
Fledge and EVE FLIR Demo

1



Use Case
› Many times the health of a device on a factory floor can be determine 

by its operating temperature

› Manual Monitoring-
› Monitoring can be done manually by an operator, but that has many 

limitations: 1. operator must be physically be there 2. no continuous 
coverage 3. no predictive component

› Continuous/ Automatic Monitoring-
› Monitoring can be done by connecting the FLIR to a local computer/server 

but there are many issues with this: 1. connectivity might be poor 2. Older 
systems might be present, and the owner needs to keep them because of 
previous investment.

2



UC- Needs
› A system that allows:
› Continuous monitoring of the system
› Able to react to an out of bounds condition (i.e. too hot)
› Remote monitoring of the system
› Able to send data to another system (OSI’s Pi server, historian, MS Azure 

Cloud, AWS, Google Cloud)
› No touch maintenance of the system (remote updating, monitoring)
› Security of the data and the components
› ML both near the edge (or on) and in the cloud

3



UC- Solution EVE and Fledge
› EVE sits on the bare metal and allows:
› For the security of the device
› For the updating of the software
› Hardware independence

› Fledge
› Can be packaged with a VM and distributed/updated via EVE
› API’s that allow the abstraction of hardware device
› Local processing to react to conditions

4



Use Case Details

5

Attributes Description Informational

Type New New

Industry Sector Industrial IoT

Business driver Predictive Maintenance

Business use cases Many devices give off hints that they will need to have maintenance earlier than their schedule maintenance. Through Machine Learning (ML), we 
can create models that will allow us to know that a device will soon need maintenance. For many machines, we can gain a great deal of information 
on the health of the device by looking at the temperature of the device. This requires collecting the data and then sending it to a Historian or similar 
device. These data points can be sent to the cloud to be modeled.
Other requirements
•Need to take the current temperature of the device and react in near real time to rising temperature

• Example: If over 150 C- send out a warning to a email list, show warning on a UI
if over 180 C trigger light or horn
if over 200 C trigger shutdown process

Other variations:
Monitoring restricted spaces
•If a human enters in a space,

• first level of restriction- sound an alarm and turn on lights
• second level- start shutdown process

Predictive maintenance: There are many different types of models. For example, many 
models do not need to be done in real time. Thus, the data can be sent to the Cloud and 
processed. The data is not time critical, so if there is a delay in sending/receiving data, the 
data will need to be stored and then sent when the network is available.

Yet, there are many scenarios, where real time or near real time is required. An example of 
this would be a machine reaching a maximum temperature. As it approaches this, we would 
want to send out a warning and then if it reached this critical temperature, the device needs to 
be shut down.

For this type of scenario, there needs to be a server or space on the IoT gateway that can 
process the data in real time.

Business Cost - Initial 
Build Cost Target 
Objective

Business Cost – Target 
Operational Objective

Security need Because of the remoteness of the devices, need the ability to control ports (turn on/off)

Regulations TBD

Other restrictions

Additional details



Simplified Drawing of System

6

Fledge

EVE

IoT Gateway

FLIR 
Camera

Cloud 
System(s)

EVE
Controller

Ethernet Cable

HTTPS
HTTPS



Hardware Layer (CPU or GPU)

Application Layer (Any VM or Container)

Optional
driver 

domain

EVErouter
ACLs

secure 
overlay

EVEagent
config, 
status, 
events

image 
downloader

EVEmanager
orchestrator

Verifier
sha
sigs

identity 
manager
keygen

domain 
manager

dom0

Edge Computing Engine
Agnostic interface supported by API libraries, open to all hardware/network/apps

Unicloud/ 
cli access

EDGE 
CONTAINERS

7

Project Scope
› Establish standardized Edge Container Object (ECO) format

› Build EVE edge computing engine and controller (EVC) interface

› API + CLI reference implementation

EVE Edge Computing Engine Architecture



8

Fledge is architected to enable industrial interoperability, advanced 
application development, cloud portability and system management.

Collect Data - from any/all sensors
Aggregate - combine and organize data
Transform - filter and transform data 
Buffer – protect data
Edge Analytics - understand data 
Deliver Data - to multiple destinations

North Service

GUI

Storage
Layer

Orchestrator

South Service
M

tco
n

C
o

A
P

M
o

d
b

u
s

D
ire

ct

Config Mgmt

H
T

T
P

S

M
Q

T
T

REST API

FFT

Image Class

…

RMS/Peak

Event Engine

Value Threshold

Diff Threshold

Create Data

External App

Email

Rules

Actions

Enhancers

Updates
Monitoring
Scheduling

Backup
User Mgmt

Security

…

HTTPS

OMF

Compress

Kafka

OPC-UA

Delta

Filters
Conditional

O
P

C
-U

A

…

Plugin

Micro Service

REST API

ARCHITECTURE



9

FLEDGE In Energy
Condition Based Monitoring - Transformers

System Management
Commercial Support

T&D Management IIOT Pub-Sub Engine

ERP
Trouble Ticketing

• Data Collection & Aggregation
• Edge Analytics
• Alerting
• IT-OT System Integration

FLIR A310
High-Low-Avg Temp
Per Object in Substation

Ethernet to Cisco 4000 • Monitors substation 
• High-Low-Avg Temp Any Object
• Security
• Safety zones
• Safety policy



FLIR Scenario

10

F
l
e
d
g
e

EVE
IoT Gateway

Industrial 
Machine

Thermal 
Image FLIR 

Camera

On Site Analytics, 
ML, AI, etc.

GUI- Warning, 
graphs, etc.

Historian, 
SCADA, etc.

On Site Cloud

Monitoring of 
device(s)

Updates (EVE, 
Fledge, etc.)

External cloud,
ML, Big Data

Remote 
Security

EVE Controller


