Akraino ICN Family:
Multi-Tenant Secure Cloud Native Platform
Agenda

• Overview
• Challenges of current multi-tenancy in K8s environments
• Kata Containers
• Enhancing multi-tenancy with Kata
• Architectural changes to current ICN stack
Overview

- This is a new BP, part of the ICN family
- The new BP will reuse most ICN components integrating Kata secure container runtime
- First release targeted for next ICN release in Q2
- Contact: Salvador Fuentes (salvador.fuentes@intel.com)
Multi-tenant isolation in Kubernetes Environments

Current solution for Multi-tenancy is based on K8s namespaces.

Namespace does provide operational isolation – Different users and RBAC permissions.

They all share the same Kernel.
Problem: Any vulnerability in Linux kernel may be exploited by malicious POD and possibly can inject code in kernel. It can lead to data exfiltration of other tenants and can launch other attacks.

Methods followed today:
- Dedicated nodes for each namespace.
- Dedicated K8s clusters for each tenant

Challenge: Inefficient usage of resources.
Kata Containers overview

Standard Containers
- Cgroups
- Namespaces
- Capability Filters
- Seccomp filtering
- Mandatory Access
- Control (MAC)

Virtual Machines
- Separate Guest Kernel
- VMX non-root
- Hardware control
- CPU Access
- Memory Access
- Device Access

= Kata Containers

The speed of containers, the security of VMs.
Securing containers from exploiting others

Need:
- Use same set of nodes for all tenant workloads, yet provide security isolation

Solution:
- Kata Containers (Uses hardware virtualization)
 - Transparent to developers
 - No changes to container images.
 - Same images can be used in both Kata and non-Kata environments
Changes to current ICN stack

<table>
<thead>
<tr>
<th>Zero Touch provisioning</th>
<th>Apps, VNFs, CNFs</th>
<th>EdgeX Foundry</th>
<th>Containerized Firewall (cFW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi Cluster Orchestration</td>
<td>MC Or orchestrator (EMCO)</td>
<td>Kubernetes (Kubernetes Deployer (KuD) – Multi cluster Installer)</td>
<td></td>
</tr>
<tr>
<td>Site level Orchestration</td>
<td>Kubernetes</td>
<td>NFD</td>
<td>OVN4NFV</td>
</tr>
<tr>
<td>Platform Services</td>
<td>Accelerator Plugins SRIOV, QAT, Optane</td>
<td>NFD</td>
<td>OVN4NFV</td>
</tr>
<tr>
<td>Virtualization & Container Run time</td>
<td>Containerd</td>
<td>Kata</td>
<td>Runc</td>
</tr>
<tr>
<td>Networking</td>
<td>Multus</td>
<td>OVN4NFV</td>
<td>Flannel</td>
</tr>
<tr>
<td>Operating system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware platform</td>
<td>Intel® Xeon</td>
<td>Intel® Ethernet Controller XL710 for 40GbE</td>
<td>Intel® Quick Asset Technology C627 Chipset</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New Components
- Kata
- Runc
- kubectl
- SDEWAN Controller & CNF’s

Existing MICN Components
- EdgeX Foundry
- Containerized Firewall (cFW)
- Kubernetes
- NFD
- OVN4NFV
- Ubuntu
- Intel® Xeon
- Intel® Ethernet Controller XL710 for 40GbE
- Intel® Quick Asset Technology C627 Chipset
- Intel® Optane™ DC 256GB Persistent Memory Module

Accelerator Plugins
- SRIOV
- QAT
- Optane

Networking Plugins
- Multus
- OVN4NFV
- Flannel

Accelerator Plugins
- SRIOV
- QAT
- Optane

Operating System
- Ubuntu

Hardware Platform
- Intel® Xeon
- Intel® Ethernet Controller XL710 for 40GbE
- Intel® Quick Asset Technology C627 Chipset
- Intel® Optane™ DC 256GB Persistent Memory Module
Kubernetes Architecture with Containerd using Kata and runc
Call to Action

• Interested? Please reach out:
 - Wiki page
 • https://wiki.akraino.org/pages/viewpage.action?pageId=28973559
 - BP community call on Fridays at 7 AM Pacific Time (bi-weekly)
 • https://lists.akraino.org/g/blueprints/calendar
 - Kata Community
 • https://github.com/kata-containers/community/blob/master/CONTRIBUTING.md
Thank you