trforum

TM Forum Specification

REST API Design Guidelines Part 6

JSON Path extension

TMF630
Team Approved Date: 08-May-2020

Release Status: Production Approval Status: TM Forum Approved
Version 4.0.1 IPR Mode: RAND

©TM Forum 2020. All Rights Reserved.

C2 General

REST API Design Guidelines Part 6 forl.m

Notice

Copyright © TM Forum 2020. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to TM FORUM, except as
needed for the purpose of developing any document or deliverable produced by a TM FORUM Collaboration
Project Team (in which case the rules applicable to copyrights, as set forth in the TM FORUM IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by TM FORUM or its successors
or assigns.

This document and the information contained herein is provided on an “AS IS” basis and TM FORUM
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

TM FORUM invites any TM FORUM Member or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this TM Forum Standards Final Deliverable, to notify the TM
FORUM Team Administrator and provide an indication of its willingness to grant patent licenses to such patent
claims in a manner consistent with the IPR Mode of the TM FORUM Collaboration Project Team that produced
this deliverable.

The TM FORUM invites any party to contact the TM FORUM Team Administrator if it is aware of a claim of
ownership of any patent claims that would necessarily be infringed by implementations of this TM FORUM
Standards Final Deliverable by a patent holder that is not willing to provide a license to such patent claims in a
manner consistent with the IPR Mode of the TM FORUM Collaboration Project Team that produced this TM
FORUM Standards Final Deliverable. TM FORUM may include such claims on its website but disclaims any
obligation to do so.

TM FORUM takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this TM FORUM
Standards Final Deliverable or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Information on TM
FORUM's procedures with respect to rights in any document or deliverable produced by a TM FORUM
Collaboration Project Team can be found on the TM FORUM website. Copies of claims of rights made available
for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain
a general license or permission for the use of such proprietary rights by implementers or users of this TM
FORUM Standards Final Deliverable, can be obtained from the TM FORUM Team Administrator. TM FORUM
makes no representation that any information or list of intellectual property rights will at any time be
complete, or that any claims in such list are, in fact, Essential Claims.

© TM Forum 2020. All Rights Reserved. Page 2of41

http://www.tmforum.org/IPRPolicy/11525/home.html

N
trforum

REST API Design Guidelines Part 6

Direct inquiries to the TM Forum office:

4 Century Drive, Suite 100

Parsippany, NJ 07054 USA

Tel No. +1 973 944 5100

Fax No. +1 973 998 7916

TM Forum Web Page: www.TM Forum.org

© TM Forum 2020. All Rights Reserved. Page 30of41

http://www.tmforum.org/

REST API Design Guidelines Part 6

Table of Contents

Notice 2
Table of Contents 4
List of Figures 5
List of Tables 6
Executive Summary 7
CONVENTIONS ..ttt ettt sttt et et et e s b e s b e e st s st e a e et e at e b et e b e ssesae e st eateat et et essesbesesaeestententenes 7
1 JSON Path extension 8
11 Ty oo [UTor o o FFOS OSSOSO 8
1.2 Overview collection filtering using JSSON Path (“filter”)cccccverervenevrereeeereeee e 11
13 Overview resource partial representation using JSON Path (“fields”)..........cccoeveveeeveevenrecennnne 12
L4 JSON PAth ettt sttt sttt sttt stttk e et ene e seebanens 13
... 13
... 15
.. 16
... 20
LRI =T g 0T | [ole [=X OO 21
15 URL / URI Encoding of the JSONPath eXpressionscceeeverereveeeeeenenesssseseseseseseesssssesenns 25
1.6 Collection filtering UsiNg JSONPAth..........ccoireeiccee e 27
1.7 Partial resource representation using JSONPath.........c.ccooevrieccccecee e 32
1.8 Y 0= Y=Y =Y o o T TSR 35
19 Notification Pattern - Registering LISTENENceoveceeeeieeeeeeeeteee ettt 36
1.10 S oY gl o= Vo |11 S 36
0 o R 10]\ 2= (o] o [P OO TSRS RTPPRTRTN 37
2 Administrative Appendix 40
2.1 SOUICE ANETACES. c.civeviiieieirtriee ettt sttt sttt sttt se st e ssbe e e stesaneseesenens 40
2.2 RefEreNCEA ArtEfaCtS......cciviiieiririeeireerer ettt s 40
2.3 DOCUMENT HISTONY ...uiiiiiiieiierieetestee ettt sttt sae st sae e sae et st e st e sbaesbeebeessesasessasnses 41
2.3.1 VEISION HISTOIY ..ueoeeeveeieeiieeieesiteieeteetesitesite e sstes s sssssssssstesatesssssssssssssassssssssssesssesssesses 41
2.3.2 REIEASE HISTOIYooveeveeeresieeeteeieiesiesisststsstetstestssstssssssssasssssssssssssssessssassassssassessssassssssanens 41
24 ACKNOWIBAZMENTS ...ttt ettt et b et e b b e e s e s e e e senseneesennaneasan 41

© TM Forum 2020. All Rights Reserved. Page 4 of 41

REST API Design Guidelines Part 6

List of Figures

Figure 1: Resource Modelcccocooeiiiiiiiiiin,
Figure 2: Simplegraphc..oooiii
Figure 3: Collection filtering through simple query selection result
Figure 4: Collection filtering through filter selector result
Figure 5: Example of a basic query mechanism
Figure 6: Example of a filter query mechanism
Figure 7: Example of a partial response mechanism
Figure 8: Example of the filtering mechanism

© TM Forum 2020. All Rights Reserved.

Page 50f41

REST API Design Guidelines Part 6 tI I i Ioer

List of Tables

N/A

© TM Forum 2020. All Rights Reserved. Page 6 of41

- |
REST API Design Guidelines Part 6 foer

Executive Summary

This document provides information for the development of TMForum OpenAPIs using REST.

It provides recommendations and guidelines, to extend the existing design patterns through the usage of JSON
Path across the TMForum OpenAPI REST ecosystem.

Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in

[RFC2119].

© TM Forum 2020. All Rights Reserved. Page 7 of41

REST API Design Guidelines Part 6 foer

1 JSON Path extension

1.1 Introduction

The fundamental concept in any RESTful APl is the resource. A resource is an object with a type, associated
data, relationships to other resources, and a set of methods that operate on it.

Resources can be grouped into collections. Each collection is homogeneous so that it contains only one
type of resource, and unordered. Collections are themselves resources as well.

The diagram below illustrates the key concepts in a RESTful API.

Resource Model
Collection
l
Resource
Singleton Resource Collection with Resources

Figure 1: Resource Model

Resources have data associated with them which are represented using JSON.

JavaScript Object Notation (JSON) [RFC4627] is one of the most common REST API specification formats
for the exchange and storage of structured data. TMForum OpenAPI Design Guidelines (DG) enforce the
use and support of the JSON media type across the REST APIs as:

e The server MUST support “application/json” by default. — ([DG4-1] page 12)
e REST APIs MUST support the “application/json” media type by default. — ([DG4-1] page 22)

Considering the resource model, the main use cases are:

e Retrieving a sub-set of resources from a collection based on a set of JSONPath conditions, via the
Filter directive.

e Retrieving a partial representation from a singleton resource, via the Fields directive.

The TMForum OpenAPI DG provides support for querying resources with (or without) attribute filtering
via the design patterns. This document aims to extend by augmenting the existing design patterns with
the JSON Path query language features.

© TM Forum 2020. All Rights Reserved. Page 8of41

REST API Design Guidelines Part 6 foer

At the time of writing, JSON Path can be considered a de-facto standard for querying JSON documents
due to the wide usage across the community. Numerous libraries are already available for a wide range
of programming languages allowing the developers easy access to the features of the query language.

The adoption of JSON Path in the TMForum OpenAPI Design Guidelines is motivated by the desire to fulfill
the query gaps in hierarchical multilevel array structures and to provide new query & filtering capabilities,
standardized by a common syntax and behavior model.

One scenario where the collection filtering using JSON Path is required is in the scenario of the hierarchical
guery. The hierarchical query is heavily used across different TMForum openAPlIs.

In the case of the hierarchical query, each node needs to be evaluated and the conditions to be satisfied.

root

e Select each the root node of the hierarchy

e Select each root node child. For each child check if
the path and condition are satisfied

@ e Select successive child nodes and again for all check
paths and conditions.

9 e If all conditions are satisfied the resource is selected.

5 ®

Figure 2: Simple graph

As JSON is a hierarchical structure, let’s consider a simple example to demonstrate the limitations of the
standard key-value query and the solution proposed through the usage of JSONPath for collection
filtering.

Considering the following simple example, for a “Building” collection, where each building has a set of
attributes (lift condition) and an array for apartments where the number of rooms are listed.

{"building": [{"name":"Babbage", "floor":[{"level":1, "apartment": [{"rooms":2}, {"rooms
":3}],"1ift":"working"}, {"level":2, "apartment": [{"rooms":1}, {"rooms":4}],"1ift":"no
tworking"}]}, {"name":"Charles","floor": [{"level”:1,"1ift":"notinstalled", "apartment
":[{"rooms":1}, {"rooms":2}]},{"level":2,"1ift":"working", "apartment": [{"rooms":1}, {
"rooms":4}]1}1}1]1}

If the request is to select all buildings that have a lift in working condition and there is an apartment with
a single room, the query string will look like this:

GET /api/building?building.floor.lift=working&building.floor.apartment.rooms=1

© TM Forum 2020. All Rights Reserved. Page 9of41

REST API Design Guidelines Part 6

However, the above query will produce the wrong result, returning both “Babbage” and “Charles”
resources, because there is no mechanism in the query string to highlight that there should be an
intersection between the two input conditions.

The graphical representation of the above query selection:

Building (collection) ®© corect
Wrong
level=1 level=1
@ room=1 room=2
apartment @ floor[0] : H floor[0] apartment
room=2 B - room=3
@ lift=working @ name=Charles H) name=Babbage i
level=2 level=2 H
apartment floor[1] floor[1]) apartment :
o) room=4 |
lift=notinstalled lift=notWorking

Figure 3: Collection filtering through simple query selection result

As seen above, the resource “Babbage” will be selected when the query should only return the “Charles”
resource.

The same JSON resource as above, this time using the collection filtering with JSONPath:

GET /api/building?filter=
$.building[*].floor[?(@.1lift=="working")] .apartment[? (Q@.rooms==1)]

will result only in the “Charles” resource to be selected and returned to the client.

Building (collection) Legend
] ° Correct
level=1
=1
@it apartment @ floor[0]
room=2
@ lift=working @ name=Charles
level=2
room=3
apartment floor[1]
room=4

lift=notinstalled

Figure 4: Collection filtering through filter selector result

Note: for clarity in the above example the characters [and] are not encoded as they should

© TM Forum 2020. All Rights Reserved. Page 10 of 41

trforum

Trial Mode
XMind:ZEN

Trial Mode
XMind: ZEN

REST API Design Guidelines Part 6 foer

1.2 Overview collection filtering using JSON Path (“filter”)

As per RESTful APIs guideline ([DG4-1]- page 21), GET HTTP operation is being used to retrieve either all
the resources in a collection (subject to server limitations, pagination, etc.) or to retrieve only a subset of
the resources from the collection based on condition(s) filtering.

Collection filtering is done by taking the input condition (Boolean) and applying it against the collection of

resources. By doing so, only the resources where the condition is satisfied (true) are selected and then
returned to the API client.

Currently, the TMForum Design Guidelines supports only the mechanism of basic filtering which is based
on using name-value query parameters on entity attributes (as described in [DG4-1] — Page 36)

Request Collection

\ 4

GET /troubleTicketAPl/v2/troubleTicket?status=Open ~

~
~
~

TroubleTicket
Resource

Response

A

Array of resources [Resource#l, Resource#2, ...] that matched
the specified predicate (status=Open)

Figure 5: Example of a basic query mechanism

The current document is proposing to enhance the collection filtering mechanism through the use of a
JSONPath selector called “filter” to provide a flexible way to select a subset of resources from a collection
by using the JSONPath predicate selectors and functions. The JSONPath collection filtering provides a
standardized way of navigating through complex multilevel resources data models.

Request Collection

\ 4

GET /troubleTicketAPl/v2/troubleTicket?filter=attachment[?(@.size==300)] =

Y
~

TroubleTicket
Resource

Response

A

Array of resources [Resource#1, Resource#2,....] that matched
the specified predicate (Attachment.Size=300)

Figure 6: Example of a filter query mechanism

© TM Forum 2020. All Rights Reserved. Page 11 of41

REST API Design Guidelines Part 6 foer

1.3 Overview resource partial representation using JSON Path (“fields”)

This pattern describes how to retrieve a subset of the attributes from an entity in the response using an
attribute filtering mechanism. In the current [DG4-1](page 34) the filtering is done using the selector
directive called “fields” - [DG4-1](page 34).

Resource (ID=15)
Request

v

GET /troubleTicketAPl/v2/troubleTicket/15?fields=ID, Status

Name=Compliant
Response

Status=Resolved

A

Resource representation containing only the fields ID & Status

(as per request “fields” selector)

Figure 7: Example of a partial response mechanism

The current proposal is to enhance the existing "fields" selector to support a JSON Path
expression. By enhancing the “fields” selector with the JSON Path expression, the API
consumers have more flexibility in selecting parts of the resources that are in a multi-level array
structure.

The “.”(dot) notation, specified in the [DG4-1], is the same notation used by JSON Path so the
transition to the JSONPath expression will be transparent.

© TM Forum 2020. All Rights Reserved. Page 12 of 41

- |
REST API Design Guidelines Part 6 forl.m

1.4JSON Path

14.1 What is it

In the XML world, the XPath (XML Path Language), standardized by the W3C provides the ability to select
and extract data out of XML documents. The equivalent of XPath for JSON documents is called JSON Path.
It is a query-oriented language that allows querying and extraction of subsection(s) of a JSON document.

Every JSON document is based on a tree hierarchy of nodes (leaves), where every node is a JSON element
which can be a simple leaf or complex one. The JSON Path language navigates this tree representation,
selecting nodes through filtering criteria.

Considering the following simplified version of a TMForum TroubleTicket JSON as an example, that will
be used as a reference throughout this document:

"id": "3180",
"href": "https://host:port/troubleTicket/v2/troubleTicket/3180",

"name": "Compliant over last bill",
"status": "Resolved",
"relatedEntity": [

{
nidr: "3472",

"href": "https://host:port/customerBillManagement/v2/customerBill/3472",
"name": "November Bill",
"QreferredType": "CustomerBill"

by

nidr: "3473",

"href": "https://host:port/customerBillManagement/v2/customerBill/3473",

"name": "December Bill",

"QreferredType": "CustomerBill"

1,
"statusChange": [
{
"status": "Pending",
"changeReason": "Need more information from the customer",
"changeDate": "2018-05-01T00:00"
}y
{

"status": "InProgress",

© TM Forum 2020. All Rights Reserved. Page 13 0f41

https://goessner.net/articles/JsonPath/
https://host:port/troubleTicket/v2/troubleTicket/3180
https://host:port/customerBillManagement/v2/customerBill/3472
https://host:port/customerBillManagement/v2/customerBill/3473

REST API Design Guidelines Part 6 forl.m

"changeReason": "Working on the issue resolution",
"changeDate": "2018-05-02T00:00"
}y

"status": "Resolved",
"changeReason": "Issue has been resolved",

"changeDate": "2018-05-02T00:00"

"id": "1iv,

"date": "2018-05-01T00:00",

"author": "Mr John Wils",

"text": "Missing necessary information from the customer"

b

nidr: "2",

"date": "2018-05-01T00:00",

"author": "Mr Erika Xavy",

"text": "Information has been received, we're working on the resolution"
by
{

"id": "3",

"date": "2018-05-02T00:00",

"author": "Mr Redfin Tekram",
"text": "Issue has been resolved, the service has been restored"
}
1s
"attachment": [
{
"description": "Scanned disputed December bill",
"href": "http://hostname:port/documentManagement/v2/attachment/44",
"id": "44v,
"url": "http://xxxxx",
"name": "December Bill",

"size": 300,

"sizeUnit": "KB",

"QreferredType": "Attachment"

© TM Forum 2020. All Rights Reserved. Page 14 of 41

http://hostname:port/documentManagement/v2/attachment/44
http://xxxxx/

REST API Design Guidelines Part 6 forl.m

by

"description": "Scanned disputed November bill",

"href": "http://hostname:port/documentManagement/v2/attachment/45",
"id": "45",

"url": "http://xxxxx",

"name": "November Bill ",

"size": 500,
"sizeUnit": "KB",

"QreferredType": "Attachment"

1,
"channel": {
"id": "8774",
"name": "Self Service",

"@type": "Channel"

Note: All further examples are relative to the TroubleTicket entity presented in the JSON
representation above.

A JSON document doesn't necessarily have a dedicated element to represent the "root" of the structure
but in the JSONPath case, a special notation has been introduced to represent the top-level element/root
node.

The root node contains all the other JSON elements and based on our example some of them are simple
nodes (id, href, name) and non-leaf ones - containing other nodes like (relatedEntity, statusChange, note).

JSONPath provides a uniform syntax (further details in the "syntax" chapter to define expressions that
can traverse a JSON document to extract the relevant subsections. For example, to retrieve the value for
the "name" node, the following simple JSONPath query expression is used: "$.name" ("$S" represents the
root element). Much more complex paths and expressions can be used, that will allow traversal of the
entire document looking for an indicated field, or to filter based on the field’s values.

14.2 Syntax
JSONPath makes use of special notation and syntax to represent the nodes and links between them.

The top-level element of the JSON document represents the "root" element and is notated with the dollar
S|gn ||$||.

The following notation styles are currently supported:

© TM Forum 2020. All Rights Reserved. Page 150f41

http://hostname:port/documentManagement/v2/attachment/45
http://xxxxx/

REST API Design Guidelines Part 6 foer

e dot-notation - e.g. S.name

e bracket-notation - e.g. S['name']
Note: The leading S represents the root object or array and can be omitted

Both of the above paths refer to the same node from the above JSON document example, the "name"
field which is the child of the root element.

143 Operators

The following operators and expressions are described below:
Expression & Operators Description

Root object/element to query. This is how all the path expressions are
started

The current node being processed - it is used in the input expressions
for filter predicates.

<attri > . - . . .
attribute Child selector - selects the specified property in a parent object using

the "dot" (.) notation

['<attribute>'(, '<attribute>')] Child or children selector - selects the specified property or properties

in a parent object using the "bracket" ([) notation

Note: This expression SHOULD be used if the attribute contains special
characters such as spaces, or begins with a character other
than A..Za..z_.

Recursive descent. JSONPath borrows this syntax from E4X.

It will search for the specified attribute name recursively and it will
return an array of all values with the attribute name.

It will always return a list, even if only one property is found.

* Wildcard selector.
It will select all elements (object or array) regardless of their names or
indexes.
For example, $.relatedEntity[0][*] means all attributes of the first
object from the relatedEntity array, and S.relatedEntity[*] means all
items of the relatedEntity array.

[n] Selects the n™ element from an array. Indexes are 0-based.

[indexNr, indexNr, ..] Selects array elements with the specified indexes. Returns a list.

© TM Forum 2020. All Rights Reserved. Page 16 of 41

http://en.wikipedia.org/wiki/E4X

REST API Design Guidelines Part 6

Expression & Operators

[start:end]
[start:]

[? (expression)]

[(expression)]

Examples:

JSON Path

S.channel

S['id','name’,'href]

$..name

© TM Forum 2020. All Rights Reserved.

forum

Description

Array slice operator. JSONPath borrows this from E4X.

It will select array elements from the start index and up to, but
not including, end index.

If the end is omitted, selects all elements from start until the
end of the array. Returns a list.

Selects the first n elements of the array. Returns a list
Selects the last n elements of the array. Returns a list.

Union operator. JSONPath allows alternate names or array
indices as a set.

Filter expression. Selects all elements in an object or array that
match the specified filter.

Script expressions can be used instead of explicit property
names or indexes. An example is [(@.length-1)] which selects
the last item in an array. Here, length refers to the length of the
current array rather than a JSON field named length.

Result

All the properties of the channel

Output:

{
llidll : ll8774ll'
"name" : "Self Service",
"@type" : "Channel"

}

Select multiple children from the root element. This operator is very
useful in the partial response scenario.

Output:
{

"id" : "3180",

"name" : "Compliant over last bill",

"href" : "https://host:port/troubleTicket/v2/troubleTicket/3180"
}

Select all the ‘name’ attributes across all the resource structure.

Output:
[

"Compliant over last bill",

Page 17 of 41

http://en.wikipedia.org/wiki/E4X
https://host:port/troubleTicket/v2/troubleTicket/3180

REST API Design Guidelines Part 6

JSON Path

S.note[*].author

S.note[*]

S.note[1l]

$.note[0,1]

© TM Forum 2020. All Rights Reserved.

trforum

Result

"November Bill",

"December Bill",

"December Bill",

"November Bill ",
"Self Service"

]

All the authors attribute values from all the elements of the 'note'
array

Output:

[
"Mr John Wils",
"Mr Erika Xavy",
"Mr Redfin Tekram"

]

Wildcard select for all the elements within the note array

Output:

[
{
"id" "1,
"date" : "2018-05-01T00:00",
"author" : "Mr John Wils",
"text" : "Missing necessary information from the customer"

llidll : |I2|I’

"date" : "2018-05-01T00:00",

"author" : "Mr Erika Xavy",

"text" : "Information has been received, we're working on the resolution"

"id" . "3",
"date" : "2018-05-02T00:00",
"author" : "Mr Redfin Tekram",
"text" : "Issue has been resolved, the service has been restored"
}
]

Retrieve the first element of the note array

Output:
{
"id" . "2",
"date" : "2018-05-01T00:00",
"author" : "Mr Erika Xavy",
"text" : "Information has been received, we're working on the resolution"

}

Retrieve the elements from the array positions 0 and 1 (remember
indexes start from 0)

Output:

Page 18 of 41

REST API Design Guidelines Part 6 foer

JSON Path Result

llidll : ll1|l,

"date" : "2018-05-01T00:00",

"author" : "Mr John Wils",

"text" : "Missing necessary information from the customer"

llidll : |I2|I’

"date" : "2018-05-01T00:00",

"author" : "Mr Erika Xavy",

"text" : "Information has been received, we're working on the resolution"

}
]

Retrieve the elements from the array starting from position 1 till the
end

S.note[1l:]

Output:

[
{
llidll : |I2|I’
"date" : "2018-05-01T00:00",
"author" : "Mr Erika Xavy",
"text" : "Information has been received, we're working on the resolution"

"id" . "3",
"date" : "2018-05-02T00:00",
"author" : "Mr Redfin Tekram",
"text" : "Issue has been resolved, the service has been restored"
}
]

$.note[:2] Selects the first 2 elements of the array.

Output:

[
{
"id":"1",
"date" : "2018-05-01T00:00",
"author" : "Mr John Wils",
"text" : "Missing necessary information from the customer"

llidll : |I2|I’

"date" : "2018-05-01T00:00",

"author" : "Mr Erika Xavy",

"text" : "Information has been received, we're working on the resolution"

}
]

$.note[-2:] Selects the last 2 elements of the array.

Output:

© TM Forum 2020. All Rights Reserved. Page 19 of 41

- |
REST API Design Guidelines Part 6 foer

JSON Path Result

Ilidll . II2|I'

"date" : "2018-05-01T00:00",

"author" : "Mr Erika Xavy",

"text" : "Information has been received, we're working on the

resolution"
2
{
llidll . II3II'

"date" : "2018-05-02T00:00",
"author" : "Mr Redfin Tekram",
"text" : "Issue has been resolved, the service has been restored"

144 Functions

Several implementations of JSONPath support Functions that can be invoked at the tail end of a path. The
input to a function is the output of the path expression.

The function output is dictated by the function itself.

Function Description Output
min() Provides the min value of an array of numbers Double
max() Provides the max value of an array of numbers Double
avg() Provides the average value of an array of numbers Double
stddev() Provides the standard deviation value of an array of numbers Double
length() Provides the length of an array Integer

Note: Some of the above function capabilities are not currently supported by all implementations.

Considering the following example:

{

"price": [

1,
4
l4
l4

l4

o U > W N

© TM Forum 2020. All Rights Reserved. Page 20 of 41

REST API Design Guidelines Part 6

JSON Path Result

$.price.min() Provides the min value of an array of numbers
Output: 1.0

$.price.max() Provides the max value of an array of numbers

Output: 6.0

$.price.avg() Provides the average value of an array of numbers

Output: 3.5

$.price.stddev() Provides the standard deviation value of an array of numbers

Output: 1.707825127659933

S.price.length() Provides the length of an array

Output: 6

145 Filter predicates

forum

JSONPath predicate filters are Boolean expressions (true or false) that restrict returned lists of nodes -

usually applied to arrays. The filter syntax is:

[? (expression)]

The filter syntax is generally used in conjunction with the "@" operator to create the predicate.

A quick filter example could be:

Input:

statusChange[? (@.status=='Pending')]
Output:

[

"status" : "Pending",
"changeReason" : "Need more information from the customer",
"changeDate" : "2018-05-01T00:00"

The "@" represents the current item being processed.

If the predicate filter does not validate, an empty response will be returned.

© TM Forum 2020. All Rights Reserved.

Page 21 of 41

REST API Design Guidelines Part 6

forum

The condition inside the predicate can also be based on the values outside the current object.

For example:

Input:

Output:
[

statusChange[? (@.status==$.status)]

"status" : "Resolved",
"changeReason" : "Issue has been resolved",
"changeDate" : "2018-05-02T00:00"

As expected, a filter that specifies only the property name, for example, $.statusChange[? (@.status)]
will match and return all items that have this property defined, regardless of the value.

Additionally, filters support the following operators:

Operator

&&

© TM Forum 2020. All Rights Reserved.

Description

Equals to.
1 and 'l are considered equal.
String values should be enclosed in single quotes or double-quotes.

Not equal to.

Greater than.

Greater than or equal to.
Less than.

Less than or equal to.

Match a JavaScript regular expression.
For example, $.statusChange[?(@.status="/Resol.*?/i)] matches items whose status
starts with Resol.

Note: There is a difference in library implementations on the behavior of this operator.

Use to negate a filter: $.attachment[?(!@.size)] matches items that do not have
the size property.

Logical AND, used to combine multiple filter expressions:
S.attachment[?(@.size==300 && @.sizeUnit=="KB')]

Logical OR, used to combine multiple filter expressions:
S.attachment[?(@.size==300 | | @.size==500)]

Page 22 of 41

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

REST API Design Guidelines Part 6

trforum

Examples (based on the TroubleTicket resource):

JSON Path

$.attachment [? (@.size==300)] [

{
bill",

"http:

Result

"description" "Scanned disputed December

"href"
//hostname:port/documentManagement/v2/attachment

/44",

$.statusChange[? (Q@.status!='Pend | [
ing')] {

nign
"yrl"

"44" ,
"http://xxxxx",
"name" "December Bill",

"size" 300,
"sizeUnit" "KB",

"QreferredType" "Attachment"

"status" "InProgress",
"changeReason" "Working on the issue

resolution",

b
{

$.attachment [? (Q.size==300)] [
{

bill",

"http:

"changeDate" "2018-05-02T00: 00"

"status" "Resolved",

"changeReason" "Issue has been resolved",
"changeDate" "2018-05-02T00:00"
"description" "Scanned disputed November
"href"

//hostname:port/documentManagement/v2/attachment

/45",

$.attachment [? (@.size>=300)] [
{

bill",

"http:

"id" 'l45",

"url" "http://xxxxx",

"name" "November Bill ",

"size" 500,

"sizeUnit" : "KB",

"QreferredType" "Attachment"
"description" "Scanned disputed December
"href"

//hostname:port/documentManagement/v2/attachment

/44",

b

© TM Forum 2020. All Rights Reserved.

"id" 44,

"url" "http://xxxxx",

"name" "December Bill",
"size" 300,

"sizeUnit" : "KB",
"QreferredType" "Attachment"

Page 23 of 41

http://hostname:port/documentManagement/v2/attachment/44
http://hostname:port/documentManagement/v2/attachment/44
http://xxxxx/
http://hostname:port/documentManagement/v2/attachment/45
http://hostname:port/documentManagement/v2/attachment/45
http://xxxxx/
http://hostname:port/documentManagement/v2/attachment/44
http://hostname:port/documentManagement/v2/attachment/44
http://xxxxx/

REST API Design Guidelines Part 6

JSON Path

S.attachment [? (@.size<301)]

S.attachment[? (@.size<=300)]

$.statusChange[? (Q.status=~
/Resol.*?/1)]

S.attachment[? (!Q@.size)]

© TM Forum 2020. All Rights Reserved.

trforum

Result
{

"description" : "Scanned disputed November
bill",

"href"
"http://hostname:port/documentManagement/v2/attachment

"id" : "45",

"url" : "http://xxxxx",

"name" : "November Bill ",

"size" : 500,

"sizeUnit" : "KB",

"@referredType" : "Attachment"

}
]
[

{

"description" : "Scanned disputed December
bill",

"href"
"http://hostname:port/documentManagement/v2/attachment
/44",

"id" . "44n,

"url" : "http://xxxxx",

"name" : "December Bill",

"size" : 300,

"sizeUnit" : "KB",

"@referredType" : "Attachment"

}
]
[

{

"description" : "Scanned disputed December
bill",

"href"
"http://hostname:port/documentManagement/v2/attachment
/44",

]

"idll : ll44",

"url" : "http://xxxxx",

"name" : "December Bill",

"size" : 300,

"sizeUnit" : "KB",

"@referredType" : "Attachment"

"status" : "Resolved",

"changeReason" : "Issue has been resolved",
"changeDate" : "2018-05-02T00:00"

Note: this works with Jayway library implementation of the JSON

Path

[1 - Nothing is retrieved because all the elements in the
attachment array have an attribute called “size”.

Page 24 of 41

http://hostname:port/documentManagement/v2/attachment/45
http://hostname:port/documentManagement/v2/attachment/45
http://xxxxx/
http://hostname:port/documentManagement/v2/attachment/44
http://hostname:port/documentManagement/v2/attachment/44
http://xxxxx/
http://hostname:port/documentManagement/v2/attachment/44
http://hostname:port/documentManagement/v2/attachment/44
http://xxxxx/

REST API Design Guidelines Part 6

JSON Path

$.attachment [? (@.size==300 &&
Q@.sizeUnit=="KB')]

$S.attachment [? (Q.size==300 ||
@.size==500)]

Notes:

forum

Result
[
{

"description" : "Scanned disputed December
bill",

"href"
"http://hostname:port/documentManagement/v2/attachment
/44",

"id" H "44",

"url" : "http://xxxxx",

"name" : "December Bill",

"size" : 300,

"sizeUnit" : "KB",

"QreferredType" : "Attachment"

}
]
[

{

"description" : "Scanned disputed December
bill",

"href"
"http://hostname:port/documentManagement/v2/attachment
/44",

"id" H "44",

"url" : "http://xxxxx",

"name" : "December Bill",

"size" : 300,

"sizeUnit" : "KB",

"QreferredType" : "Attachment"

by
{

"description" : "Scanned disputed November
bill",

"href"
"http://hostname:port/documentManagement/v2/attachment
/451' ,

"id" : "45",

"url" : "http://xxxxx",

"name" : "November Bill ",
"size" : 500,

"sizeUnit" : "KB",
"@referredType" : "Attachment"

JSONPath expressions, including property names and values, are case-sensitive.

Unlike XPath, JSONPath does not have operations for accessing parent or sibling nodes from the given

node.

1.5 URL / URI Encoding of the JSONPath expressions

The JSONPath syntax make use of a set of special characters like S, [, 1, (,), 2.

© TM Forum 2020. All Rights Reserved.

Page 25 of 41

http://hostname:port/documentManagement/v2/attachment/44
http://hostname:port/documentManagement/v2/attachment/44
http://xxxxx/
http://hostname:port/documentManagement/v2/attachment/44
http://hostname:port/documentManagement/v2/attachment/44
http://xxxxx/
http://hostname:port/documentManagement/v2/attachment/45
http://hostname:port/documentManagement/v2/attachment/45
http://xxxxx/

REST API Design Guidelines Part 6 foer

As the JSON Path will be passed as the value in one of the “filter” or “fields” selectors, special care must
be taken in making sure the proper encoding is being used.

For this, the following arguments and standards have been taken into account:

e RFC 3986

= 2.2. Reserved Characters

= URIs include components and subcomponents that are delimited by
characters in the "reserved" set. These characters are called "reserved"
because they may (or may not) be defined as delimiters by the generic
syntax, by each scheme-specific syntax, or by the implementation-specific
syntax of a URI's dereferencing algorithm. If data for a URI component
would conflict with a reserved character's purpose as a delimiter [emphasis
added], then the conflicting data must be percent-encoded before the URI is
formed.

= reserved gen-delims / sub-delims

= gen-delims AR AR A A A A VAR RV AR M

* sub-delims = "I!" ,/ "§" / "&" / """/ "(" /")

/TR e

o 3.3. Path Component

= pchar = unreserved / pct-encoded / sub-delims / ":" /
"a"
o 3.4 Query Component
[] QUEI"y = *(pchar, / n/n / "?")
o 3.2.2 Host

= A host identified by an Internet Protocol literal address, version 6 [RFC3513]
or later, is distinguished by enclosing the IP literal within square brackets ("["
and "]"). This is the only place where square bracket characters are allowed
in the URI syntax.
o From appendix A of the same RFC:

= pchar = unreserved / pct-encoded / sub-delims / ":" /
"@"
[...]
pct-encoded = "%" HEXDIG HEXDIG
unreserved = ALPHA / DIGIT / "-" / "."™ / "_ " J "~"
[...]
sub-delims IR A S A S A A GV

[OTEN LN)

The TM Forum [DG4-1], already allows for the ";" and for the "," in the query segment of the URI to be
used without being escaped.

“ characters will be encoded.

As such only the “[“ and

ll]”

Decoded:

GET /troubleTicket/?filter=attachment[? (Q@.size==300)]

Encoded:

GET /troubleTicket/?filter=attachment%5B? (Q@.size==300)%5D

© TM Forum 2020. All Rights Reserved. Page 26 of 41

http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986#section-2.2
http://tools.ietf.org/html/rfc3986#section-3.3
http://tools.ietf.org/html/rfc3986#section-3.4
https://tools.ietf.org/html/rfc3986#section-3.2.2
http://tools.ietf.org/html/rfc3986#appendix-A

REST API Design Guidelines Part 6 foer

Note: For readability purpose the examples of JSON Path expression in the rest of the document don’t
have the characters [and] in their encoded form.

1.6 Collection filtering using JSONPath

This pattern describes how to retrieve a subset of resources from a collection through an extended query
filtering mechanism. In the current design ([DG4-1]) the filtering is done using the name/value query
parameters on the entity attributes (for further details, please see [DG4-1]- page 36).

The current proposal is to enhance the existing query design pattern by defining a JSONPath attribute(s)
selector that will enhance the existing capabilities for the entity attributes that are arrays. The JSONPath
predicate expression will allow the selection of all the resources that will match the predicate condition.

Note: All examples are relative to the management of the TroubleTicket entity having the same JSON
representation as in the above chapter.

Request Collection
GET /troubleTicketAPl/v2/troubleTicket?filter=attachment[?(@.size==300)] D
—
TroubleTicket
Response

A

Resource

Array of resources [Resourcetfl, Resource#2,....] that matched
the specified predicate (Attachment.Size=300)

Figure 8: Example of the filtering mechanism

The enhancement of the filtering mechanism is done by defining a “filter” query parameter that will act
as a selector:

?filter=JSONPathExpression

Unlike the basic filtering, the filter selector takes as a parameter a JSON Path predicate expression. As long
as the predicate condition validates for a particular resource it will be returned in the response to the
client.

Rule: An attribute selector directive called “filter” MUST be used to specify the JSON Path expression.

Rule: Entity attribute selection via JSON Path expression MAY optionally be enabled.
Rule: In case the JSONPath “filter” selector is not supported a 501 Not Implemented MUST be returned

© TM Forum 2020. All Rights Reserved. Page 27 of 41

https://tools.ietf.org/html/rfc7231#section-6.6.2

REST API Design Guidelines Part 6 foer

The filtering expression is a sequence of JSON Path predicates that will perform assertions at the
resource’s attribute level.

GET {apiRoot}/{resourceName}/{resourceID}/?filter={JSON Path Expression}

For example:

GET {apiRoot}/troubleTicket/?filter=attachment[? (@.size==300)]

Note: In the above example the leading "'S." was omitted.

JSONPath syntax supports notations where the “S” (root element) is present or not. To maintain the
compatibility with the simple “.” dot notation, the recommendation is to omit the leading “S.” characters.

Rule: In the JSON Path expression from the "filter" selector the leading "S" MAY be omitted.

The "filter" will select and return all the TroubleTicket resources that have in the "attachment" array,
elements where the attribute "size" is equal to 300. The "filter" selector can also be combined with the
standard query parameters forming a more complex query expression.

For example, the following query will return all the "TroubleTicket" resources that have “status=resolved”
and that have in the "attachment" array, elements where the attribute "size" is equal to 300:

GET /troubleTicket/?status=resolved&filter=attachment[? (Q@.size==300)]

The complete resource representations (with all the attributes) of all the matching entities must be
returned.

Rule: The complete resource representations (with all the attributes) of all the matching entities must be
returned.

Rule: The returned representation of each entity must contain a field called « id» and that field must be
populated with the resourcelD.

Rule: If the request is successful then the returned code MUST be 200. The exceptions code must use the
exception codes from http://www.iana.org/assighments/httpstatus-codes/http-status-codes.xml as
explained in section 4.3.

© TM Forum 2020. All Rights Reserved. Page 28 of 41

http://www.iana.org/assignments/httpstatus-codes/http-status-codes.xml

REST API Design Guidelines Part 6 foer

Rule: If the JSONPath expression that is being passed in the “filter” selector is invalid a 400 Bad Request
MUST be returned.

Rule: The subset obtained through the use of the “filter” selector is under the same pagination rules as
described in the [DG4-1] (page 40)

For example:

GET /troubleTicket/?offset=10&limit=20&filter=attachment[? (Q.size==300)]

will retrieve the twenty resources starting at the tenth where the attachment array has the element size
equal with 300.

JSON Path filter ORING is also supported and is achieved following the equivalent pattern

[filter={JSON Path Expression}, {JSON Path Expression}*]

of the type described in the [DG4-1](page 36). ORING can be used many times as required.

For example:

GET /troubleTicket/?status=resolved&filter=attachment[? (@.sizeUnit=="KB' &&
@.si1ze==500)], attachment [? (Q@.sizeUnit=="MB' && Q@.size==0.5)]

ORING can also be achieved by using ";" again as an equivalent pattern to the one described in the [DG4-
1] (page36):

[filter={JSON Path Expression};filter={JSON Path Expression}*]

The default behavior is to return all resources where the JSONPath predicate is a match. As such simple
filters like: [2 (@) 1, which is return true for all the resource members will result in selecting all the
resources in the collection.

The basic filtering can be combined with the “filter” selector. When both mechanisms are used, the result
set must be a match for both conditions. For example:

Request:

GET /troubleTicket/?status=resolved&filter=attachment[? (Q.sizeUnit=="KB' &&
@.size==500)]

© TM Forum 2020. All Rights Reserved. Page 29 of 41

https://tools.ietf.org/html/rfc7231#section-6.5.1

REST API Design Guidelines Part 6 foer

Response:

200 Content-Type: application/json

[{
"id": "3180",
"href": "https://host:port/troubleTicket/v2/troubleTicket/3180",
"name": "Compliant over last bill",
"status": "resolved",
"relatedEntity": [
{
"id": "3472",

"href": "https://host:port/customerBillManagement/v2/customerBill/3472",
"name": "November Bill",
"QreferredType": "CustomerBill"

"id": "3473",
"href": "https://host:port/customerBillManagement/v2/customerBill/3473",
"name": "December Bill",

"QreferredType": "CustomerBill”
}
]I
"statusChange": [
{
"status": "Pending",
"changeReason": "Need more information from the customer",
"changeDate": "2018-05-01T00:00"

"status": "InProgress",
"changeReason": "Working on the issue resolution",
"changeDate": "2018-05-02T00:00"

"status": "Resolved",
"changeReason": "Issue has been resolved",
"changeDate": "2018-05-02T00:00"
}
1,
"note": [
{
"id". "1i",
"date": "2018-05-01T00:00",
"author": "Mr John Wils",

"text": "Missing necessary information from the customer"
by
{
"igd":. "2",
"date": "2018-05-01T00:00",
"author": "Mr Erika Xavy",
"text": "Information has been received, we're working on the resolution"
by
{
"id": "3",

© TM Forum 2020. All Rights Reserved. Page 30 of 41

https://host:port/troubleTicket/v2/troubleTicket/3180
https://host:port/customerBillManagement/v2/customerBill/3472
https://host:port/customerBillManagement/v2/customerBill/3473

REST API Design Guidelines Part 6 forl.m

"date": "2018-05-02T00:00",

"author": "Mr Redfin Tekram",
"text": "Issue has been resolved, the service has been restored"
}
1,
"attachment": [
{
"description": "Scanned disputed December bill",
"href": "http://hostname:port/documentManagement/v2/attachment/44",
"id":. "44©,
"url": "http://xxxxx",
"name": "December Bill",
"size": 300,
"sizeUnit": "KB",

"@referredType": "Attachment"

"description": "Scanned disputed November bill",

"href": "http://hostname:port/documentManagement/v2/attachment/45",
"id": "45",

"url": "http://xxxxx",

"name": "November Bill ",

"size": 500,

"sizeUnit": "KB",

"QreferredType": "Attachment"
}
]I
"channel": {
"id": "8774",
"name": "Self Service",
"@type": "Channel"

"id": "3181",
"href": "https://host:port/troubleTicket/v2/troubleTicket/3181",
"name": "Compliant over last bill",
"status": "Resolved",
"relatedEntity": [
{

"id": "3473",
"href": "https://host:port/customerBillManagement/v2/customerBill/3472",
"name": "November Bill",
"QreferredType": "CustomerBill"
1y
"statusChange": [

{

"status": "Pending",
"changeReason": "Need more information from the customer",
"changeDate": "2018-05-01T00:00"

"status": "InProgress",
"changeReason": "Working on the issue resolution",
"changeDate": "2018-05-02T00:00"

© TM Forum 2020. All Rights Reserved. Page 31 of 41

http://hostname:port/documentManagement/v2/attachment/44
http://xxxxx/
http://hostname:port/documentManagement/v2/attachment/45
http://xxxxx/
https://host:port/troubleTicket/v2/troubleTicket/3181
https://host:port/customerBillManagement/v2/customerBill/3472

REST API Design Guidelines Part 6 forl.m

}I
{
"status": "Resolved",
"changeReason": "Issue has been resolved",
"changeDate": "2018-05-02T00:00"
}
]I

"note": [
{
"id": "3",
"date": "2018-05-02T00:00",
"author": "Mr Redfin Tekram",
"text": "Issue has been resolved, the service has been restored"
}
]I
"attachment": [
{
"description": "Scanned disputed December bill",
"href": "http://hostname:port/documentManagement/v2/attachment/44",
"id":. "44n,
"url": "http://xxxxx",
"name": "December Bill",
"size": 300,
"sizeUnit": "KB",

"QreferredType": "Attachment"

1y

"channel": {
"id": "8774",
"name": "Self Service",
"Qtype": "Channel"

}

H

1.7 Partial resource representation using JSONPath

This pattern describes how to retrieve a subset of the attributes from an entity in the response using an
attribute filtering mechanism. In the current [DG4-1](page 34) the filtering is done using the selector
directive called “fields” - [DG4-1](page 34).

The current proposal is to enhance the existing "fields" selector to support a JSON Path (path or
predicate).

Note: All the rules described in [DG4-1](page 34) will continue to apply.

Rule: In order to retrieve a partial representation using a JSON Path, the “fields” selector MUST be used:

GET {apiRoot} /{resourceName}/{resourcelD}/?fields={JSONPath*}

© TM Forum 2020. All Rights Reserved. Page 32 of 41

http://hostname:port/documentManagement/v2/attachment/44
http://xxxxx/

REST API Design Guidelines Part 6 foer

For example:
The request is to return only the "name" attribute from the troubleTicket entity.

Note: as per [DG4-1] (page 35) the ID of the resource will always be returned.

Request:

GET /api/troubleTicket/42?fields=channel.name

Response:

200
Content-Type: application/json
{
"id": 42",
"channel": {
"name": "Self Service"

Another example, to retrieve only the attributes from the "note" array that match a particular predicate
condition (the author is Mr. John Wils)

Request:

GET /api/troubleTicket/42/?fields=note[? (@.author=="Mr John Wils')]

Response:

200
Content-Type: application/json
{

Wil g Wiw,

"date" : "2018-05-01T00:00",

"author" : "Mr John Wils",

"text" : "Missing necessary information from the customer"

Example to retrieve only specific JSON elements (simple or arrays):

Request:

GET /api/troubleTicket/42/?fields=['id', 'href', 'name', 'note"']

Response:

© TM Forum 2020. All Rights Reserved. Page 33 0f41

REST API Design Guidelines Part 6 foer

200 Content-Type: application/json
{
"id"™ : "3180",
"href" : "https://host:port/troubleTicket/v2/troubleTicket/3180",
"name" : "Compliant over last bill",
"note" : [
{
"id" o« "1i",
"date" : "2018-05-01T00:00",
"author" : "Mr John Wils",
"text" : "Missing necessary information from the customer"
}I
{
"id" : "2",
"date" : "2018-05-01T00:00",
"author" : "Mr Erika Xavy",
"text" : "Information has been received, we're working on the resolution"
}I
{
"id" : "3",
"date" : "2018-05-02T00:00",
"author" : "Mr Redfin Tekram",
"text" : "Issue has been resolved, the service has been restored"
}
]
}

JSON Path "fields" ORING is also supported and is achieved following the equivalent pattern:

[fields={JSON Path Expression}, {JSON Path Expression}*]

ORING can be used many times as required.

Example:

Request:

GET /troubleTicket/?status=Resolved&fields=['id', '"href', 'name',
'note'],channel,note[? (Q@.author=="Mr John Wils')]

Response:

200 Content-Type: application/json

{

© TM Forum 2020. All Rights Reserved. Page 34 of 41

https://host:port/troubleTicket/v2/troubleTicket/3180

REST API Design Guidelines Part 6 foer

"id": "3180",
"href": "https://host:port/troubleTicket/v2/troubleTicket/3180",
"name": "Compliant over last bill",
"channel": {
"id": "8774",
"name": "Self Service",
"Qtype": "Channel"
}I

"note": {
"id": "1i",
"date": "2018-05-01T00:00",
"author": "Mr John Wils",
"text": "Missing necessary information from the customer"
}
}
1.8 Sorting selector

This pattern describes how to request a particular sorting criterion. The sort directive is described in [DG4-
1] (page 45). The current proposal has the purpose to enhance the existing "Sort-Field" selector to support
a JSON Path.

The following specification is described in the [DG4-1]- Sorting directive:
Sort-Query-Parameters: “sort”, “=”, (Sort-Direction), Sort-Field
Sort-Direction: “-“ | “+”

Sort-Field: The field to sort on.

The above "Sort-Field" can take a JSON Path expression.

Example:

GET /api/troubleTicket?sort=channel.name

or

GET /api/troubleTicket?sort=attachment[*].name

The sorting selector can always be combined with “filter” or “fields” selectors. For example:

GET
/api/troubleTicket?filter=attachment [? (@.size==300)]&fields==['id', 'href', 'name']é&
sort=attachment [*] .name

© TM Forum 2020. All Rights Reserved. Page 350f41

forum

REST API Design Guidelines Part 6

1.9 Notification Pattern - Registering Listener

The Notification Pattern and the mechanism of registering a listener are described in [DG4-1](page 82).
The current proposal has the purpose to enhance the existing "query" expression that can be passed

when registering a listener to support a JSON Path expression.

The query expression may be used to filter specific event types and/or any content of the event.

Considering the following example of resource:

{

"id": "3180",
"href": "https://host:port/troubleTicket/v2/troubleTicket/3180",
"name": "Compliant over last bill",

"status": "Resolved"

The structure of the event is:

{

"eventId": "eventId",
"eventTime": "eventTime",
"eventType": "event Type",
"event": {
"resource": {
"id": "3180",
"href": "https://host:port/troubleTicket/v2/troubleTicket/3180",
"name": "Compliant over last bill",
"status": "Resolved"

Registering a notification with a “filter” selector is:

POST /api/hub
Accept: application/json
{

"callback": "http://in.listener.com",
"[?(@.event.resource.status=='Resolved')]"

"query":

}

1.10 Error handling

The REST APIs MUST wuse the exception and response codes documented at

http://www.iana.org/assignments/http-status-codes/http-status-codes.xml.

© TM Forum 2020. All Rights Reserved. Page 36 of 41

https://host:port/troubleTicket/v2/troubleTicket/3180
http://www.iana.org/assignments/http-status-codes/http-status-codes.xml

REST API Design Guidelines Part 6 forl.m

The same rules as described in [DG4-1] (page 23) will also apply for the cases where JSON Path is being
used as a filtering mechanism.

Rule: If the JSON Path expression used in the “filter” or “fields” selectors, fails at the syntax level a 400
Bad Request MUST be returned.

Rule: If the JSON Path is not supported by the server implementation, but the client is making use of it in
either “filter” or “fields” selectors a 501 Not Implemented MUST be returned.

The syntax errors can be enhanced further through user and application-specific error codes via the
mechanism described in the [DG4-1] — page 25.

In the example below, the JSSONPath expression from the request is missing a “)” in the predicate:

Request:

GET /troubleTicket?filter=[? (Q.status=="'Resoslved']&fields=name

Response:

400 Bad Request
Content-type:application/json
{
"code": "ERROO1",
"reason": "Invalid JSONPath expression present in the filter selector",

"message": " Could not parse token starting at position 2. Expected ?, ', 0-9,

* 0

}

111 JSON Patch
The current proposal is to enhance the existing JSON Patch extension to manage arrays, described in
[DG4-5] with the JSON Path capabilities.

The following solution is a deviation from the JSON Patch standard where the “path” element is a JSON
Pointer, however, the deviation exists as described in the [DG4-5].

The existing proposal has the scope to extend the “selector” conditions.

It is always recommended to use the “test” operation before applying any patch.

Considering a troubleTicket resource such as /api/troubleTicket/1:

{

llid": lllll,
"note": [

© TM Forum 2020. All Rights Reserved. Page 37 of 41

https://tools.ietf.org/html/rfc7231#section-6.5.1
https://tools.ietf.org/html/rfc7231#section-6.5.1
https://tools.ietf.org/html/rfc7231#section-6.6.2

REST API Design Guidelines Part 6 forl.m

"date": "2013-07-25T06:55:12.0z",
"author": "John Doe",
"status": "Edited"

"date": "2013-07-24T09:55:30.0z",
"author": "Arthur Evans",
"status": "Edited"

"date": "2013-07-25T08:55:12.0z",
"author": "John Doe",
"status": "Archived"

The existing specification enables a JSON Patch document such as following where the condition is based
on a simple path:

[

llop" : lladdll,
"path": "/note?note.author=John Doe",
"value": "Informed"

The JSON Path extension proposed in this document will enhance the query and filtering capabilities.

Example - add where the "note" array has an "author" called John Doe

[

" Op " : " add" ,
"path": "note[? (@.author=='John Doe')] ",
"value": {“text”:”Informed”}

Applying the above path to the sample JSON will result in the following path to be automatically
computed: "$['note'][1]"

Example: add where the "author" is “John Doe” and the “status” is “Edited”

" Op " : " add" ,
"path": "note[?(@.author=="'John Doe' && Q.status=='Edited')]",
"value": {“text”:”Informed”}

© TM Forum 2020. All Rights Reserved. Page 38 of 41

REST API Design Guidelines Part 6 foer
[|

All the other capabilities are also supported through the JSON Path mechanisms either by a simple path,
by a predicate expression or by a combination of them:

Removing or replacing one of the components of an array
Example:
[

"op": "remove",
"path": "note[? (@.author='"John Doe')]"
}

Note: JSON Path capabilities on arrays are described in the "Operators" section in the current document.

Removing or replacing an attribute from one of the components of an array
Example:
[

"op": "remove",
"path": "note[? (@.author="John Doe')].date
}

© TM Forum 2020. All Rights Reserved. Page 39 of 41

- |
REST API Design Guidelines Part 6 foer

2 Administrative Appendix

This Appendix provides additional background material about the TM Forum and this document. In
general, sections may be included or omitted as desired; however, a Document History must always

be included.

2.1Source Artefacts
Title
[JaywayJPath] GitHub
[CDAP] CDAP Documentation
[JSONPath] JSONPath - XPath for JSON
[JSDB] MySQL JSONPath
[BAELDUNG] JaywaylsonPath
[TOOLSQA] TOOLSQA
[GNOME] JSONPath
[SMARTBEAR] JSONPath
[POSTGRESS] JSONPath

2.2 Referenced Artefacts
Title
[RFC2119] RFC 2119
[RFC4627] RFC 4627
[DG4-1] TMF630_REST_API_Design_Guidelines_4.0_Part_1
[DG4-2] TMF630_REST_API_Design_Guidelines_4.0_Part_2
[DG4-3] TMF630_REST_API_Design_Guidelines_4.0_Part_3
[DG4-4] TMF630_REST_API_Design_Guidelines_4.0_Part_4
[DG4-5] TMF630_REST_API_Design_Guidelines_4.0_Part_5
[RFC3986] RFC 3986

© TM Forum 2020. All Rights Reserved. Page 40 of 41

https://github.com/json-path/JsonPath
https://docs.cask.co/cdap/5.0.0/en/index.html
https://goessner.net/index.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://www.toolsqa.com/
https://developer.gnome.org/json-glib/stable/JsonPath.html
https://support.smartbear.com/alertsite/docs/monitors/api/endpoint/jsonpath.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc4627.txt
http://tools.ietf.org/html/rfc3986

forum

REST API Design Guidelines Part 6

23 Document History

23.1 Version History

This section records the changes between this and the previous document version as it is

edited by the team concerned. Note: this is an incremental number which does not have to
match the release number and used for change control purposes only.

Version Number

Date Modified

Modified by:

Description of
changes

4.00

14-May-2020

Alan Pope

Minor edits prior to
publication

40.1

20-Jul-2020

Adrienne Walcott

Updated to reflect TM
Forum Approved
Status

23.2 Release History

This section records the changes between this and the previous Official document
release. The release number is the ‘Marketing’ number which this version of the
document is first being assigned to.

Release Number Date Modified Modified by: Description of
changes
Pre-production 14-May-2020 Alan Pope Updated to v4.0
Production 20-Jul-2020 Adrienne Walcott Updated to reflect TM
Forum Approved
Status
2.4 Acknowledgments

This document was prepared by the members of the TM Forum team:

o Pierre Gauthier, TM Forum, Editor and Team Leader

o Florin Tene, Vodafone, Author

© TM Forum 2020. All Rights Reserved.

Page 41 of 41

	Notice
	Table of Contents
	List of Figures
	List of Tables
	Executive Summary
	Conventions

	1 JSON Path extension
	1.1 Introduction
	1.2 Overview collection filtering using JSON Path (“filter”)
	1.3 Overview resource partial representation using JSON Path (“fields”)
	1.4 JSON Path
	1.4.1 What is it
	1.4.2 Syntax
	1.4.3 Operators
	1.4.4 Functions
	1.4.5 Filter predicates

	1.5 URL / URI Encoding of the JSONPath expressions
	1.6 Collection filtering using JSONPath
	1.7 Partial resource representation using JSONPath
	1.8 Sorting selector
	1.9 Notification Pattern - Registering Listener
	1.10 Error handling
	1.11 JSON Patch

	2 Administrative Appendix
	2.1 Source Artefacts
	2.2 Referenced Artefacts
	2.3 Document History
	2.3.1 Version History
	2.3.2 Release History

	2.4 Acknowledgments

