configuration based on experience
 - Tune one or two parameters each time
 - Hundreds of parameters
- As a result, most cells set the configurations to default values

Our Study

- Machine-learning-based approaches to automate this process
- Challenges:
 - > Lots of data and still a cold start
 - Network performance is a highly complex (and noisy) function of configurations and cell states
 - > Limited amount of exploration
 - Network operators are risk-averse
 - Limited configuration adjustment frequency (e.g., one adjustment a day)
 - Limited duration for adjustment (e.g., two weeks)

Our Approach

- Collaborative learning
- Formulate the problem as a transfer contextual multiarmed bandit problem
- Prove that the regret bound can be significantly reduced
- Develop a practical algorithm to decompose the policy of a cell into common and cell-specific components
 - > the common component utilizes transfer learning and faster policy convergence;
 - > the cell-specific component addresses dissimilarities amongst different cells
- A live field with 1700+ cells
 - > 20% of performance improvement

Problem Formulation- Contextual Bandit

- A cellular network of N cells
- Adjust configurations in T time steps

 s_t^i : state of Cell i at time t (e.g., number of users, channel quality) a_t^i : chosen parameter configuration values of Cell i at time t (e.g., transmission power) f_i : unknown true performance function of Cell i (depends on s_t^i and a_t^i) y_t^i : noisy observation of network performance of Cell i at time t (e.g., cell throughput)

$$y_t^i = f_i(\mathbf{s}_t^i, \mathbf{a}_t^i) + \xi_t^i$$

■ Objective: minimize the overall regret

$$\min_{\mathbf{a}_{t}^{i}:\forall i,t} \sum_{t=1}^{T} \sum_{i=1}^{N} \left\{ \max_{\mathbf{a}' \in \mathcal{A}} f_{i}(\mathbf{s}_{t}^{i}, \mathbf{a}') \right\} - f_{i}(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i})$$

Contextual Bandits & Cell Configuration

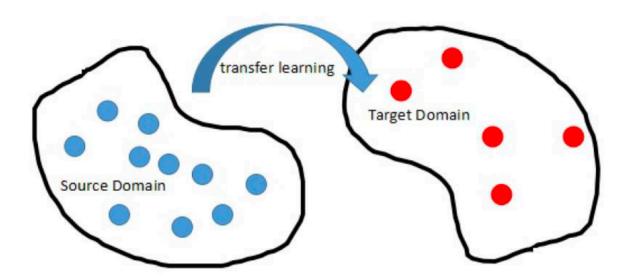
- Balance the tradeoff between exploitation and exploration
 - > Existing algorithms: LinUCB, Thompson Sample, epsilon-greedy, etc.
- Generally, for a cell at a given time
 - Observe cell state; e.g., # of users, channel quality, traffic volume
 - Choose a configuration based on the learned performance model and action selection policy
 - > Observe the noisy performance measurement
 - Update the learned model

Transfer Learning for Fast Convergence

- Key challenge: each cell has only limited chances for exploration
 - > Ex: one configuration each day
 - > Exploration limited to two weeks
- Learning bandit independently converges slowly
 - # of exploration limited per cell
 - > Large # of parameters and their combinations

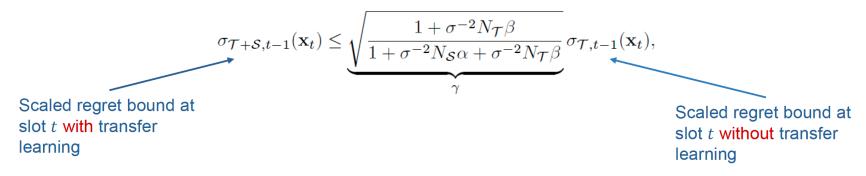
Transferable contextual bandit

 Share data among cells to accelerate the learning of the performance model



Fast Convergence by Transfer Learning

The bound of the instantaneous regret at each step can be reduced by a discounting factor $\gamma < 1$ leveraging data from other cells

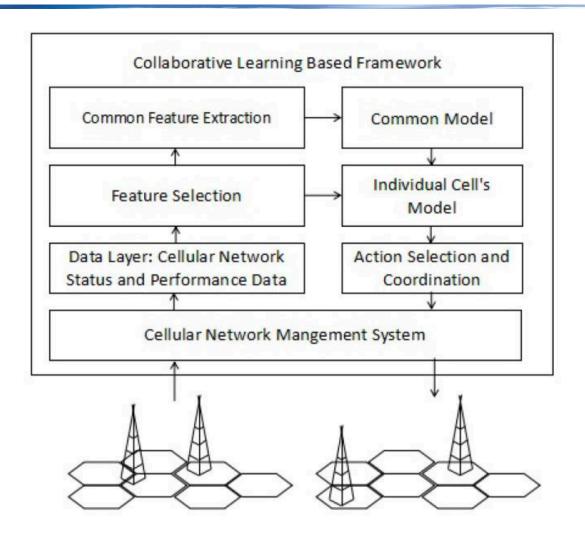


- The sped-up is more significant when
 - # of transferred samples >> # of original samples in the target cell

From Theory to Practice

- Collaborative learning: utilize data from all cells to learn the performance model for each cell
- Key idea: consider both common behavior and cell-specific behavior
 - Decompose the model into a common part and a cell-specific part
 - > User data from all cells to learn the common part
 - Use each cell's own data to learn the cell-specific part

Collaborative Contextual MAB Framework



Model Decomposition

State decomposition:

$$\mathcal{S} = \tilde{\mathcal{S}} \times \hat{\mathcal{S}}$$
.

$$\mathbf{s}_t^i = (\tilde{\mathbf{s}}_t^i, \hat{\mathbf{s}}_t^i)$$
, where $\tilde{\mathbf{s}}_t^i \in \tilde{\mathcal{S}}$ and $\hat{\mathbf{s}}_t^i \in \hat{\mathcal{S}}$.

Common features:

$$\tilde{\mathbf{s}}_t^i = W^T \mathbf{s}_t^i$$

• Cell-specific features:

$$\hat{\mathbf{s}}_t^i = (I - WW^T)\mathbf{s}_t^i$$

Performance Decomposition

$$y_t^i = h(\tilde{\mathbf{s}}_t^i, \mathbf{a}_t^i) + g_i(\mathbf{s}_t^i, \mathbf{a}_t^i) + \epsilon_t^i$$
Common Cell-specific behaviors

Model Learning

Extract common features (data from all cells):

$$W^* = \underset{W}{\operatorname{arg\,max}} \sum_{i} \sum_{t} \|cov(W^T \mathbf{s}_t^i, y_t)\|_F^2$$

Learn the common model (data from all cells):

$$h_{t-1}^* = \arg\min_{h} \sum_{i=1}^{N} \sum_{t'=1}^{t-1} \|y_{t'}^i - h(W^T \mathbf{s}_{t'}^i, \mathbf{a}_{t'}^i)\|_2^2 + \lambda C_h$$

Learn the cell-specific model:

• Calculate prediction residual of the common model: $\tilde{y}_{t'}^i = y_{t'}^i - h_{t-1}^*(W^T\mathbf{s}_{t'}^i, \mathbf{a}_{t'}^i)$

• Learn regression model of the residual:
$$g_{i,t-1}^* = \arg\min_{g_i} \sum_{t'=1}^{t-1} \|\tilde{y}_{t'}^i - g_i\left(\mathbf{s}_{t'}^i, \mathbf{a}_{t'}^i\right)\|_2^2 + \lambda C_{g_i}$$

Action Selection

$$\begin{aligned} \mathbf{a}_t^{i,*} &= \arg\max_{\mathbf{a}^i} h_{t-1}^* (\tilde{\mathbf{s}}_t^i, \mathbf{a}^i) + g_{i,t-1}^* (\mathbf{s}_t^i, \mathbf{a}^i), \text{ w.p. } 1 - \epsilon, \\ \mathbf{a}_t^{i,*} &\sim U(|\mathcal{A}|) \text{ w.p. } \epsilon, \end{aligned}$$

Evaluation – Trace-driven Simulation

Datasets collected from cellular networks of a metropolitan city:

- Single-parameter dataset:
 - data from 297 cells over 17 days
 - one parameter configuration related to handover is adjusted once each day for each cell
 - performance metric is edge UE ratio (less-than-5M-ratio)
 - one sample is collected each hour for each cell, including cell state measurements, configured parameter, value of the performance metric
- Multi-parameter dataset:
 - data from 185 cells over 14 days
 - two parameter configurations related to uplink power control are adjusted once each day for each cell
 - performance metric is edge UE ratio
 - one sample collected each hour for each cell (including cell states measurements, configured parameter, value of the performance metric)

Multi-Parameter Simulation Results

Evaluation-Live Field Test

- Adjusted 5 parameter configurations within two weeks in April 2018
- Each configuration has around 10 possible values
- One adjustment for each cell for each day is allowed
- 1700+ cells in a metropolitan city tested

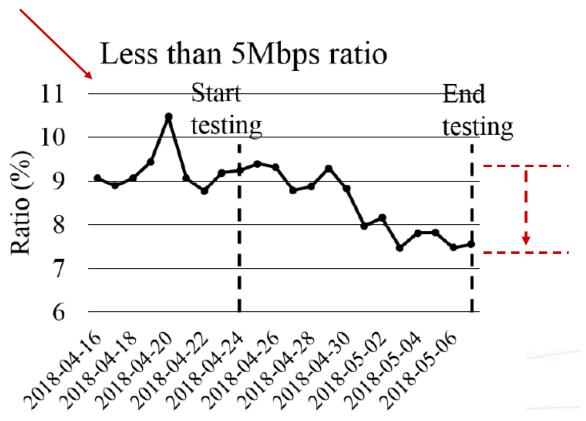
PARAMETERS OPTIMIZED IN REAL NETWORK TEST

Parameter	Meaning
A	An upper bound on the uplink reception power; used for
	uplink power control
В	Target initial downlink BLER; used for deciding down-
	link modulation and coding scheme (MCS)
С	Controls how MCS is adjusted to utilize unoccupied
	resource blocks (RBs)
D	Controls the initial MCS of users
Е	Controls the MCS adjustment speed

Results

■ Metric: edge UE ratio (the smaller the better)

Default configuration before testing



Summary

- Collaborative-learning-based approach for cellular network configuration
- Contextual bandits with transfer learning for better data efficiency
- Models decomposed to accommodate common and cell-specific behavior
- Significant performance improvement

Our Related Work

- Cellular network configuration based on MAB and Gibbs-sampling
- Mobile prefetching based on user-profiling
- Data-driven resource allocation for cellular user experience improvement
- Prediction-based 360-video transmission
- Opportunistic bandits for efficient learning
- Constrained contextual bandits and dueling bandits
- Deep-learning-based RF fingerprinting
- Encrypted traffic classification
- Security issues of ML algorithms
- Network slicing and NOMA pairing

Challenges and Opportunities

Opportunities:

- Networks are large engineered complex systems beyond white-box modeling
- Environment: highly dynamic and partially observable
- All layers and all players

Challenges:

- Data, data, data
- Evaluation/experimentation
- > Interpretability, safety, security, privacy
- > Does not always outperform existing algorithms

