KubeEdge-Al Intro

{ @ HesumREx V2 HUAWE]
- S<

1

Edge Al Challenges

-~

Geo-distributed dataset
across edges

Non-1.1.D data across edges,
the performance of universal
Al model degraded on edge

&

\

Few-shot samples per edge
for training, cold booting, hard
to converge

Resource constrained on

edge
/

KubeEdge-AI

Smart Media & Manufactu
Industries Sapas Ente;tlz:mm ring

Financial &
Insurance

Natural

loT

Al Services CC:;::;F;:;ET Language Data/Time Miscellaneo

Processing Series us
collaborative
KubeE training (aka incremental joint
dge-Al federated learning inferencing
learning)
Edge-cloud collaborative ML Framework
Edge
Platform Kubernetes / KubeEdge@Cloud ” KubeEdge@Edge

Hardwares ARM x86 Servers with GPU or NPU

Arm Server . Smart Camera, x86
Server, etc

What we propose :
@ an edge-cloud collaborative ML framework based on
KubeEdge
®@ with embed collaborative training and joint inferencing
algorithm, which can
® working with existing Al framework like Tensorflow, etc

3 Features :
@ joint inferencing
@ incremental learning
® collaborative training (aka federated learning)

Targeting Users :

@ Domain-specific Al Developers: build and publish edge-
cloud collaborative Al services/functions easily

@ Application Developers: use edge-cloud collaborative Al
capabilities.

We are NOT:

@ to re-invent existing ML framework, i.e., tensorflow, pytorch,
mindspore, etc.

@to re-invent existing edge platform, i.e., kubeedge, etc.

(® to offer domain/application-specific algorithms, i.e., facial

recognition, text classification, etc.

Service Architecture

Edge Nodes Cloud/Central DC

* Workers:
do inferencing or training,
based on existing ML Workers: Workers: '
framework: Inferencing / Training on Edge Inferencing / Training / Aggregation on Cloud

launch on demand i : Joint [tal

: _ 1 B - Training Programs: Sl drlaninge] '
Imagine they are docker App“c:tlcs)gi\//il:;‘;erenq Build-in/3r party Inferencmg Training F:ggl}eezr:tlgg
containers: 9 Training Alaos backend backend

different workers for

different features; MindSpore / EdgeA| Lib MindSpore / EdgeA| Lib
could run on edge or cloud. TensorFlow / TensorFlow /

S L Pytorch Pytorch
- expose the Edge Al
features to applications, LocalController LocalController GlobalCoordinator

I.e. training or inferencing

pliotg el Joint Inference Incremental Federated Edge Al Service API
: Mngt Learning Mngt Learning Mngt
* GlobalCoordinator
- uniportal of EdgeAl, Local Mngt
. Job Monitoring, Mngt, Peers Mngt/States Sync, Etc Global States Mgnt
- across-edges coordination

» LocalController

Platform: Platform:
- local controller KubeEdge@Edge + KubeEdge, CCE, ModelArts
- manage local dataset and Arm Server(Atlas),x86 Server, smart camera(Hilense), etc Arm Server(Atlas), x86 Server

models

Edge—cloud Collaborative JOINT INFERENCE

Improve the inference performance, when edge resources are limited.

®) Inference based on the shallow model on

Service User: Property / Edge 1: KubeEdge@H‘ilenS the edge Sld,e. L e confldenc?
Security persomel requirement is met, the result is

E “““““““““““ returned.
||

[
1
1
1
1
1

® Ll

Service User:
Worker . . T
/Pedestrian

@ Otherwise, the data is sent to the cloud
for deep model inference.

Developer

(19

@ AI developer: provides training data to
generate deep and shallow models.

]
1
l
: Service API
1

\

@) Service developers: invoke
---------------------- collaboration models through the
library and deploy the models to the
edge.

e

Edge—cloud Collaborative INCREMENTAL LEARNING

The more models are used, the smarter they are.

Edge: KubeEdge Cloud: CCE/ModelArts

Service API ﬁ@

————————————————————— D App developers: Use the Edge Al
library during development to
integrate the edge—cloud
collaborative incremental

® Updating the new learning function.

model to Edge
______________ ! 2 Deploy the app and start

incremental learning.

Labeling service

bdically label samples.

ically performs

_________________________ fite a new model.

ing based on the preset

®) The hard sample detection algorithm in the Edge AI library
identify the samples with low inference confidence, and
upload them to the cloud labeling service.

Edge—cloud collaborative FEDERATED LEARNING

Raw data is not transmitted out of the edge, and the model is generated by
kHOWledge aggregation. ®) Multi-task detection: Divide non—IID sample sets and

work with the cloud to identify similar tasks.

@ Local training: Model parameters are uploaded to the
cloud, and the cross—edge transferring and model
aggregation algorithms are running on the cloud.

Edge 2: KubeEdge Cloud: CCE/ModelArts

(D Developer: Import the
Edge AI library and
develop the edge—cloud
collaborative federated
learning program.

models parameters
“““ =——gpdating ~~ """~~~

models
parameter @ Start the federated

learning task and deploy
the training program to
the edge.

monitoring

gt Service API
G—)
Fed mngt @

Edge 1: KubeEdge

JOINT INFERENCE code example

Deve]_oper perSpeCt ive : (Based on TensorFlow)

import hilens

JOINT INFERENCE

def pre_fun():

return

def post_fun():

Design Objectives: Try not to change the existing
code of developers and do not require developers to
learn new frameworks, reducing learning costs.

return

How To Use: : — B P

e.get big model endpo

e Importing the Edge AI library: Developers use the modeT path = solar_corons.context.get_model path()
familiar ML framework (such as TensorFlow) to import
the edge AI library (solar corona library in the
figure).

e JOINT INFERENCE: Replace the original load model
object part, configure and generate the edge—cloud
synergy model, and the background automatically
generates a large model on the cloud. Developers do not
need to change other parts of the code.

cloud offload aleorithm=ibt

5

while True:
read_one_frame_from_camera(camera)
ons = model.predict(image)

if __name__ == "__main__":

rung)

FEDERATED LEARNING code example
(Based on TensorFlow)

Developer perspective: i
FEDERATED LEARNING B—

(X, ¥) solar_corona.load_train_dataset()
(x_test, y_test) = solar_corona.load_eval_dataset()
x, x_test = normalize(x, x_test)

= solar_corona.context.get_parameters{'epochs")
batch_size = solar_corona.context.get_parameters('batch_size")
gation_algorithm = solar_corona.context.get_parameters(aggregation_algorithm")

Design Objectives: Try not to change the existing

. train_loader tf.data.Dataset.from_tensor_slices{(x, y))
COde Of deVelOperS and dO nOt I'eqU1I'e deVelOperS to train_loader = train_loader.map(prepare_cifar).shuffle(566686).batch(batch_size)
1 j? }((1 . 1 . test_loader = tf.data.Dataset.from_tensor_slices(({x_test, y_test))
earn new ramewor S) re UClng earnlng COStS' test_loader = test_loader.map(prepare_cifar).shuffle(18688).batch(batch_size)

model = VGG16([32, 32, 3])

How To Use:

e Importing the Edge AI library: Developers use the # also you can ¢ 1o
familiar ML framework (such as TensorFlow) to import
the edge AI library (solar corona library in the

solar_corona.losses.ADifferentCategoricalCrossentropy()
cs.ADifferentCategoricalAccuracy()

fi gure) . n = ona.optimizers.ADifferentAdam(le

model = solar_corona.collaborative_training.fit(train_loader=train_loader,

e FEDERATED LEARNING: Import the local training loss test_loader=test_loader,
function, optimizer, and the collaborative train nodel-model,
function from the solar corona library.

r=optimizer,
=batch_size,

ggregation_algorithm]
solar_corona.save_model{model)

"

if _ name_ ==
main()

main__ ":

Thank you

