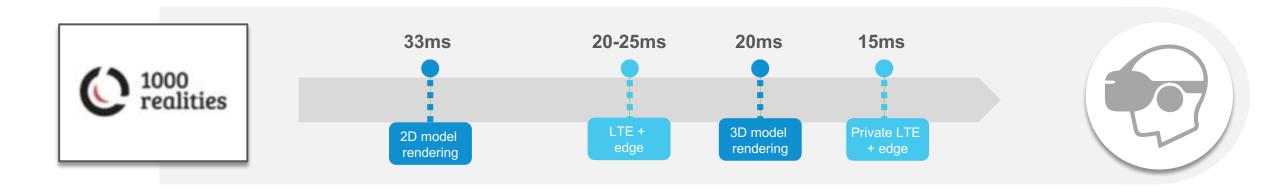


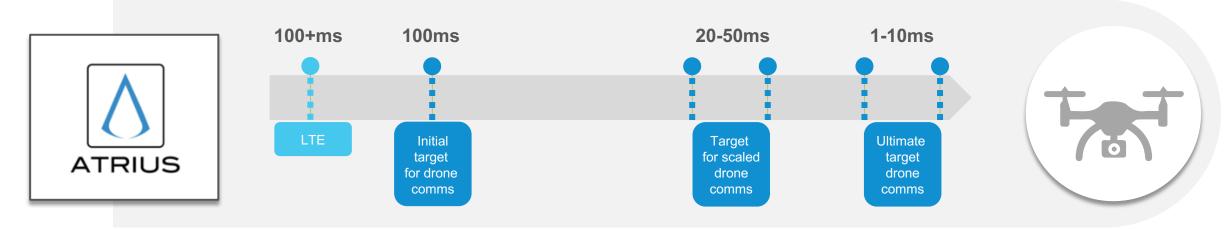




### **KPIs**

- A future with many Edge Cloud providers and omni present Edge Cloud deployments is inevitable.
  - Clear definitions of the Edge KPIs are required to match the application to an Edge infrastructure with the required capability
  - The de facto standards must be defined in a way that both considers the application requirement and the infrastructure capabilities
    - Edge KPIS are an essential part of the de facto standards required





# What's driving these developers to adopt edge computing? Bandwidth and latency dominate

|                             | Retail & Wholesale –<br>Location Based Services | Augmented Reality /<br>Virtual Reality                      | Video/Media<br>(Upstream &<br>Downstream)     | Drones: Unmanned<br>Traffic Management | Drones: Data Processing<br>& Analytics     |
|-----------------------------|-------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|----------------------------------------|--------------------------------------------|
| Why edge?                   | Local real-time analysis of location data       | Offload processing power and maintain real-time interaction | Low latency streaming and capacity (Bursting) | Autonomous navigation                  | Avoid cost of moving data to central cloud |
| Latency Critical<br>Compute |                                                 |                                                             |                                               |                                        |                                            |
| Heavy I/O                   |                                                 |                                                             |                                               |                                        |                                            |
| Geo-Spatial<br>knowledge    |                                                 |                                                             |                                               |                                        |                                            |
| Hyper-Local<br>Grouping     |                                                 |                                                             |                                               |                                        |                                            |
| Data Residency              |                                                 |                                                             |                                               |                                        |                                            |
| Source STL Partners         | Radius<br>Networks                              | 1000 realities  Or VIZIO  Hoologe                           | SMART MOBILE LABS                             | ATRIUS                                 | ATRIUS                                     |



## Latency requirements vary across use cases







### Manage Edge Complexity- Test Automation







Mitigating Cloud Infrastructure complexity

is essential to deliver on end user

**Cloud Infrastructure is Complex** 

expectation of experience

#### **Complexity is Increasing x3**

- 1. New advanced application requirements (Edge KPIs)
- Distribution and increase of cloud infrastructure sites (Edge Cloud)
- 3. Increase of Cloud Infrastructure **providers** (Edge Cloud)

#### **Manage Complexity through Automation**

- Move from ad-hoc manual approach and fragmented tool usage to automate away complexity
- Learn and program once and leverage automation to secure operation
- Touchstone is the market leading Test Automation product for Edge Cloud Infrastructure



### **Akraino Release 3**

6 New R3 Blueprints (total of 20) covering use cases across Telco, Enterprise, IoT, Cloud and more

Akraino Blueprints cover areas including MEC, Al/ML, Cloud, Connected Vehicle, AR/VR, Android Cloud Native, smartNICs, Telco Core & Open- RAN, with — ongoing support for R1-R2 blueprints and more

Community delivers open edge API specifications — to standardize across devices, applications (cloud native), orchestrations, and multi-cloud — via new white paper



### **Project Expectations**

- Project Name: Kontour (an outline representing or bounding the shape or form of something)
- Define Edge requirements from various perspectives/categories.
  - Application Requirements
  - Edge Site Requirements
  - Security Requirements
  - Miscellaneous requirements
- Define KPIs based on above requirements/categories.



# Example KPI from LFN Edge - Kontour project

Current version of KPIs

| S.No | KPI Name                                       |         | Description                                                                           | Measurement Unit                   |
|------|------------------------------------------------|---------|---------------------------------------------------------------------------------------|------------------------------------|
| 1    | KT_KPI_NET_JITTER                              | Network | Measure of jitter between two workloads                                               | milliseconds                       |
| 2    | KT_KPI_NET_TCP_BW                              | Network | Network TCP Bandwidth between two workloads                                           | Gbps                               |
| 3    | KT_KPI_NET_PING_LAT                            | Network | Ping Lateny between two workloads                                                     | milliseconds                       |
| 4    | KT_KPI_NET_UDP_LAT                             | Network | UDP Lateny between two workloads                                                      | milliseconds                       |
| 5    | KT_KPI_NET_UDP_THPUT                           | Network | UDP throughput between two workloads                                                  | Gbps                               |
| 6    | KT_KPI_NET_UDP_PKT_LOSS                        | Network | Packet loss between two workloads                                                     | Packets lost per million packets   |
| 7    | KT_KPI_COMP_CPU_SCORE                          | Compute | CPU Performance as per index score                                                    | CPU Index Score                    |
| 8    | KT_KPI_COMP_IPS                                | Compute | Measure CPU performance as instructions per seconds                                   | Instructions per second            |
| 9    | KT_KPI_COMP_MEM_LAT                            | Compute | Maximum Memory latency of a workload                                                  | nanoseconds                        |
| 10   | KT_KPI_COMP_MEM_BW                             | Compute | Memory bandwidth of a workload                                                        | Mibyte/sec                         |
| 11   | KT_KPI_STG_SEQ_RW_LATENCY                      | Storage | Read Write latency in the workload for sequential readwrite operation in 70:30 ratio. | microseconds                       |
| 12   | KT_KPI_STG_SEQ_READ_ONLY_IOPS                  | Storage | Storage IOPS of a workload for sequential read-only operation                         | Input/Output Operations Per Second |
| 13   | KT_KPI_STG_SEQ_WRITE_ONLY_IOPS                 | Storage | Storage IOPS of a workload for sequential write-only operation                        | Input/Output Operations Per Second |
| 14   | KT_KPI_STG_RAND_RW_LATENCY                     | Storage | Read Write latency in the workload for random readwrite operation in 70:30 ratio.     | microseconds                       |
| 15   | KT_KPI_STG_RAND_READ_ONLY_IOPS                 | Storage | Storage IOPS of a workload for random read-only operation                             | Input/Output Operations Per Second |
| 16   | KT_KPI_STG_RAND_WRITE_ONLY_IOPS                | Storage | Storage IOPS of a workload for random write-only operation                            | Input/Output Operations Per Second |
| 17   | KT_KPI_K8S_API_JOB_CREATE_READ_DELETE          | API     | Kubernetes API performance for job creation, read and delete                          | Success Rate %                     |
| 18   | KT_KPI_K8S_API_POD_CREATE_DELETE               | API     | Kubernetes API performance for pod creation and delete                                | Success Rate %                     |
| 19   | KT_KPI_K8S_API_NS_CREATE_DELETE                | API     | Kubernetes API performance for namespace creation and delete                          | Success Rate %                     |
| 20   | KT_KPI_K8S_API_REPCONT_CREATE_SCALE_DELETE     | API     | Kubernetes API performance for replication controller creation, scale and delete      | Success Rate %                     |
| 21   | KT_KPI_K8S_API_REPSET_CREATE_SCALE_DELETE      | API     | Kubernetes API performance for replica set creation, scale and delete                 | Success Rate %                     |
| 22   | KT_KPI_K8S_API_STATEFULSET_CREATE_SCALE_DELETE | API     | Kubernetes API performance for statefulset creation, scale and delete                 | Success Rate %                     |
| 23   | KT_KPI_K8S_API_DEP_CREATE_READ_DELETE          | API     | Kubernetes API performance for deployment creation, read and delete                   | Success Rate %                     |
| 24   | KT_KPI_K8S_API_NODEPORT_CREATE_CHECK_DELETE    | API     | Kubernetes API performance for nodeport creation, check and delete                    | Success Rate %                     |
| 25   | KT_KPI_K8S_SEC_CIS_COMPLIANCE                  | API     | Kubernetes security score measured via CIS benchmark                                  | Security Score                     |
| 26   | KT_KPI_K8S_CONF_E2E_SIG_AUTH                   | API     | Kubernetes conformance for sig-auth                                                   | Compliance %age                    |
| 27   | KT_KPI_K8S_CONF_E2E_SIG_STORAGE                | API     | Kubernetes conformance for sig-storage                                                | Compliance %age                    |
| 28   | KT_KPI_K8S_CONF_E2E_SIG_INSTRUMENTATION        | API     | Kubernetes conformance for sig-instrumentation                                        | Compliance %age                    |

| S.No KPI Name                               |            | Description                                                       | Measurement Unit          |  |  |  |
|---------------------------------------------|------------|-------------------------------------------------------------------|---------------------------|--|--|--|
| 28 KT_KPI_K8S_CONF_E2E_SIG_INSTRUMENTATION  | API        | Kubernetes conformance for sig-instrumentation                    | Compliance %age           |  |  |  |
| 29 KT_KPI_K8S_CONF_E2E_SIG_APPS             | API        | Kubernetes conformance for sig-apps                               | Compliance %age           |  |  |  |
| 30 KT_KPI_K8S_CONF_E2E_SIG_CONFORMANCE      | API        | Kubernetes conformance for Conformance                            | Compliance %age           |  |  |  |
| 31 KT_KPI_K8S_CONF_E2E_SIG_NODE_CONFORMANCE | API        | Kubernetes conformance for NodeConformance                        | Compliance %age           |  |  |  |
| 32 KT_KPI_K8S_CONF_E2E_SIG_API_MACHINERY    | API        | Kubernetes conformance for sig-api-machinery                      | Compliance %age           |  |  |  |
| 33 KT_KPI_K8S_CONF_E2E_SIG_NETWORK          | API        | Kubernetes conformance for sig-networrk                           | Compliance %age           |  |  |  |
| 34 KT_KPI_K8S_CONF_E2E_SIG_CLI              | API        | Kubernetes conformance for sig-cli                                | Compliance %age           |  |  |  |
| 35 KT_KPI_K8S_CONF_E2E_SIG_SCHEDULING       | API        | Kubernetes conformance for sig-scheduling                         | Compliance %age           |  |  |  |
| 36 KT_KPI_SVC_NGINX_MAX_LATENCY             | Service    | Maximum latency in NGINX in serving requests                      | milliseconds              |  |  |  |
| 37 KT_KPI_SVC_REDIS_MAX_THPUT_1MS           | Service    | Redis Server Max Throughput for Latency Under 1ms                 | requests/sec              |  |  |  |
| 38 KT_KPI_SVC_MONGO_THPUT                   | Service    | Mongo throughput for database operations per second               | operations/sec            |  |  |  |
| 39 KT_KPI_K8S_NODE_HEALTH                   | Service    | Check health of K8S nodes to be in ready state                    | Nodes in Ready state      |  |  |  |
| 40 KT_KPI_K8S_SYS_NS_HEALTH                 | Health     | Check health of all pods in kube-system namespace                 | All pods in running state |  |  |  |
| 41 KT_KPI_OS_API_NOVA_CRUD                  | API        | OpenStack Nova API CRUD performance                               | Success Rate %            |  |  |  |
| 42 KT_KPI_OS_API_NEUTRON_CRUD               | API        | OpenStack Neutron API CRUD performance                            | Success Rate %            |  |  |  |
| 43 KT_KPI_OS_API_GLANCE_CRUD                | API        | OpenStack Glance API CRUD performance                             | Success Rate %            |  |  |  |
| 44 KT_KPI_OS_API_CINDER_CRUD                | API        | OpenStack Cinder API CRUD performance                             | Success Rate %            |  |  |  |
| 45 KT_KPI_OS_API_REFSTACK                   | API        | OpenStack API compliance based on RefStack guidelines             | Compliance %age           |  |  |  |
| 46 KT_KPI_OS_API_TEMPEST_NOVA               | API        | OpenStack Nova API functional verification                        | Compliance %age           |  |  |  |
| 47 KT_KPI_OS_API_TEMPEST_NEUTRON            | API        | OpenStack Neutron API functional verification                     | Compliance %age           |  |  |  |
| 48 KT_KPI_OS_API_TEMPEST_GLANCE             | API        | OpenStack Glance API functional verification                      | Compliance %age           |  |  |  |
| 49 KT_KPI_OS_API_TEMPEST_CINDER             | API        | OpenStack Cinder API functional verification                      | Compliance %age           |  |  |  |
| 50 KT_ENC_RSA_SIGN_4096                     | Encryption | Measure of 4096 bit RSA signatures                                | Signatures/second         |  |  |  |
| 51 KT_ENC_RSA_SIGN_2048                     | Encryption | Measure of 2048 bit RSA signatures                                | Signatures/second         |  |  |  |
| 52 KT_ENC_RSA_SIGN_1024                     | Encryption | Measure of 1024 bit RSA signatures                                | Signatures/second         |  |  |  |
| 53 KT_ENC_RSA_SIGN_512                      | Encryption | Measure of 512 bit RSA signatures                                 | Signatures/second         |  |  |  |
| 54 KT_AES128_CBC_THPUT_256                  | Encryption | Measure of throughput for AES CBC throughput for 256 bytes block  | Gb/second                 |  |  |  |
| 55 KT_AES128_CBC_THPUT_1024                 | Encryption | Measure of throughput for AES CBC throughput for 1024 bytes block | Gb/second                 |  |  |  |
| 56 KT_AES128_CBC_THPUT_8192                 | Encryption | Measure of throughput for AES CBC throughput for 8192 bytes block | Gb/second                 |  |  |  |