
1

KubeEdge-AI Intro

Edge AI Challenges

Geo-distributed dataset
across edges

Few-shot samples per edge
for training, cold booting, hard

to converge

Non-I.I.D data across edges,
the performance of universal
AI model degraded on edge

Resource constrained on
edge

Edge AI Challenges

KubeEdge-AI
 What we propose：

①an edge-cloud collaborative ML framework based on

KubeEdge

②with embed collaborative training and joint inferencing

algorithm, which can

③working with existing AI framework like Tensorflow, etc

 3 Features：

①joint inferencing

②incremental learning

③collaborative training (aka federated learning)

 Targeting Users：

①Domain-specific AI Developers: build and publish edge-

cloud collaborative AI services/functions easily

②Application Developers: use edge-cloud collaborative AI

capabilities.

We are NOT:

①to re-invent existing ML framework, i.e., tensorflow, pytorch,

mindspore, etc.

②to re-invent existing edge platform, i.e., kubeedge, etc.

③to offer domain/application-specific algorithms, i.e., facial

recognition, text classification, etc.

ARM x86 Servers with GPU or NPU
Arm Server 、Smart Camera、x86

Server, etc

KubeEdge@EdgeKubernetes / KubeEdge@Cloud

Computer
Vision

Audio Speech
Natural

Language
Processing

Smart
Campus

Media &
Entertainm

ent

…

IoT
Data/Time

Series

Financial &
Insurance

MedicalManufactu
ring

Edge-cloud collaborative ML Framework

KubeE
dge-AI

AI Services

Industries

Miscellaneo
us

Hardwares

Edge
Platform

collaborative
training (aka

federated
learning)

joint
inferencing

incremental
learning

Service Architecture

• Workers:

- do inferencing or training,

based on existing ML

framework;

- launch on demand,

imagine they are docker

containers;

- different workers for

different features;

- could run on edge or cloud.

• Lib:

- expose the Edge AI

features to applications,

i.e. training or inferencing

programs.

• GlobalCoordinator

- uniportal of EdgeAI,

- across-edges coordination

• LocalController

- local controller

- manage local dataset and

models

Platform:
KubeEdge@Edge +

Arm Server(Atlas),x86 Server, smart camera(Hilense)，etc

LocalController

Incremental
Learning Mngt

Local Mngt
Job Monitoring, Mngt, Peers Mngt/States Sync, Etc

Joint Inference
Mngt

Federated
Learning Mngt

LocalController

Workers:
Inferencing / Training on Edge

MindSpore /
TensorFlow /
Pytorch

EdgeAI Lib

Applications/Inferenci
ng Service

Model

Training Programs:
Build-in/3rd party

Training Algos

Edge Nodes

Platform:
KubeEdge, CCE, ModelArts

Arm Server(Atlas), x86 Server

GlobalCoordinator

Edge AI Service API

Global States Mgnt

Cloud/Central DC

Workers:
Inferencing / Training / Aggregation on Cloud

MindSpore /
TensorFlow /
Pytorch

EdgeAI Lib

Joint
Inferencing

backend

Model

Incremental
Training
backend

Fed Learning
Aggregator

Edge 3: KubeEdge@GPU Server

Edge2: KubeEdge@Atlas

Edge 1: KubeEdge@Hilens

App
Shallow
Model

exit
algo

App
Shallow
Model

exit
Algo

App
Shallow
Model

exit
algo

Cloud

Service API

Monitoring

大模型
推理

大模型
推理

Deep
Model

① AI developer: provides training data to
generate deep and shallow models.

② Service developers: invoke
collaboration models through the
library and deploy the models to the
edge.

③ Inference based on the shallow model on
the edge side. If the confidence
requirement is met, the result is
returned.

④ Otherwise, the data is sent to the cloud
for deep model inference.

Developer

Service User: Property /
Security personnel

Service User:
Worker
/Pedestrian

Edge-cloud Collaborative JOINT INFERENCE
Improve the inference performance, when edge resources are limited.

Edge-cloud Collaborative INCREMENTAL LEARNING
The more models are used, the smarter they are.

Cloud: CCE/ModelArtsEdge: KubeEdge

shallow
model

incre-
training
algo

hard sample
detection Algo

hard
samples

Labeling service

labeling

Model Mngt

大模型
(安全帽检测)models

app

local controller

incremental
learning

Models
Evaluation

Service API

③ The hard sample detection algorithm in the Edge AI library
identify the samples with low inference confidence, and
upload them to the cloud labeling service.

① App developers: Use the Edge AI
library during development to
integrate the edge-cloud
collaborative incremental
learning function.

② Deploy the app and start
incremental learning.

④ Manually and periodically label samples.

⑤ The system automatically performs
incremental training based on the preset
policy to generate a new model.

⑥ Updating the new
model to Edge

Edge-cloud collaborative FEDERATED LEARNING
Raw data is not transmitted out of the edge, and the model is generated by
knowledge aggregation.

Cloud: CCE/ModelArtsEdge 2: KubeEdge

cross-edge
transferring

Algo

Edge 1: KubeEdge

Service API

model

local
samples

local
control
ler

labeling

Fed mngt业务
App/显

示

local incre-
trainingAlgo

local train

mdoel

local
samples

local
controll

er

labeling

app

local incre-
trainingAlgo

local task
detection Algo

Aggerati
on Algo

local task
detection Algo

local train

models
parameter
s
updating

models parameters
updating

monitoring/m
ngt

Label
ing

Label
ing

① Developer: Import the
Edge AI library and
develop the edge-cloud
collaborative federated
learning program.

② Start the federated
learning task and deploy
the training program to
the edge.

③ Multi-task detection: Divide non-IID sample sets and
work with the cloud to identify similar tasks.

④ Local training: Model parameters are uploaded to the
cloud, and the cross-edge transferring and model
aggregation algorithms are running on the cloud.

Developer perspective:
JOINT INFERENCE

JOINT INFERENCE code example
(Based on TensorFlow)

Design Objectives：Try not to change the existing
code of developers and do not require developers to
learn new frameworks, reducing learning costs.

How To Use:

• Importing the Edge AI library: Developers use the
familiar ML framework (such as TensorFlow) to import
the edge AI library (solar_corona library in the
figure).

• JOINT INFERENCE：Replace the original load model
object part, configure and generate the edge-cloud
synergy model, and the background automatically
generates a large model on the cloud. Developers do not
need to change other parts of the code.

Developer perspective:
FEDERATED LEARNING

Design Objectives：Try not to change the existing
code of developers and do not require developers to
learn new frameworks, reducing learning costs.

How To Use:

• Importing the Edge AI library: Developers use the
familiar ML framework (such as TensorFlow) to import
the edge AI library (solar_corona library in the
figure).

• FEDERATED LEARNING：Import the local training loss
function, optimizer, and the collaborative_train
function from the solar_corona library.

FEDERATED LEARNING code example
(Based on TensorFlow)

Thank you

