Copyright © Huawei Technologies Co., Ltd. 2020. All rights reserved.
No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd. All other trademarks and trade names mentioned in this document are the property of their respective holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.
Address: Huawei Industrial Base
Bantian, Longgang
Shenzhen 518129
People's Republic of China
Website: https://e.huawei.com
About This Document

Purpose

This document describes the appearance, structure, components, and specifications of the 2280 balanced model (2280 for short) of the TaiShan 200 server, and provides guidance for installing, connecting, powering on, powering off, configuring, installing OS, and troubleshooting the 2280.

Intended Audience

This document is intended for:

- Huawei technical support engineers
- Technical support engineers from channel partners
- Enterprise administrators

Symbol Conventions

The symbols that may be found in this document are defined as follows.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🚨 DANGER</td>
<td>Indicates a hazard with a high level of risk which, if not avoided, will result in death or serious injury.</td>
</tr>
<tr>
<td>🚨 WARNING</td>
<td>Indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.</td>
</tr>
<tr>
<td>🚨 CAUTION</td>
<td>Indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.</td>
</tr>
<tr>
<td>🚨 NOTICE</td>
<td>Indicates a potentially hazardous situation which, if not avoided, could result in equipment damage, data loss, performance deterioration, or unanticipated results. NOTICE is used to address practices not related to personal injury.</td>
</tr>
</tbody>
</table>
Symbol | Description
--- | ---
NOTE | Supplements the important information in the main text. NOTE is used to address information not related to personal injury, equipment damage, and environment deterioration.

Change History

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
</table>
| 06 | 2020-04-15 | ● Updated the memory specifications of servers with Kunpeng 920 5220 or 3210 processors.
 | | ● Updated the L3 cache capacity of servers with Kunpeng 920 5220 or 3210 processors. |
| 05 | 2020-03-03 | Modified the description of power consumption. |
| 04 | 2020-01-16 | ● Added information about servers that use Kunpeng 920 5220 or 3210 processors.
 | | ● Added information about the WebUI of iBMC V500 and later versions. |
| 03 | 2019-12-17 | Added the server with 24 x 2.5" SAS/SATA pass-through drives. |
| 02 | 2019-11-14 | ● Changed the product name.
 | | ● Added the FlexIO card with four 25GE optical ports. |
| 01 | 2019-07-01 | This issue is the first official release. |
Contents

About This Document.. ii

1 Overview..1
 1.1 Physical Structure... 1
 1.2 Logical Structure... 3

2 Components.. 7
 2.1 Front Panel Components... 7
 2.2 Front Panel Indicators and Buttons... 10
 2.3 Rear Panel Components.. 13
 2.4 Rear Panel Indicators... 15
 2.5 FlexIO Cards.. 17
 2.6 Drive Slot Numbers and Indicators... 18
 2.6.1 Drive Slot Numbers.. 18
 2.6.2 SAS/SATA Drive Indicators... 21
 2.6.3 NVMe SSD Indicators... 22
 2.7 Riser Cards and PCIe Slots.. 23
 2.8 Fan Modules... 29

3 Product Specifications... 31
 3.1 Technical Specifications... 31
 3.2 Environmental Specifications... 34
 3.3 Physical Specifications.. 36
 3.4 PSU Specifications... 37

4 Software and Hardware Compatibility.. 38

5 Install and Configure.. 39
 5.1 Tool Preparations... 39
 5.2 Safety Symbols on Devices.. 39
 5.3 ESD Protection.. 40
 5.3.1 Operation Instructions... 41
 5.3.2 ESD Wrist Strap... 41
 5.4 Environmental Requirements.. 42
 5.4.1 Space and Airflow Requirements... 42
 5.4.2 Temperature and Humidity Requirements... 43
The TaiShan 200 server powered by HUAWEI Kunpeng 920 processors is dedicated for data centers. Its 2280 balanced model (2280 for short) is a 2U 2-socket rack server. It features high-performance computing, large-capacity storage, low power consumption, easy management, and easy deployment and is ideal for Internet, distributed storage, cloud computing, Big Data, and enterprise services.

Figure 1-1 shows the appearance of a server with 12 drives.

Figure 1-1 Appearance

1.1 Physical Structure

The physical structure of the 2280 varies depending on the CPU configuration and drive configuration. This section uses the server with 12 drives as an example to describe the physical structure of servers with different processors.
When configured with Kunpeng 920 7260, 5250, or 5230 processors, the server provides 32 DIMM slots. **Figure 1-2** shows the components of the server.

Figure 1-2 Components (server with Kunpeng 920 7260, 5250, or 5230 processors)

1. I/O module 1
2. I/O module 2
3. PSUs
4. Chassis
5. I/O module 3
6. Supercapacitor bracket
7. Air duct
8. Front drive backplane
9. Fan module brackets
10. Fan modules
11. Front drives
12. Cable organizers
13. Heat sinks
14. DIMM
15. Mainboard
16. RAID controller card
17. FlexIO card 1 (CPU 1)
18. iBMC card
19. FlexIO card 2 (CPU 2)

When configured with Kunpeng 920 5220 or 3210 processors, the server provides 16 DIMM slots. **Figure 1-3** shows the components of the server.
Figure 1-3 Components (server with Kunpeng 920 5220 or 3210 processors)

1. I/O module 1
2. I/O module 2
3. PSUs
4. Chassis
5. I/O module 3
6. Supercapacitor bracket
7. Air duct
8. Front drive backplane
9. Fan module brackets
10. Fan modules
11. Front drives
12. Cable organizers
13. Heat sinks
14. DIMM
15. Mainboard
16. RAID controller card
17. FlexIO card 1 (CPU 1)
18. iBMC card
19. FlexIO card 2 (CPU 2)

NOTE

- For details about how to query the CPU model, see 8.5 Querying the Processor Model of a Server.
- I/O modules 1, 2, and 3 can be drive modules or riser modules. The preceding figure is for reference only.
- CPUs are integrated on the mainboard and cannot be replaced independently.
- Use the Intelligent Computing Spare Parts Checker to obtain information about the spare parts.

1.2 Logical Structure

Figure 1-4 shows the logical structure of the 2280 server using a Kunpeng 920 7260, 5250, or 5230 processor.
The server supports two Huawei-developed Kunpeng 920 7260, 5250, or 5230 processors, each of which supports 16 DDR4 DIMMs.

CPU1 and CPU2 are interconnected through two Hydra buses. The maximum transmission rate of a single bus is 30 Gbit/s.

The server can come with an Ethernet FlexIO card with four GE or 25GE ports, which are connected to the CPUs through the high-speed SerDes interface.
- The screw-in RAID controller card connects to CPU 1 through PCIe buses, and to the drive backplanes through SAS signal cables. The server supports flexible drive configurations, depending on the drive backplanes used.
- The iBMC uses the Huawei Hi1710 and provides a VGA port, management network port, and debugging serial port.

Figure 1-5 shows the logical structure of the 2280 server using a Kunpeng 920 5220 or 3210 processor.

Figure 1-5 Logical structure of the server (Kunpeng 920 5220 or 3210 processor)
- The server supports two Huawei-developed Kunpeng 920 5220 or 3210 processors, each of which supports 8 DDR4 DIMMs.
- CPU1 and CPU2 are interconnected through a Hydra bus, whose maximum transmission rate is 30 Gbit/s.
- The server can come with an Ethernet FlexIO card with four GE or 25GE ports, which are connected to the CPUs through the high-speed SerDes interface.
- The screw-in RAID controller card connects to CPU 1 through PCIe buses, and to the drive backplanes through SAS signal cables. The server supports flexible drive configurations, depending on the drive backplanes used.
- The iBMC uses the Huawei Hi1710 and provides a VGA port, management network port, and debugging serial port.
2 Components

2.1 Front Panel Components

For details about the drive numbers and types of 2280, see 2.6.1 Drive Slot Numbers.

- **Figure 2-1** shows the components on the front panel of a server with 12 x 3.5-inch drives.

Figure 2-1 Components on the front panel of a server with 12 x 3.5-inch drives

1. Drive
2. VGA port
3. USB 3.0 port
4. Label plate with an SN label

- **Figure 2-2** shows the components on the front panel of a server with 25 x 2.5-inch drives.
Figure 2-2 Components on the front panel of a server with 25 x 2.5-inch drives

1. Drive
2. VGA port
3. USB 3.0 port
4. Label plate with an SN label

Figure 2-3 shows the components on the front panel of a server with 8 x 2.5-inch SAS/SATA drives and 12 x 2.5-inch NVMe SSDs.

Figure 2-3 Components on the front panel of a server with 8 x 2.5-inch SAS/SATA drives and 12 x 2.5-inch NVMe SSDs

1. Drive
2. Filler panel
3. VGA port
4. USB 3.0 port
5. Label plate with an SN label

Figure 2-4 shows the components on the front panel of a server with 24 x 2.5 SAS/SATA pass-through drives.

Figure 2-4 Components on the front panel of a server with 24 x 2.5 SAS/SATA pass-through drives

<table>
<thead>
<tr>
<th></th>
<th>Drive</th>
<th></th>
<th>Filler panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>USB 3.0 port</td>
<td>4</td>
<td>VGA port</td>
</tr>
</tbody>
</table>
Label plate with an SN label

Table 2-1 Description of ports on the front panel

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB port</td>
<td>USB 3.0</td>
<td>The USB ports allow USB devices to be connected to the server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Before connecting an external USB device, check that the USB device functions properly. A server may operate abnormally if an abnormal USB device is connected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If an external USB device is used, the maximum length of the extension cable is 1 m.</td>
</tr>
<tr>
<td>VGA port</td>
<td>DB15</td>
<td>The VGA port is connected to a terminal, such as a monitor or physical KVM.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The VGA port on the front panel does not have cable screws. The VGA cable is easy to fall off. You are advised to use the VGA port on the rear panel.</td>
</tr>
</tbody>
</table>

SN

The serial number (SN) on the label is a string that uniquely identifies a server. The SN is required when you contact Huawei technical support.

Figure 2-5 shows the SN format.
Table 2-2 SN description

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SN ID (two characters), which is 21.</td>
</tr>
<tr>
<td>2</td>
<td>Material identification code (eight characters), that is, processing code.</td>
</tr>
<tr>
<td>3</td>
<td>Code of a processing factory (two characters). The value 10 indicates Huawei.</td>
</tr>
</tbody>
</table>
| 4 | Year and month (two characters).
 - The first character indicates the year. Digits 1 to 9 indicate 2001 to 2009, letters A to H indicate 2010 to 2017, letters J to N indicate 2018 to 2022, and letters P to Y indicate 2023 to 2032.
 - The second character indicates the month. Digits 1 to 9 indicate January to September, and letters A to C indicate October to December. |
| 5 | Serial number (six characters). |
| 6 | RoHS compliance (one character). Y indicates environment-friendly processing. |
| 7 | Board model, that is, product name. |

2.2 Front Panel Indicators and Buttons

- **Figure 2-6** shows the indicators and buttons on the front panel of a server with 12 x 3.5-inch drives.

Figure 2-6 Indicators and buttons on the front panel of a server with 12 x 3.5-inch drives

- **Figure 2-7** shows the indicators and buttons on the front panel of a server with 25 x 2.5-inch drives.
Figure 2-7 Indicators and buttons on the front panel of a server with 25 x 2.5-inch drives

1. UID button/indicator
2. Health indicator
3. Power button/indicator
4. Fault diagnostic LED
5. FlexIO presence indicators (1 and 2)

- **Figure 2-8** shows the indicators and buttons on the front panel of a server with 8 x 2.5-inch SAS/SATA drives and 12 x 2.5-inch NVMe SSDs.

Figure 2-8 Indicators and buttons on the front panel of a server with 8 x 2.5-inch SAS/SATA drives and 12 x 2.5-inch NVMe SSDs

1. UID button/indicator
2. Health indicator
3. Power button/indicator
4. Fault diagnostic LED
5. FlexIO presence indicators (1 and 2)

- **Figure 2-9** shows the indicators and buttons on the front panel of a server 24 x 2.5 SAS/SATA pass-through drives.

Figure 2-9 Indicators and buttons on the front panel of a server 24 x 2.5 SAS/SATA pass-through drives

<table>
<thead>
<tr>
<th></th>
<th>UID button/indicator</th>
<th></th>
<th>Health indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Power button/indicator</td>
<td>4</td>
<td>Fault diagnostic LED</td>
</tr>
<tr>
<td>5</td>
<td>FlexIO presence indicators (1 and 2)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Servers with Kunpeng 920 5220 or 3210 processors do not support the configuration of 24 x 2.5-inch SAS/SATA pass-through drives.

Table 2-3 Indicators and buttons on the front panel

<table>
<thead>
<tr>
<th>Silkscreen</th>
<th>Indicator/Button</th>
<th>State Description</th>
</tr>
</thead>
</table>
| 📊 | Fault diagnostic LED | • ---: The server is operating normally.
• Error code: A server component is faulty.
For details about error code, see the TaiShan Rack Server iBMC Alarm Handling. |
| 🎉 | Power button/indicator | Power indicator
• Steady yellow: The server is in the standby state.
• Steady green: The server is properly powered on.
• Blinking yellow: The iBMC is starting.
• Off: The server is not connected to a power source.
Power indicator
• When the server is powered on, you can press this button to shut down the OS.
• When the server is powered on, you can hold down this button for 6 seconds to force the server to power off.
• When the server is in the standby state, you can press this button to start the server. |
| 🌈 | UID button/indicator | The UID button/indicator helps identify and locate a device.
UID indicator:
• Off: The device is not being located.
• Blinking blue (blinking 255 seconds): The device has been located and is differentiated from other devices that have also been located.
• Steady blue: The device is being located.
UID button:
• You can turn on, turn off, or blink the UID indicator by pressing the UID button on the panel or by using the iBMC CLI or WebUI.
• You can press this button to turn on or off the UID indicator.
• You can press and hold down this button for about 5 seconds to reset the iBMC. |
Table: Silkscreen Indicator/Button State Description

- **Health indicator**
 - Steady green: The server is operating properly.
 - Blinking red at 1 Hz: A major alarm has been generated on the server.
 - Blinking red at 5 Hz: A critical alarm has been generated on the server.

- **FlexIO presence indicators (1 and 2)**
 - 1 and 2: The numbers 1 and 2 respectively represent FlexIOs 1 and 2.
 - Steady green: The FlexIO is properly connected.
 - Off: The FlexIO cannot be detected.

2.3 Rear Panel Components

Figure 2-10 shows the components on the rear panel of the server.

Figure 2-10 Rear panel components

1. I/O module 1
2. I/O module 2
3. Power supply unit (PSU) 1
4. I/O module 3
5. PSU 2
6. PSU socket
7. FlexIO card 2 (connected to CPU 2)
8. USB 3.0 port
9. VGA port
10. Serial port
11. Management network port
12. FlexIO card 1 (connected to CPU 1)

NOTE

- I/O modules 1, 2, and 3 can be drive modules or riser modules. The preceding figure is for reference only.
- FlexIO card 1 or 2 can be a TM210 NIC, and only one TM280 NIC can be configured. The preceding figure is for reference only.
- FlexIO card 1 or 2 is not hot-swappable. If you need to replace it, power off the server.
Table 2-4 Ports on the rear panel

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGA port</td>
<td>DB15</td>
<td>1</td>
<td>The VGA port is connected to a terminal, such as a monitor or physical KVM.</td>
</tr>
<tr>
<td>USB port</td>
<td>USB 3.0</td>
<td>2</td>
<td>The USB ports allow USB devices to be connected to the server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NOTE Before connecting an external USB device, check that the USB device functions properly. A server may operate abnormally if an abnormal USB device is connected.</td>
</tr>
<tr>
<td>Management</td>
<td>RJ45</td>
<td>1</td>
<td>This 1000 Mbps Ethernet port is used for server management, and supports 10/100/1000 Mbps auto-negotiation.</td>
</tr>
<tr>
<td>network port</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial port</td>
<td>RJ45</td>
<td>1</td>
<td>The serial port is used as the system serial port by default. You can set it as the iBMC serial port by using the iBMC command. This port is used for debugging. NOTE For details about how to set the system serial port as the iBMC serial, see Logging In over the Serial Port in 8.2 Logging In to the iBMC CLI.</td>
</tr>
<tr>
<td>GE electrical</td>
<td>RJ45</td>
<td>4/8</td>
<td>• Each FlexIO card provides four GE electrical ports. A maximum of eight GE electrical ports can be provided through the two FlexIO cards.</td>
</tr>
<tr>
<td>port</td>
<td></td>
<td></td>
<td>• This 1000 Mbps Ethernet port is used for FlexIO card, and supports 10/100/1000 Mbps auto-negotiation.</td>
</tr>
<tr>
<td>25GE optical</td>
<td>SFP28</td>
<td>4</td>
<td>A FlexIO card can provide a maximum of four 25GE optical ports.</td>
</tr>
<tr>
<td>port</td>
<td></td>
<td></td>
<td>NOTE The 25GE optical ports support rate adaptation to 10GE, and optical modules of different rates are required.</td>
</tr>
<tr>
<td>Port</td>
<td>Type</td>
<td>Quantity</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>PSU socket</td>
<td>-</td>
<td>1/2</td>
<td>Determine the number of PSUs based on actual requirements, but ensure that the rated power of the PSUs is greater than that of the server. You are advised to configure two PSUs to ensure reliable device operating. When one PSU is used, Predicted PSU Status cannot be set to Active/Standby on the iBMC WebUI.</td>
</tr>
</tbody>
</table>

2.4 Rear Panel Indicators

Figure 2-11 shows the indicators on the rear panel of the server.

Figure 2-11 Rear panel indicators

1. GE electrical port data transmission status indicator
2. GE electrical port connection status indicator
3. Management network port data transmission status indicator
4. Management network port connection status indicator
5. UID indicator
6. Optical port transmission rate indicator
7. Optical port connection status indicator/data transmission status indicator
8. PSU indicator

Table 2-5 Indicators on the rear panel

<table>
<thead>
<tr>
<th>Indicator</th>
<th>State Description</th>
</tr>
</thead>
</table>
| GE electrical port/Management network port | • Blinking yellow: Data is being transmitted.
<p>| Data transmission status indicator | • Off: No data is being transmitted. |
| Connection status indicator | • Steady green: The network port is properly connected. |
| Data transmission status indicator | • Off: The network port is not connected. |</p>
<table>
<thead>
<tr>
<th>Indicator</th>
<th>State Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID indicator</td>
<td>The UID indicator helps identify and locate a device.</td>
</tr>
<tr>
<td></td>
<td>• Off: The device is not being located.</td>
</tr>
<tr>
<td></td>
<td>• Blinking blue (blinking 255 seconds): The device has been located and is differentiated from other devices that have also been located.</td>
</tr>
<tr>
<td></td>
<td>• Steady blue: The device is being located.</td>
</tr>
<tr>
<td></td>
<td>NOTE</td>
</tr>
<tr>
<td></td>
<td>You can turn on, turn off, or blink the UID indicator by pressing the UID button or remotely running a command on the iBMC CLI.</td>
</tr>
<tr>
<td>25 GE optical port</td>
<td></td>
</tr>
<tr>
<td>Transmission rate indicator</td>
<td>• Steady green: The data transmission rate is 25 Gbit/s.</td>
</tr>
<tr>
<td></td>
<td>• Steady yellow: The data transmission rate is 10 Gbit/s.</td>
</tr>
<tr>
<td></td>
<td>• Off: The network port is not connected.</td>
</tr>
<tr>
<td>Connection status indicator</td>
<td></td>
</tr>
<tr>
<td>Data transmission status</td>
<td>• Steady green: The network port is properly connected.</td>
</tr>
<tr>
<td>indicator</td>
<td>• Blinking green: Data is being transmitted.</td>
</tr>
<tr>
<td></td>
<td>• Off: The network port is not connected.</td>
</tr>
<tr>
<td>PSU indicator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Steady green: The power input and output are normal.</td>
</tr>
<tr>
<td></td>
<td>• Steady orange: The input is normal, but no power output is supplied due to overheat protection, overcurrent protection, short circuit protection, output overvoltage protection, or some component failures.</td>
</tr>
<tr>
<td></td>
<td>• Blinking green at 1 Hz:</td>
</tr>
<tr>
<td></td>
<td>- The input is normal, the server is standby.</td>
</tr>
<tr>
<td></td>
<td>- The input is overvoltage or undervoltage. For details, see TaiShan Rack Server iBMC Alarm Handling</td>
</tr>
<tr>
<td></td>
<td>• Blinking green at 4 Hz: under online PSU firmware upgrade.</td>
</tr>
<tr>
<td></td>
<td>• Off: No power is supplied.</td>
</tr>
</tbody>
</table>
2.5 FlexIO Cards

For details about FlexIO cards supported by the server, see the Intelligent Computing Compatibility Checker. For details about the specifications and features of each FlexIO card, see the corresponding user guide.

The following figures show the indicators on the FlexIO cards.

Figure 2-12 TM210 with four GE electrical ports

![Figure 2-12](image)

Figure 2-13 TM280 with four 25GE optical ports

![Figure 2-13](image)

Table 2-6 FlexIO card indicators

<table>
<thead>
<tr>
<th>NIC Type</th>
<th>Indicator</th>
<th>State Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FlexIO card with four GE electrical ports</td>
<td>Data transmission status indicator</td>
<td>● Blinking yellow: Data is being transmitted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Off: No data is being transmitted.</td>
</tr>
<tr>
<td></td>
<td>Connection status indicator</td>
<td>● Steady green: The network port is properly connected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Off: The network port is not connected.</td>
</tr>
<tr>
<td>FlexIO card with four 25GE optical ports</td>
<td>Transmission rate indicator</td>
<td>● Steady green: The data transmission rate is 25 Gbit/s.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Steady yellow: The data transmission rate is 10 Gbit/s.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Off: The network port is not connected.</td>
</tr>
<tr>
<td>NIC Type</td>
<td>Indicator</td>
<td>State Description</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| | Connection status indicator/Data transmission status indicator | • Steady green: The network port is properly connected.
• Blinking green: Data is being transmitted.
• Off: The network port is not connected. |

2.6 Drive Slot Numbers and Indicators

2.6.1 Drive Slot Numbers

- **Figure 2-14** shows the drive slot numbers of a server with 12 x 3.5-inch drives in Expander mode.

Figure 2-14 Server with 12 x 3.5-inch drives in Expander mode

Table 2-7 Drive slot numbers of a server with 12 x 3.5-inch drives in Expander mode

<table>
<thead>
<tr>
<th>Physical Slot Number</th>
<th>Slot Number Identified by iBMC</th>
<th>Slot Number Identified by RAID Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Disk40</td>
<td>12</td>
</tr>
<tr>
<td>41</td>
<td>Disk41</td>
<td>13</td>
</tr>
<tr>
<td>42</td>
<td>Disk42</td>
<td>14</td>
</tr>
<tr>
<td>43</td>
<td>Disk43</td>
<td>15</td>
</tr>
</tbody>
</table>

- **Figure 2-15** shows the drive slot numbers of a server with 12 x 3.5-inch drives in pass-through mode.
Figure 2-15 Server with 12 x 3.5-inch drives in pass-through mode

Figure 2-16 shows the drive slot numbers of a server with 25 x 2.5-inch drives in Expander mode.

Figure 2-16 Server with 25 x 2.5-inch drives in Expander mode

Table 2-8 Drive slot numbers of a server with 25 x 2.5-inch drives in Expander mode

<table>
<thead>
<tr>
<th>Physical Slot Number</th>
<th>Slot Number Identified by iBMC</th>
<th>Slot Number Identified by RAID Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Disk40</td>
<td>25</td>
</tr>
<tr>
<td>41</td>
<td>Disk41</td>
<td>26</td>
</tr>
</tbody>
</table>

Figure 2-17 shows the drive slot numbers of a server with 8 x 2.5-inch SAS/SATA drives and 12 x 2.5-inch NVMe SSDs.
Figure 2-17 Server with 8 x 2.5-inch SAS/SATA drives and 12 x 2.5-inch NVMe SSDs

![Figure 2-17](image1)

- **Figure 2-18** shows the drive slot numbers of a server with 24 x 2.5 SAS/SATA passthrough drives.

Figure 2-18 Server with 24 x 2.5 SAS/SATA pass-through drives

![Figure 2-18](image2)

Table 2-9 Drive configurations

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Maximum Front Drives</th>
<th>Maximum Rear Drives</th>
<th>Drive Management Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server with 25 x 2.5-inch drives in Expander mode[1]</td>
<td>25 (SAS/SATA drives)</td>
<td>• I/O module 1: 2 (SAS/SATA drives)</td>
<td>One RAID controller card</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• I/O module 3[2]: 4 (NVMe SSDs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum Rear Drives</td>
<td></td>
</tr>
<tr>
<td>Server with 12 x 3.5-inch drives in Expander mode</td>
<td>12 (SAS/SATA drives)</td>
<td>• I/O module 1: 2 (SAS/SATA drives)</td>
<td>One RAID controller card</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• I/O module 2: 2 (SAS/SATA drives)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• I/O module 3[2]: 4 (NVMe SSDs)</td>
<td></td>
</tr>
</tbody>
</table>
Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Maximum Front Drives</th>
<th>Maximum Rear Drives</th>
<th>Drive Management Mode</th>
</tr>
</thead>
</table>
|Server with 12 x 3.5-inch drives in pass-through mode\(^3\)| 12 (SAS/SATA drives)| • I/O module 2: 2 (SAS/SATA drives)
• I/O module 3\(^2\): 4 (NVMe SSDs)| CPU over SAS |
|Server with 8 x 2.5-inch SAS/SATA drives and 12 x 2.5-inch NVMe SSDs\(^1\)| 20
• Slots 0 to 7 support only SAS/SATA drives.
• Slots 8 to 19 support only NVMe SSDs. \(^4\)| I/O module 3\(^2\): 4 (NVMe SSDs)| One RAID controller card |
|Server with 24 x 2.5-inch drives in pass-through mode| 24 (SAS/SATA drives)| I/O module 3\(^2\): 4 (NVMe SSDs)| CPU over SAS |

- \(^1\): The front drives in a server with 25 x 2.5-inch drives in Expander mode or a server with 8 x 2.5-inch SAS/SATA drives + 12 x 2.5-inch NVMe SSDs can only be 2.5-inch drives, and the front drives in a server with 12 x 3.5-inch drives in Expander mode or a server with 12 x 3.5-inch drives in pass-through mode can only be 3.5-inch drives.
- \(^2\): I/O module 3 supports 2.5-inch NVMe drives, and the PCIe signals are output through CPU 2. I/O modules 1 and 2 support 2.5-inch and 3.5-inch drives.
- \(^3\): CPU SAS pass-through requires a SAS riser card. By default, it is installed on I/O module 2.
- \(^4\): The NVMe SSDs in slots 8 to 19 of a server with 8 x 2.5-inch SAS/SATA drives + 12 x 2.5-inch NVMe SSDs support only PCIe 3.0.
- \(^5\): Servers with Kunpeng 920 5220 or 3210 processors do not support the configuration of 24 x 2.5-inch SAS/SATA pass-through drives.

2.6.2 SAS/SATA Drive Indicators

Figure 2-19 shows the SAS/SATA drive indicators.

Figure 2-19 SAS/SATA drive indicators

!Drive fault indicator
!Drive activity indicator
Table 2-10 Description of SAS/SATA drive indicators

<table>
<thead>
<tr>
<th>Drive Activity Indicator (Green Indicator)</th>
<th>Drive Fault Indicator (Yellow Indicator)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady on</td>
<td>Off</td>
<td>The drive is in position.</td>
</tr>
<tr>
<td>Blinking at 4 Hz</td>
<td>Off</td>
<td>Data is being read or written normally, or data on the primary drive is being rebuilt.</td>
</tr>
<tr>
<td>Steady on</td>
<td>Blinking at 1 Hz</td>
<td>The drive is being located by the RAID controller card.</td>
</tr>
<tr>
<td>Blinking at 1 Hz</td>
<td>Blinking at 1 Hz</td>
<td>The data on the secondary drive is being rebuilt.</td>
</tr>
<tr>
<td>Off</td>
<td>Steady on</td>
<td>A member drive in the RAID array is removed.</td>
</tr>
<tr>
<td>Steady on</td>
<td>Steady on</td>
<td>A member drive in the RAID array is faulty.</td>
</tr>
</tbody>
</table>

2.6.3 NVMe SSD Indicators

Figure 2-20 shows the NVMe SSD indicators.

Figure 2-20 NVMe SSD indicators

Table 2-11 NVMe SSD indicators

<table>
<thead>
<tr>
<th>Drive Activity Indicator (Green Indicator)</th>
<th>Drive Fault Indicator (Yellow Indicator)</th>
<th>State Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>The NVMe SSD cannot be detected.</td>
</tr>
<tr>
<td>Steady green</td>
<td>Off</td>
<td>The NVMe SSD is detected and working properly.</td>
</tr>
<tr>
<td>Blinking green (2 Hz)</td>
<td>Off</td>
<td>Data is being read from or written to the NVMe SSD.</td>
</tr>
<tr>
<td>Off</td>
<td>Blinking yellow (2 Hz)</td>
<td>The NVMe SSD is being located or hot-swapped.</td>
</tr>
<tr>
<td>Off</td>
<td>Blinking yellow at 0.5 Hz</td>
<td>The NVMe SSD completes the hot removal process and is removable.</td>
</tr>
</tbody>
</table>
2.7 Riser Cards and PCIe Slots

Figure 2-21, Figure 2-22, Figure 2-23, Figure 2-24, and *Figure 2-25* show riser cards supported by I/O modules 1 and 2 in a 2280.

- The riser card shown in *Figure 2-21* can be installed in I/O module 1 or 2. It provides PCIe slots 1 to 3 when installed in I/O module 1 and PCIe slots 4 to 6 when installed in I/O module 2.

Figure 2-21 Riser card 1 (three x8 slots)

- The riser card shown in *Figure 2-22* supports full-height full-length dual-width GPUs. It provides PCIe slots 2 and 3 when installed in I/O module 1 and PCIe slots 5 and 6 when installed in I/O module 2.

### Drive Activity Indicator (Green Indicator)	Drive Fault Indicator (Yellow Indicator)	State Description
Steady green or off | Steady yellow | The NVMe SSD is faulty.

NOTE

- The card must be used together with the power cables delivered with the server.
- Do not use the power cables of other servers.
- Only slots 2 and 5 support full-height full-length dual-width GPUs.
The riser card shown in Figure 2-23 is required for I/O module 1 or 2 in a server with 8 x 2.5-inch SAS/SATA drives and 12 x 2.5-inch NVMe SSDs. Ports A, B, and C are Slimline cable connectors.

When configured with two 2.5-inch rear drives respectively, both I/O modules 1 and 2 support x16 riser cards, as shown in Figure 2-24. This riser card provides slot 3 when installed in I/O module 1, and slot 6 when installed in I/O module 2.
When the server is configured with Kunpeng 920 7260, 5250, or 5230 processors, the SAS riser card shown in Figure 2-25 can be installed in I/O module 1 or 2. By default, it is installed in I/O module 2. When installed in I/O module 1, it occupies PCIe slots 1 to 3 and only slot 3 (x8) is available. When installed in I/O module 2, it occupies PCIe slots 4 to 6 and only slot 6 (x8) is available. When the server is configured with Kunpeng 920 5220 or 3210 processors, the SAS riser card can be installed only in I/O module 2 and occupies PCIe slots 4 to 6. Slots 4 and 5 do not output signals, and slot 6 supports x8 signals.

Figure 2-25 Riser card 5 (SAS)

When installed in I/O module 3, the riser card shown in Figure 2-26 provides PCIe slots 7 and 8.
Figure 2-26 Riser card 6 (two x8 slots)

- When installed in I/O module 3, the riser card shown in Figure 2-27 provides PCIe slot 8.

Figure 2-27 Riser card 7 (one x16 slot)

Figure 2-28 shows the rear PCIe slots of the 2280.
Figure 2-28 PCIe slots

I/O module 1 provides slots 1 to 3, I/O module 2 provides slots 4 to 6, and I/O module 3 provides slots 7 and 8.

- If I/O module 1 uses a 2-slot PCIe riser module, slot 1 is unavailable.
- If I/O module 2 uses a 2-slot PCIe riser module, slot 4 is unavailable.
- If I/O module 3 uses a 1-slot PCIe riser module, slot 7 is unavailable.

Table 2-12 describes specifications of the PCIe slots.

<table>
<thead>
<tr>
<th>PCIe Slot</th>
<th>CPU</th>
<th>PCIe Standards</th>
<th>Connector Width</th>
<th>Bus Width</th>
<th>Port Number in the BIOS</th>
<th>ROOT PORT (B/D/F)</th>
<th>Device (B/D/F)</th>
<th>Slot Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot1</td>
<td>CPU1</td>
<td>PCIe 4.0</td>
<td></td>
<td>x16</td>
<td>Port0</td>
<td>00/00/0</td>
<td>-</td>
<td>Full-height full-length</td>
</tr>
<tr>
<td>Slot2</td>
<td>CPU1</td>
<td>PCIe 4.0</td>
<td></td>
<td>x16</td>
<td>Port4</td>
<td>00/04/0</td>
<td>-</td>
<td>Full-height full-length</td>
</tr>
<tr>
<td>Slot3</td>
<td>CPU1</td>
<td>PCIe 4.0</td>
<td></td>
<td>x16</td>
<td>Port1/2</td>
<td>00/0C/0</td>
<td>-</td>
<td>Full-height half-length</td>
</tr>
<tr>
<td>PCIe Slot</td>
<td>CPU</td>
<td>PCIe Standards</td>
<td>Connector Width</td>
<td>Bus Width</td>
<td>Port Number in the BIOS</td>
<td>ROOT PORT (B/D/F)</td>
<td>Device (B/D/F)</td>
<td>Slot Size</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Slot4</td>
<td>CPU2</td>
<td>PCIe 4.0</td>
<td>x16</td>
<td>x16</td>
<td>Port0</td>
<td>80/00/0</td>
<td>-</td>
<td>Full-height full-length</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot5</td>
<td>CPU2</td>
<td>PCIe 4.0</td>
<td>x16</td>
<td>x16</td>
<td>Port4</td>
<td>80/04/0</td>
<td>-</td>
<td>Full-height full-length</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot6</td>
<td>CPU2</td>
<td>PCIe 4.0</td>
<td>x16</td>
<td>x16</td>
<td>Port16</td>
<td>80/10/0</td>
<td>-</td>
<td>Full-height half-length</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot7</td>
<td>CPU2</td>
<td>PCIe 4.0</td>
<td>x16</td>
<td>x16</td>
<td>Port8</td>
<td>80/08/0</td>
<td>-</td>
<td>Full-height half-length</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot8</td>
<td>CPU2</td>
<td>PCIe 4.0</td>
<td>x16</td>
<td>x16</td>
<td>Port12</td>
<td>80/0C/0</td>
<td>-</td>
<td>Full-height half-length</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAID controller card</td>
<td>CPU1</td>
<td>PCIe 4.0</td>
<td>x8</td>
<td>x8</td>
<td>Port8</td>
<td>00/08/0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PCIe Slot</td>
<td>CPU Standards</td>
<td>PCIe Connect Width</td>
<td>Bus Width</td>
<td>Port Number in the BIOS</td>
<td>ROOT PORT (B/D/F)</td>
<td>Device (B/D/F)</td>
<td>Slot Size</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------</td>
<td></td>
</tr>
</tbody>
</table>

NOTE

- A PCIe slot that supports a full-height full-length PCIe card is backward compatible with a full-height half-length or half-height half-length PCIe card. A PCIe slot that supports a full-height half-length PCIe card is backward compatible with a half-height half-length PCIe card.
- A PCIe slot that supports a PCIe x16 card is backward compatible with a PCIe x8, x4, or x2 card. A PCIe slot that supports a PCIe x8 card is backward compatible with a PCIe x4, or x2 card.
- All slots support PCIe cards of up to 75 W. The power of a PCIe card varies depending on its model. For details about supported PCIe cards, use the Intelligent Computing Compatibility Checker. For PCIe cards not listed by the Intelligent Computing Compatibility Checker, contact the local Huawei sales personnel to submit the compatibility test requirements.
- When two 2.5-inch drives are installed in I/O module 1 or 2, this module also supports a PCIe x16 riser card in slot 3 or 6.
- B/D/F indicates Bus/Device/Function Number.
- ROOT PORT (B/D/F) indicates the B/D/F of a CPU internal PCIe root port. Device (B/D/F) indicates the B/D/F (displayed on the OS) of an onboard or external PCIe port.
- This table lists the default B/D/F. The value may be different if the server is not fully configured with PCIe cards, fully configured with PCIe cards of different models or in different slots, or configured with a PCIe card with a PCI bridge.
- Atlas 300C accelerator cards are supported and dedicated riser cards are required. For details, see Intelligent Computing Compatibility Checker.

2.8 Fan Modules

The fan speed can be adjusted. In normal cases, the fans run at the minimum speed. If the temperature at the air intake vent or the server temperature increases, the speed will increase accordingly.

Figure 2-29 shows the fan modules.
Figure 2-29 Fan modules

NOTE

The preceding figure uses the 2280 configured with Kunpeng 920 7260, 5250, or 5230 processors as an example. Fan positions are the same for the 2280 with Kunpeng 920 5220 or 3210 processors.
3 Product Specifications

For details about the part numbers and compatibility, use the Intelligent Computing Compatibility Checker.

3.1 Technical Specifications

Table 3-1 Technical specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Server Powered by Kunpeng 920 7260, 5250, or 5230 Processors</th>
<th>Server Powered by Kunpeng 920 5220 or 3210 Processors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form factor</td>
<td>2U rack server</td>
<td></td>
</tr>
</tbody>
</table>
| Processor | ● Number of processors: two 64-core, 48-core, or 32-core processors with the frequency of 2.6 GHz
 | ● Inter-processor communication: two Hydra links between the processors, with a maximum speed of 30 Gbit/s each
 | ● L3 cache capacity: up to 64 MB |
| | ● Number of processors: two 32-core or 24-core processors with the frequency of 2.6 GHz
 | ● Inter-processor communication: one Hydra link with a maximum speed of 30 Gbit/s
<pre><code> | ● L3 cache capacity: up to 32 MB |
</code></pre>
<table>
<thead>
<tr>
<th>Item</th>
<th>Server Powered by Kunpeng 920 7260, 5250, or 5230 Processors</th>
<th>Server Powered by Kunpeng 920 5220 or 3210 Processors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>• Maximum number of slots: 32 DDR4 slots supporting RDIMMs</td>
<td>• Maximum number of slots: 16 DDR4 slots supporting RDIMMs</td>
</tr>
<tr>
<td></td>
<td>• Maximum memory speed: 2933 MT/s</td>
<td>• Maximum memory speed: 2933 MT/s</td>
</tr>
<tr>
<td></td>
<td>• Memory protection functions: ECC, SEC/DED, SDDC, and patrol scrubbing</td>
<td>• Memory protection functions: ECC, SEC/DED, SDDC, and patrol scrubbing</td>
</tr>
<tr>
<td></td>
<td>• Capacity of a single DIMM: 16 GB, 32 GB, 64 GB, or 128 GB</td>
<td>• Capacity of a single DIMM: 16 GB, 32 GB, 64 GB, or 128GB</td>
</tr>
<tr>
<td></td>
<td>NOTE</td>
<td>NOTE</td>
</tr>
<tr>
<td></td>
<td>DIMMs of different specifications (such as the capacity, bit width, rank, and height) cannot be installed in one server. That is, all DIMMs on one server must have the same part No.</td>
<td>DIMMs of different specifications (such as the capacity, bit width, rank, and height) cannot be installed in one server. That is, all DIMMs on one server must have the same part No.</td>
</tr>
<tr>
<td>Storage</td>
<td>Drive:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Support for a variety of drive configurations. For details, see Table 2-9.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hot swap of a single drive.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAID controller card:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Support for a variety of RAID controller cards. Use the Intelligent Computing Compatibility Checker to obtain information about the specific RAID controller cards supported.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Supercapacitor to protect cache data from power failures, and support for RAID level migration, drive roaming, self-diagnosis, and web-based configuration. For details about the RAID controller card, see the TaiShan Server RAID Controller Card User Guide.</td>
<td></td>
</tr>
<tr>
<td>FlexIO card</td>
<td>A maximum of two FlexIO cards. A FlexIO card can provide either of the following network ports:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Four GE electrical ports, supporting PXE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Four 25GE/10GE optical ports, supporting PXE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Different optical modules can be used to support 25GE or 10GE optical port rate.</td>
<td></td>
</tr>
</tbody>
</table>
Item | Server Powered by Kunpeng 920 7260, 5250, or 5230 Processors | Server Powered by Kunpeng 920 5220 or 3210 Processors
--- | --- | ---
PCIe slot | ● A maximum of nine PCIe 4.0 slots: one for a RAID controller card and eight for PCIe cards. The specifications of PCIe 4.0 slots are as follows:
 - I/O modules 1 and 2 provide the following PCIe slots:
 - Two standard full-height full-length PCIe 4.0 x16 slots (width: PCIe 4.0 x8) and one standard full-height half-length PCIe 4.0 x16 slot (width: PCIe 4.0 x8)
 - One standard full-height full-length PCIe 4.0 x16 slot and one standard full-height half-length PCIe 4.0 x16 slot (width: PCIe 4.0 x8)
 - I/O module 3 provides the following PCIe slots:
 - Two standard half-height half-length PCIe 4.0 x16 slots (width: PCIe 4.0 x8)
 - One standard half-height half-length PCIe 4.0 x16 slot
 ● The PCIe expansion slots fully support Huawei proprietary PCIe SSD cards, which bolster I/O performance for applications such as searching, caching, and download services.
 ● The PCIe slots support Huawei-developed Atlas 300 AI accelerator cards to implement fast and efficient processing and inference, and image identification and processing.
 NOTE
 For details about the PCIe card models supported by the 2280, use the [Intelligent Computing Compatibility Checker](#).

Port | ● Front panel: two USB 3.0 ports and one DB15 VGA port
● Rear panel: two USB 3.0 ports, one DB15 VGA port, one RJ45 serial port, and one RJ45 management network port

Fan module | Four hot-swappable fan modules, providing protection against single-fan failure

System management | Huawei iBMC supports Intelligent Platform Management Interface (IPMI), Serial over LAN (SOL), KVM over IP, and virtual media, and provides one 10/100/1000 Mbps RJ45 management network port.

Security | ● Administrator password
● Front bezel (optional)
 NOTE
 The front bezel is installed on the front panel and comes with a security lock to prevent unauthorized operations on drives.
3.2 Environmental Specifications

<table>
<thead>
<tr>
<th>Category</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>• Operating temperature: 5°C to 40°C (41°F to 104°F) (ASHRAE Classes A2 and A3 compliant)</td>
</tr>
<tr>
<td></td>
<td>• Storage temperature (≤ 72 hours): -40°C to +65°C (-40°F to +149°F)</td>
</tr>
<tr>
<td></td>
<td>• Long-term storage temperature (> 72 hours): 21°C to 27°C (69.8°F to 80.6°F)</td>
</tr>
<tr>
<td></td>
<td>• Maximum temperature change rate: 20°C/h (36°F/h)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>• Operating humidity: 8% to 90%</td>
</tr>
<tr>
<td></td>
<td>• Storage humidity (≤ 72 hours): 5% to 95%</td>
</tr>
<tr>
<td></td>
<td>• Long-term storage humidity (> 72 hours): 30% to 69%</td>
</tr>
<tr>
<td></td>
<td>• Maximum change rate: 20%/h</td>
</tr>
<tr>
<td>Air volume</td>
<td>≥204CFM</td>
</tr>
<tr>
<td>Category</td>
<td>Specifications</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Altitude</td>
<td>3050 m (10000 ft.)</td>
</tr>
</tbody>
</table>
| **NOTE** | ASHRAE 2015 compliant:
 ● ASHRAE Class A1 and A2 compliant: For altitudes above 900 m (2952.72 ft.), the highest operating temperature decreases by 1°C (1.8°F) for every increase of 300 m (984.24 ft.) in altitude.
 ● ASHRAE Class A3 compliant: For altitudes above 900 m (2952.72 ft.), the highest operating temperature decreases by 1°C (1.8°F) for every increase of 175 m (574.15 ft.) in altitude.
 ● ASHRAE Class A4 compliant: For altitudes above 900 m (2952.72 ft.), the highest operating temperature decreases by 1°C (1.8°F) for every increase of 125 m (410.10 ft.) in altitude. |
| Corrosive gaseous contaminant | Maximum corrosion product thickness growth rate:
 ● Copper corrosion rate test: 300 Å/month (meeting level G1 requirements of the ANSI/ISA-71.04-2013 standard on gaseous corrosion)
 ● Silver corrosion rate test: 200 Å/month |
| Particle contaminant |
 ● The equipment room environment meets the requirements of ISO 14664-1 Class 8.
 ● There is no explosive, conductive, magnetic, or corrosive dust in the equipment room.
 NOTE
 It is recommended that the particulate pollutants in the equipment room be monitored by a professional organization. |
| Acoustic noise | The declared A-weighted sound power levels (LWAd) and declared average bystander position A-weighted sound pressure levels (LpAm) listed are measured at 23°C (73.4°F) in accordance with ISO 7779 (ECMA 74) and declared in accordance with ISO 9296 (ECMA 109).
 ● Idle:
 - LWAd: 5.64 Bels
 - LpAm: 41 dBA
 ● Operating:
 - LWAd: 6.24 Bels
 - LpAm: 46.6 dBA
 NOTE
 Actual sound levels generated during operation vary depending on server configuration, load, and ambient temperature. |
Table 3-3 Operating temperature limitations

<table>
<thead>
<tr>
<th>Model</th>
<th>Max. 30°C (86°F)</th>
<th>Max. 35°C (95°F) (ASHRAE Class A2 Compliant)</th>
<th>Max. 40°C (104°F) (ASHRAE Class A3 Compliant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP model with 12 x 3.5-inch drives</td>
<td>Supports all configurations.</td>
<td>Supports all configurations.</td>
<td>Does not support 64-core CPUs.</td>
</tr>
<tr>
<td>Pass-through model with 12 x 3.5-inch drives</td>
<td>Supports all configurations.</td>
<td></td>
<td>Does not support PCIe SSD cards</td>
</tr>
<tr>
<td>EXP model with 25 x 2.5-inch drives</td>
<td>Supports all configurations.</td>
<td></td>
<td>Does not support passive cooling GPUs</td>
</tr>
<tr>
<td>Pass-through model with 24 x 2.5-inch drives</td>
<td>Supports all configurations.</td>
<td></td>
<td>(including DMINI cards).</td>
</tr>
<tr>
<td>Server with 8 x 2.5-inch SAS/SATA drives and 12 x 2.5-inch NVMe SSDs</td>
<td>Supports all configurations.</td>
<td></td>
<td>Does not support rear drives</td>
</tr>
</tbody>
</table>

NOTE
- If one fan fails, the highest operating temperature of the server is 5°C (9°F) lower than that in normal cases.
- When powered by Kunpeng 920 5220 or 3210 processors, the server does not support 24 x 2.5 SAS/SATA pass-through drives.

3.3 Physical Specifications

Table 3-4 Physical specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensio n (H x W x D)</td>
<td>Chassis with 3.5-inch drives: 86.1 mm (2U) x 447 mm x 790 mm (3.39 in. x 17.60 in. x 31.10 in.)</td>
</tr>
<tr>
<td></td>
<td>Chassis with 2.5-inch drives: 86.1 mm (2U) x 447 mm x 790 mm (3.39 in. x 17.60 in. x 31.10 in.)</td>
</tr>
</tbody>
</table>
Installation space

Requirements for cabinet installation (cabinet compliant with the International Electrotechnical Commission (IEC) 297 standard):
- Cabinet width: 482.6 mm (19 in.)
- Cabinet depth: ≥ 1000 mm (39.37 in.)

Requirements for guide rail installation:
- L-shaped guide rails: apply only to Huawei cabinets.
- Adjustable guide rails: apply to a cabinet with a distance of 543.5 mm to 848.5 mm (21.40 in. to 33.41 in.) between the front and rear mounting bars.

Weight in full configuration

<table>
<thead>
<tr>
<th>Weight in full configuration</th>
<th>Net weight:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server with 12 x 3.5-inch front drives + 4 x 3.5-inch rear drives + 4 x 2.5-inch rear drives: 32 kg (70.55 lb)</td>
<td></td>
</tr>
<tr>
<td>Server with 25 x 2.5-inch front drives + 2 x 3.5-inch rear drives + 4 x 2.5-inch rear drives: 25 kg (55.12 lb)</td>
<td></td>
</tr>
<tr>
<td>Server with 8 SAS front drives + 12 front NVMe SSDs + 4 x 2.5-inch rear drives: 24 kg (52.91 lb)</td>
<td></td>
</tr>
<tr>
<td>Server with 24 x 2.5-inch front drives + 4 x 2.5-inch rear drives: 24 kg (52.91 lb)</td>
<td></td>
</tr>
</tbody>
</table>

Packaging materials: 5 kg (11.03 lb)

Power consumption

The power consumption parameters vary according to configurations (including the ErP standard configuration of the European Union). Use the Intelligent Computing Product Power Calculator to obtain the specific power consumption value.

3.4 PSU Specifications

- The PSUs are hot-swappable and work in 1+1 redundancy mode.
- For details about supported PSUs, use the Intelligent Computing Compatibility Checker.
- The recommended current specifications for the external power circuit breaker connected to the server are as follows:
 - AC power supply: 32 A
 - DC power supply: 63 A
- A server must use PSUs of the same model.
- The PSUs provide short-circuit protection. The PSUs that support dual input live wires provide double-pole fuse.
- If the input voltage ranges from 200 V to 220 V AC, the output power of the 2000 W AC platinum PSU decreases to 1800 W.
Use the Intelligent Computing Compatibility Checker to obtain information about the operating systems and hardware supported by the server.

NOTICE

Do not use incompatible components. Otherwise, the server may fail to work properly. The technical support and warranty do not cover faults caused by incompatible components.
5 Install and Configure

5.1 Tool Preparations

Prepare the following tools:

- ESD wrist strap or ESD gloves
- M3 Phillips screwdriver
- Protective gloves
- ESD bag
- Flat-head screwdriver

5.2 Safety Symbols on Devices

<table>
<thead>
<tr>
<th>Label</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Warning]</td>
<td>Warning</td>
<td>This label indicates that wrong operations may cause device damage or human injury.</td>
</tr>
<tr>
<td>![External grounding]</td>
<td>External grounding</td>
<td>This label indicates grounding of external devices. One end of the ground cable must connect to the device, and the other end to a ground point. This ensures normal running of the devices and the safety of the operator.</td>
</tr>
<tr>
<td>Label</td>
<td>Meaning</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Internal grounding</td>
<td>This label indicates grounding of internal devices. The terminals of the ground cable are connected to different components of the same device. This ensures normal running of the devices and the safety of the operator.</td>
</tr>
<tr>
<td></td>
<td>ESD label</td>
<td>This label indicates a static sensitive area. Do not touch the device with your hands. When operating the device within this area, take electrostatic discharge (ESD)-preventive measures. For example, wear an ESD wrist strap.</td>
</tr>
<tr>
<td></td>
<td>Altitude</td>
<td>Indicates that the device operates properly at an altitude of 2000 m or lower. The symbol applies only to CCC.</td>
</tr>
<tr>
<td></td>
<td>High touch current</td>
<td>This label indicates that the device has high touch current and must be grounded before powering it on.</td>
</tr>
<tr>
<td></td>
<td>Do not touch</td>
<td>This label indicates hazardous moving parts. Do not touch the fans when they are rotating.</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>This label indicates that at least two people are required for moving the device.</td>
</tr>
<tr>
<td></td>
<td>No stacking</td>
<td>Do not stack after unpacking. This may cause device damage.</td>
</tr>
<tr>
<td></td>
<td>No handling</td>
<td>Do not carry the device using its handle. This may cause injury or damage.</td>
</tr>
<tr>
<td></td>
<td>Multiple inputs</td>
<td>This label indicates that the device has multiple power inputs. Disconnect all power inputs before you power off the device.</td>
</tr>
</tbody>
</table>

5.3 ESD Protection

TaiShan 200 Server
User Guide (Model 2280)

Issue 06 (2020-04-15) Copyright © Huawei Technologies Co., Ltd.
5.3.1 Operation Instructions

To minimize ESD damage, observe the following precautions:

- Lay ESD floors or ESD cushions in the entire equipment room, and use ESD chairs. The equipment room is equipped with ESD clapboards, ESD screens, and ESD curtains.
- All floor-standing electric devices, metal frames, and metal chassis shells in the equipment room must be directly grounded. All electric meters or tools on a workbench must be connected to the common ground point of the workbench.
- Monitor the temperature and humidity in the equipment room. The heating system reduces indoor humidity and increases ESD.
- Place components in ESD bags or boxes during transportation or storage.
- Wear an ESD wrist strap when installing or removing a server component. Ensure that the ground terminal of the ESD wrist strap is inserted into the ESD jack in the chassis.
- Before touching a device, ensure that you are wearing ESD clothing and ESD gloves (or wrist strap), and remove any conductive objects (such as watches and jewelry). Figure 5-1 shows conductive objects that must be removed before you touch a device.

![Figure 5-1: Conductive objects to be removed](image)

- Both ends of an ESD wrist strap must be in good contact. One end contacts your bare skin, and the other is securely inserted into the ESD jack in the chassis. For details, see 5.3.2 ESD Wrist Strap.
- During parts replacement, keep new server components in ESD bags before installation, and place removed server components on conductive mats for temporary storage.
- Do not touch welding points, pins, or exposed circuits.

5.3.2 ESD Wrist Strap

A cabinet or chassis is properly grounded.

Step 1 Put on the ESD wrist strap. See Figure 5-2.
Figure 5-2 Wearing an ESD wrist strap

Step 2 Tighten the ESD wrist strap to ensure that it is in good contact with your bare skin.

Step 3 Insert the ground terminal of the ESD wrist strap into the ESD jack in a cabinet or chassis.

---End

5.4 Environmental Requirements

NOTE

- For details about the safety precautions to be observed when you install or replace servers and their parts, see the *Huawei Server Safety Information*.
- Suitable for mounting on concrete or other non-combustible surface only.

5.4.1 Space and Airflow Requirements

To allow for servicing and adequate airflow, observe the following space and airflow requirements:

- Install the server in an access-restricted area.
- Keep the area in which the server is located clean and tidy.
- To facilitate heat dissipation and maintenance, keep a clearance of 800 mm (31.50 in.) between walls and the front and rear doors of the cabinet.
- Do not block the air intake vents. Otherwise, air intaking and heat dissipation will be affected.
- The air conditioning system in the equipment room provides enough wind to ensure proper heat dissipation of all components.

The server draws in cool air from the front of the cabinet and exhausts hot air from the rear. Therefore, the front and rear of the cabinet must be well ventilated for optimal heat dissipation. Figure 5-3 shows the direction of heat dissipation.
5.4.2 Temperature and Humidity Requirements

To ensure continued safe and reliable equipment operation, install or position the system in a well-ventilated, climate-controlled environment.

- Use temperature control devices all year long in any climates.
- In dry and humid areas, maintain ambient humidity within range with humidifiers and dehumidifiers respectively.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>5°C to 40°C (41°F to 104°F)</td>
</tr>
<tr>
<td>Humidity</td>
<td>8% RH to 90% RH (non-condensing)</td>
</tr>
</tbody>
</table>

5.4.3 Cabinet Requirements

- A standard 19-inch cabinet with a depth of more than 1000 mm (39.37 in.).
- Air filters installed on cabinet doors.
- AC power supplied from the rear of the cabinet.

5.5 Unpacking the Chassis

Step 1 Check that the packaging is in good condition.
NOTE

If there is damage (for example, if the package is soaked or deformed, or the seals or pressure-sensitive adhesive tapes are not intact), submit the Cargo Problem Feedback Form.

Step 2 Cut open the pressure-sensitive adhesive tape on the package, and open the box.

CAUTION

Be careful with the box cutter to avoid personal injury or equipment damage.

Step 3 Check the contents against Table 5-3 to ensure that nothing is missing. Check that they are free from oxidation, corrosion, or damage.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Documentation bag that contains a warranty card, and a Quick Start Guide</td>
</tr>
<tr>
<td>2</td>
<td>Guide rails</td>
</tr>
<tr>
<td>3</td>
<td>Rack server</td>
</tr>
</tbody>
</table>

5.6 Installing Optional Parts

Before installing and configuring the server, you need to install all optional parts required, for example, extra drives, and PCIe cards. For details, see TaiShan 200 Server Maintenance and Service Guide (Model 2280).

5.7 Installing the Server on Guide Rails

5.7.1 Installing with L-Shaped Guide Rails

L-shaped guide rails are designed for Huawei cabinets. The servers are stackable when L-shaped guide rails are used.

Step 1 Install the floating nuts.

1. Determine the installation positions according to the cabinet device installation plan.

NOTE

Floating nuts are used to tighten screws. The spacing boundary is used as the reference for calculating device installation space. See Figure 5-4.
2. Fasten the lower end of a floating nut to the target square hole in a mounting bar at the front of the cabinet.
3. Use a floating nut hook to pull the upper end of the floating nut, and fasten it to the upper edge of the square hole. See Figure 5-5.

Figure 5-5 Installing a floating nut

4. Install a floating nut to the other front mounting bar in the same way.

Step 2 Install the L-shaped guide rails.
1. Position a guide rail horizontally in contact with the mounting bars in the cabinet.
2. Tighten the screws to secure the guide rail. See Figure 5-6.
3. Install the other guide rail in the same way.

Step 3 Install the server.

1. Lift the server. This task requires at least two people.
2. Place the server on the guide rails and slide it into the cabinet. See (1) in **Figure 5-7**.

Figure 5-7 Installing the server
3. When the two mounting ears of the server come into contact with the mounting bars on the cabinet, tighten their captive screws to secure the server. See (2) in Figure 5-7.

Step 4 Connect the power cables, network cables, VGA cable, and USB device as required, and power on the server.

---End

5.7.2 Installing with Adjustable Guide Rails

Adjustable guide rails are for a cabinet with a depth of 543.5 mm to 848.5 mm (21.40 in. to 33.41 in.) between the front and rear mounting bars.

The servers are stackable onto adjustable guide rails.

Step 1 Install the adjustable guide rails.

1. Position a guide rail horizontally in contact with the mounting bars and hook it onto the cabinet. See (1) in Figure 5-8.

 NOTE

 The three holes in each mounting ear of a guide rail should be within 1U boundary lines.

 Figure 5-8 Installing an adjustable guide rail

2. Plug the second square holes at the front and rear of the guide rail using the plugs included to secure the guide rail. See (2) in Figure 5-8.

3. (Optional) Install an M6 screw in the square hole underneath at the rear of the guide rail and secure it. See (3) in Figure 5-8.
While screws are not necessary for the installation of adjustable guide rails, M6 screws at the rear end of the server will make it more shockproof and secure.

4. Install the other guide rail in the same way.

Step 2 Install the server.

1. Lift the server. This task requires at least two people.
2. Place the server on the guide rails and slide it into the cabinet. See (1) in Figure 5-9.

Figure 5-9 Installing the server

3. When the two mounting ears of the server come into contact with the mounting bars on the cabinet, tighten their captive screws to secure the server. See (2) in Figure 5-9.

Step 3 Connect the power cables, network cables, VGA cable, and USB device as required, and power on the server.

----End

5.8 Connecting External Cables
5.8.1 Cabling Overview

Basic Guidelines

NOTICE
To ensure optimal heat dissipation, do not block the air exhaust vents of PSUs.

- Lay out and bind cables of different types (such as power and signal cables) separately. Cables of the same type must be in the same direction. Route cables near each other in crossover mode. Ensure that the distance between power cables and signal cables is greater than or equal to 30 mm (1.18 in.) when you lay out the cables in parallel.
- If you cannot identify cables according to the cable labels, attach an engineering label to each cable.
- Protect cables from burrs, heat sinks, and active accessories, which may damage the insulation layers of cables.
- Ensure that the length of cable ties for binding cables is appropriate. Do not connect two or more cable ties together for binding cables. After binding cables properly, trim off the excess lengths of the cable ties and ensure that the cuts are neat and smooth.
- Ensure that cables are properly routed, supported, or fixed within the cable troughs inside the cabinet to prevent loose connections and cable damage.
- Coil any surplus lengths of cables and bind them to proper positions inside the cabinet.
- Route cables straightly and bind them neatly. The bending radius of a cable varies depending on the position where the cable is bent.
 - If you need to bend a cable in its middle, the bending radius must be at least twice the diameter of the cable.
 - If you need to bend a cable at the output terminal of a connector, the bending radius must be at least five times the cable diameter, and the cable must be bound before bending.
- Do not use cable ties at a place where the cables are bent. Otherwise, the cables may break.

Common Methods

The methods of routing cables inside a cabinet are described as follows:

- Determine overhead cabling and underfloor cabling for power cables based on specific conditions of the equipment room. Specifically, take into consideration the AC power distribution frame (PDF), surge protector, and terminal block.
- Determine overhead cabling and underfloor cabling for service data cables based on specific conditions of the equipment room.
- Place the connectors of all service data cables at the bottom of the cabinet so that the connectors are difficult to reach.
5.8.2 Connecting Cables to a Mouse, Keyboard, and VGA Port

The front and rear panels of the server have DB15 VGA ports but no standard PS/2 port for a keyboard or mouse.

Connect a keyboard or mouse to a USB port on the front or rear panel if needed, either directly or with a USB-to-PS/2 cable.

1. **Step 1** Wear an ESD wrist strap. For details, see 5.3 ESD Protection.
2. **Step 2** Plug the USB connector on the PS/2 cable into the USB port on the front or rear panel of the server.
3. **Step 3** Connect the connectors on the other end of the PS/2 cable to the keyboard and mouse.
4. **Step 4** Connect the DB15 connector on the VGA cable to the VGA port on the front or rear panel of the server and tighten the two screws.
5. **Step 5** Connect the other end of the VGA cable to the VGA port on the monitor and tighten the two screws.

Figure 5-10 Connecting PS/2 and VGA cables

5.8.3 Connecting a Network Cable

Before connecting or replacing a network cable, use a network cable tester to check whether the new network cable is functional.

The new and old cables must be of the same model or be compatible.

Before installing a network cable to a network port, check that the network cable connector is intact and the pins have no sundries or deformation.

1. **Step 1** Wear an ESD wrist strap. For details, see 5.3 ESD Protection.
2. **Step 2** Check the model of the new network cable.
A shielded network cable is recommended. According to professional EMC test results, unshielded network cables provide poor ESD prevention, and the system may stop responding or restart when the static electricity is high.

Step 3 Number the new network cable.
- The number of the new network cable must be the same as that of the old one.
- Use the same type of labels for network cables. Record the name and number of the local device on one side of a label and those of the peer device on the other side. Attach a label 2 cm (0.79 in.) away from the end of a network cable.

Step 4 Route the new network cable in the same way (underfloor or overhead) as the network cable to be replaced.
- Underfloor cabling is recommended because it is tidy and easy to route. Route cables in the cabinet based on the installation requirements. You are advised to arrange new cables in the same way as existing cables. Ensure that cables are routed neatly and undamaged.
- Separate network cables from power cables when routing.
- The minimum bend radius of a network cable is 4 cm (1.57 in.). Check that the cable insulation layer is intact. Ensure that cables are routed for easy maintenance and capacity expansion.
- Bind cables with ties when routing. Ensure that optical cables are routed straightly and bound neatly and that cable ties are installed at even spacing and fastened properly.

Step 5 Remove the network cable to be replaced.

Step 6 Install the new network cable.
- Connect the new network cable to the same port as the removed one.
- Install the network cable in the network port securely.

Figure 5-11 Connecting a network cable

Step 7 Connect the other end of the network cable to the peer network port according to the network plan.
- Connect the new network cable to the same port as the removed one.
- Install the network cable in the network port securely.

Step 8 Check that the new network cable is functioning properly.
Power on the device, and ping the peer device connected by the new network cable. If the peer device cannot be pinged, check whether the network cable is damaged or the connectors are securely connected.

Step 9 Bind the new network cable with other cables.

Bind the new network cable in the same way as the existing network cables. You can also remove all cable ties and bind all of the network cables again if necessary.

---End

5.8.4 Connecting a Cable to an Optical Port

You can connect an optical or SFP+ cable to an optical port. You need to determine the type of cable to be connected based on site requirements.

Step 1 Wear an ESD wrist strap. For details, see 5.3 ESD Protection.

Step 2 Check the model of the new network cable.

Step 3 Number the new cable.
- The new cable must have the same number as the old one.
- Use the same type of labels for optical cables. Record the name and number of the local device to be connected on one side of a label and those of the peer device on the other side. Attach a label 2 cm (0.79 in.) away from the end of a network cable.

Step 4 Lay out the new cable in the same way as the old one.
- Lay out optical cables or SFP+ cables in the rack based on installation regulations. You are advised to arrange cables in original mode. Ensure that cables are routed neatly and intact.
- Separate optical cables or SFP+ cables from power cables and signal cables when laying out the cables.
- Bend an optical cable or SFP+ cable with a bending radius of at least 4 cm (1.57 in.) to prevent damage to core wires. Ensure that the cable is intact. Ensure that optical cables or SFP+ cables are laid out for easy maintenance and capacity expansion.
- Bind optical cables with cable ties. Ensure that optical cables are routed straightly and bound neatly and that cable ties are installed at even spacing and fastened properly.

Step 5 Connect the cable to an optical port.

When you use an optical cable:
1. Remove the old optical cable from the server.
2. Connect the new optical cable.

NOTE
- Connect the new optical cable to the same port as the old one.
- Connect the optical cables to the optical module securely.

a. Insert the optical module into the optical port. See (1) in Figure 5-12.
b. Close the latch on the optical module to secure it. See (2) in Figure 5-12.
c. Insert the optical cable into the optical module. See (3) in Figure 5-12.

Figure 5-12 Connecting an optical cable

When you use an SFP+ cable:

1. Remove the old SFP+ cable.
 Gently push the cable connector inwards and pull the latch out to remove the SFP+ cable. See **Figure 5-13**.

NOTICE

Do not directly pull out the latch.
2. Connect the new SFP+ cable.

Remove the dust-proof cap on the port, and insert the cable connector into the port. See Figure 5-14.

NOTE

When you hear a "click" sound and the cable cannot be pulled out, the connector is securely connected.

Step 6 Check that the new cable is properly connected.

Power on the server, and ping the IP address of the peer device. If the peer device cannot be pinged, check whether the cable is intact or the connectors are securely connected.

Step 7 Bind the new optical cable.
Bind the new network cable in the same way as the existing network cables. You can also remove all cable ties and bind all of the optical cables again if necessary.

----End

5.8.5 Connecting a USB Device

Step 1 Wear an ESD wrist strap. For details, see 5.3 ESD Protection.

Step 2 Connect a USB device to a USB port on the server. See Figure 5-15.

![Figure 5-15 Connecting a USB device](image)

----End

5.8.6 Connecting a Serial Cable

The rear panel of the server provides a standard RJ45 serial port (three-pin serial port), which works as the system serial port by default. You can set it as the iBMC serial port using the iBMC CLI.

The serial port can be used as:

- System serial port to monitor the OS status
- iBMC serial port for debugging and fault locating

Procedure

Step 1 Wear an ESD wrist strap. For details, see 5.3 ESD Protection.

Step 2 Plug the connector into the serial port. See Figure 5-16.
5.8.7 Connecting Power Cables

5.8.7.1 Connecting the AC PSU Cable

Power cables are used only for dedicated servers. Do not use them for other devices.

Step 1 Wear an ESD wrist strap. For details, see 5.3 ESD Protection.

Step 2 Connect the power cable to the PSU. See Figure 5-17.

Figure 5-17 Connecting a power cable

Step 3 Secure the power cable using a velcro strap. See Figure 5-18.
Figure 5-18 Securing a power cable

Step 4 Insert the other end of the power cable into the AC power socket on the cabinet. The AC power socket is located horizontally at the rear of the cabinet. Select a jack on the power socket for connection.

Step 5 Bind the power cable to the CMA using cable ties.

---End

5.8.7.2 Connecting DC PSU Cables

NOTICE

- Use dedicated power cables to ensure equipment and personal safety.
- Use power cables only for dedicated servers. Do not use them for other devices.
- Connect the power cables of the active and standby PSUs to different power distribution units (PDUs) to ensure reliable system operation.
- Ground the equipment before powering it on.

Procedure

Step 1 Wear an ESD wrist strap. For details, see 5.3 ESD Protection.

Step 2 Take the spare part out of its ESD bag.

Step 3 Connect the power cables to the PSUs.

1. Put the OT terminal (for the ground cable) on the screw removed from the ground hole, install the screw on the ground hole, and tighten the screw. See (1) in Figure 5-19.
2. Insert the power cables to the wiring terminals on the PSU until the cables click into position. See (2) in Figure 5-19.
 - Connect the cord end terminal of the negative power cable (blue) to the NEG(-) wiring terminal on the PSU.
 - Connect the cord end terminal of the positive power cable (black) to the RTN(+) wiring terminal on the PSU.

Figure 5-19 Connecting cables

---End

5.8.8 Verifying Cable Connections

CAUTION

Before verifying cable connections, check that the power is cut off. Otherwise, any incorrect connection or loose connection may cause human injury or device damage.

Check cable connections against Table 5-4.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power cable</td>
<td>Power cables are correctly connected to the rear of the chassis.</td>
</tr>
<tr>
<td>Network cable</td>
<td>Network cables are connected correctly to the management network port or service ports on the rear panel of the chassis.</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Ground cable</td>
<td>The 2280 does not provide a separate ground port. It is grounded through the ground cable of a power cable. Ensure that the power cables of the PSUs are in good contact.</td>
</tr>
</tbody>
</table>

5.9 Powering On and Off the Server

Powering On the Server

Power on the server using one of the following methods based on the actual situation:

- **If the PSUs are properly installed but are not connected to an external power supply:**

 Connect the external power supply to the PSUs. Then the server will power on with the PSUs.

 ☠️ **NOTE**

 The default value of **System State Upon Power Supply** is **Power on**, which indicates that the server automatically powers on after power is supplied to the PSUs. To change the value of **System State Upon Power Supply**, log in to the iBMC WebUI and choose **Power > Power Control**.

- **If the PSUs are properly installed and connected to the external power supply and the server is in the standby state (the power indicator is steady yellow), power on the server as follows:**

 - Press the power button on the front panel to power on the server. For details about the power button position, see **2.2 Front Panel Indicators and Buttons**.

 - Power on the server using the iBMC WebUI.

 1. Log in to the iBMC WebUI. For details, see **5.10.4 Logging In to the iBMC WebUI**.
 2. Open the **Power Control** page.

 - If the iBMC version is earlier than V500, choose **Power > Power Control**.
 - If the iBMC version is V500 or later, choose **System > Power > Power Control**.
 3. Click **Power On**. In the displayed dialog box, click **Yes** to power on the server.

 - Power on the server using the Remote Virtual Console.

 1. Log in to the Remote Virtual Console. For details, see **8.1 Logging In to the Remote Virtual Console**.
 2. On the KVM screen, click ▲ or ▼ on the menu bar.
 3. Choose **Power On**. A dialog box is displayed.
iv. Click **Yes** to power on the server.

- **Power on the server using the iBMC CLI.**
 i. Log in to the iBMC CLI. For details, see **8.2 Logging In to the iBMC CLI**.
 ii. On the iBMC CLI, run the `ipmcset -d powerstate -v 1` command.
 iii. Enter `y` or `Y` to power on the server.

Powering Off the Server

NOTE

- Services and programs running on the server will be interrupted when it is powered off. Before powering off the server, ensure that all services and programs have been stopped or switched to other servers.
- Power-off in this section indicates to power off the server to the standby state (the power indicator is steady yellow).
- After the server is forcibly powered off, wait for more than 10s to ensure that the server is powered off completely. Then you can power it on again.

Power off the server using one of the following methods:

- Use cables to connect the server to a video display, keyboard, and mouse, and shut down the server OS to power off the server.
- Press the power button on the front panel to power off the server. For details about the power button position, see **2.2 Front Panel Indicators and Buttons**.
 - When the server is powered on, press the power button to shut down the OS to power off the server.

NOTE

If the server OS is running, shut it down as prompted.

- When the server is powered on, hold down the power button for 6 seconds to forcibly power off the server.

NOTICE

A forced power-off may cause data loss or program damage. Forcibly power off the server only when necessary.

- Power off the server using the iBMC WebUI.
 a. Log in to the iBMC WebUI. For details, see **5.10.4 Logging In to the iBMC WebUI**.
 b. Open the **Power Control** page.
 - If the iBMC version is earlier than V500, choose **Power > Power Control**.
 - If the iBMC version is V500 or later, choose **System > Power > Power Control**.
 c. Click **Power Off** or **Forced Power Off**. In the displayed dialog box, click **Yes** to power off the server.
5.10 Initial Configuration

5.10.1 Default Data

Table 5-5 lists the default data for configuring the server.

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Default Value</th>
</tr>
</thead>
</table>
| iBMC management network port data | IP address and subnet masks | • IP address: 192.168.2.100
• Subnet mask: 255.255.255.0 |
5.10.2 Configuration Process

Figure 5-20 shows the initial configuration process of the server.

Figure 5-20 Initial configuration process

```
Start

Set the management network port IP address.

Log in to the iBMC WebUI.

Check the server.

Change the initial passwords.

Configure RAID.

Configure the BIOS.

Install an OS.

End
```

Table 5-6 describes the initial configuration process.
Table 5-6 Configuration process

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set the management network port IP address.</td>
<td>Set an IP address for the management network port.</td>
</tr>
<tr>
<td>Log in to the iBMC WebUI.</td>
<td>Log in to the iBMC WebUI from a local PC.</td>
</tr>
<tr>
<td>Check the server.</td>
<td>• Check that the server version information is correct. • Check that no alarm is generated for the server.</td>
</tr>
<tr>
<td>Change the initial passwords.</td>
<td>• Change the iBMC user name and password for the server. • Change the U-Boot password.</td>
</tr>
<tr>
<td>Configure RAID.</td>
<td>Configure RAID for the server. For details, see the RAID Controller Card User Guide (Kunpeng Processors).</td>
</tr>
<tr>
<td>Configure the BIOS.</td>
<td>Configure the server BIOS, including setting the boot option priority and BIOS password.</td>
</tr>
<tr>
<td>Install an OS.</td>
<td>Install an OS for the server.</td>
</tr>
</tbody>
</table>

5.10.3 Querying the Management Network Port IP Address

Methods

You can obtain the IP address using any of the following methods:

- Obtain the default IP address.
- Use the iBMC WebUI.
- Use the BIOS. For details, see this topic.
- Log in to the iBMC CLI through the serial port, and run the `ipmcget -d ipinfo` to query the IP address of the management network port. For details, see TaiShan Rack Server iBMC User Guide.

Default IP Address

The default IP address of the iBMC management network port is 192.168.2.100.

Procedure

Step 1 Connect a USB mouse and keyboard.
Step 2 Connect a monitor via VGA cable.
Step 3 Restart the OS.
Step 4 When the screen shown in Figure 5-21 is displayed, press Delete or F4 to enter the BIOS Setup screen.

⚠️ NOTE
- Press F12 to boot from the network.
- Press F2 for boot options.
- Press F6 to enter the SP boot screen.

Figure 5-21 BIOS startup screen

Step 5 Enter the BIOS password when prompted.

⚠️ NOTE
- The default password for logging in to the BIOS is Admin@9000.
- The server will be locked after three consecutive failures with wrong passwords. You can restart the server to unlock it.

Step 6 Choose Advanced > IPMI iBMC Configuration > IBMC Config, and press Enter.
The IBMC Config screen is displayed. See Figure 5-22 and Figure 5-23.
Figure 5-22 IBMC Config screen 1

<table>
<thead>
<tr>
<th>IBMC User Name</th>
<th>Administrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset IBMC User Password</td>
<td></td>
</tr>
<tr>
<td>IBMC UDT Support For POST</td>
<td>Disable</td>
</tr>
<tr>
<td>IBMC UDT Support For OS</td>
<td>Disable</td>
</tr>
<tr>
<td>IBMC & NCSI Select</td>
<td>Dedicated</td>
</tr>
</tbody>
</table>

IPV4 configuration

<table>
<thead>
<tr>
<th>IP Source</th>
<th>Static</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>192.168.2.110</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Gateway Address</td>
<td>192.168.2.110</td>
</tr>
</tbody>
</table>

IPV6 configuration

<table>
<thead>
<tr>
<th>IP Source</th>
<th>Static</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix Length</td>
<td>64</td>
</tr>
<tr>
<td>IP Address</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-23 IBMC Config screen 2

<table>
<thead>
<tr>
<th>IBMC & NCSI Select</th>
<th>Dedicated</th>
</tr>
</thead>
</table>

IPV4 configuration

<table>
<thead>
<tr>
<th>IP Source</th>
<th>Static</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>192.168.2.110</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Gateway Address</td>
<td>192.168.2.110</td>
</tr>
</tbody>
</table>

IPV6 configuration

<table>
<thead>
<tr>
<th>IP Source</th>
<th>Static</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix Length</td>
<td>64</td>
</tr>
<tr>
<td>IP Address</td>
<td></td>
</tr>
</tbody>
</table>

---End

5.10.4 Logging In to the iBMC WebUI

Log in to the iBMC WebUI by using a browser on the local PC, illustrated here running Windows 7 and Internet Explorer 11.0.

For details about PC system configuration requirements, see the TaiShan Rack Server iBMC User Guide.

Step 1 Connect the local PC to the iBMC management network port on the server using a crossover cable or twisted pair cable.

Figure 5-24 shows the network diagram.

Figure 5-24 Network diagram

[Network Diagram Image]

Step 2 Open Internet Explorer on the local PC.

Step 3 In the address box, enter the iBMC address in the format:

https://IP address of the iBMC management network port on the server

Example: https://192.168.2.100

Step 4 Press Enter.

The iBMC login page is displayed, as shown in **Figure 5-25** and **Figure 5-26**.

NOTE

- If the message "There is a problem with this website's security certificate" is displayed, click **Continue to this website (not recommended)**.
- If the system displays the Security Alert dialog box indicating a certificate error, click Yes.
Figure 5-25 iBMC login page (earlier than V500)

User Name

Password

Domain This iBMC

Select a domain name if you want to log in by using an LDAP domain account.

Log In
Figure 5-26 iBMC login page (V500 or later)

![iBMC login page](image)

Step 5 On the login page, enter the user name and password.

The default user name is **Administrator**, and the default password is **Admin@9000**.

⚠️ **NOTE**

If the account is locked due to five consecutive failed attempts, try again in 5 minutes.

Step 6 Select **This iBMC** from the **Domain** drop-down list.

Step 7 Click **Log In**.

----End
5.10.5 Checking the Server

Check the server in the sequence shown in Figure 5-27. The method to be used depends on the actual situation.

For details about CLI commands, see the TaiShan Rack Server iBMC User Guide.

Figure 5-27 Checking the server

Procedure

Step 1 Check indicator status.

Ensure that hardware devices are working correctly.

For details, see 2.2 Front Panel Indicators and Buttons and 2.4 Rear Panel Indicators.

Step 2 Check the server.

- Check the server using the iBMC WebUI.

 a. Log in to the iBMC over the WebUI. For details, see 5.10.4 Logging In to the iBMC WebUI.

 □ NOTE

You are advised to change the initial password when logging in to the iBMC for the first time. For details, see 5.10.6 Changing Initial Passwords.
b. Check the server firmware version.

- If the iBMC version is earlier than V500, choose System > Firmware Upgrade. The page shown in Figure 5-28 is displayed.

Figure 5-28 Querying firmware information (earlier than iBMC V500)

- If the iBMC version is V500 or later, choose iBMC Settings > Firmware Upgrade. The page shown in Figure 5-29 is displayed.

Figure 5-29 Querying firmware information (iBMC V500 or later)

c. Check the health status of the server.

- If the iBMC version is earlier than V500, choose Information > Overview. The page shown in Figure 5-30 is displayed.
If the iBMC version is V500 or later, view **Alarm Statistics** on the **Home** page, as shown in **Figure 5-31**.

Figure 5-31 Querying alarm information (iBMC V500 or later)

- Clear any alarms if present. For details, see the *TaiShan Rack Server iBMC Alarm Handling*.
- Check the server using the iBMC CLI.
 - a. Set an IP address for the PC. This IP address must be on the same network segment as the iBMC management network port.
 - b. Connect a network cable from the PC to the iBMC management network port of the server.
 - c. Start a Secure Shell (SSH, PuTTY), tool on the PC and log in with the IP address of the iBMC management network port and iBMC user name and password.

Note

By default, SSH is used to log in to the iBMC. If the SSH service is disabled, enable it by choosing **Configuration > Services** on the iBMC WebUI.

- d. Run the `ipmcget -d ver` command to view the server version information.
 - Check that the server versions meet site requirements.

```bash
doUBLETS
ibMC://ipmcget -d ver
------------------- iBMC INFO -------------------
IPMC CPU: Hi1710
IPMI Version: 2.0
CPLD Version: (U6076)1.00
Active iBMC Version: (U68)3.32
Active iBMC Build: 003
Active iBMC Built: 14:32:33 Apr 15 2019
Backup iBMC Version: 3.32
Backup iBMC Built: 10:53:30 Mar 18 2019
----------------- Product INFO -----------------
Product ID: 0x0001
Product Name: TaiShan 200 (Model 5280)
```
CPLD Version: complex programmable logical device (CPLD) version of the server

BIOS Version: BIOS version of the server

Active iBMC Version: active iBMC version of the server

Backup iBMC Version: backup iBMC version of the server

e. Query the health status of the server.

 iBMC:/->ipmcget -d health

System in health state

 If "System in health state" is displayed, no further action is required.

 If alarm information is displayed, go to the next step.

f. Query any generated alarms.

 iBMC:/ # ipmcget -d healthevents

<table>
<thead>
<tr>
<th>Event Num</th>
<th>Event Time</th>
<th>Alarm Level</th>
<th>Event Code</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2019-02-10 00:52:23</td>
<td>Minor</td>
<td>0x12000021</td>
<td>get description failed.</td>
</tr>
<tr>
<td>2</td>
<td>2019-02-10 01:37:42</td>
<td>Minor</td>
<td>0x12000013</td>
<td>Failed to obtain data of the air inlet temperature.</td>
</tr>
<tr>
<td>3</td>
<td>2019-02-10 00:52:23</td>
<td>Minor</td>
<td>0x12000019</td>
<td>Right mounting ear is not present.</td>
</tr>
<tr>
<td>4</td>
<td>2019-02-10 00:52:19</td>
<td>Major</td>
<td>0x28000001</td>
<td>The SAS or PCIe cable to front disk backplane is incorrectly connected.</td>
</tr>
</tbody>
</table>

 g. Clear alarms. For details, see the TaiShan Rack Server iBMC Alarm Handling.

-----End

5.10.6 Changing Initial Passwords

Change the following initial user passwords:

- Initial password of the default iBMC user
- Initial password for the iBMC U-Boot
The default iBMC user account is Administrator.

U-Boot is a piece of underlying software used to configure basic settings, for example, initializing hardware devices and setting up memory space mapping, to prepare for commissioning the OS.

To ensure system security, change your initial password at your first login and change the password periodically.

A simple password is easy to crack, which makes the system vulnerable. You are advised to use a password that meets complexity requirements or to enable the password complexity check function.

The password complexity check function is enabled by default.

You can change an iBMC user password on the iBMC WebUI or CLI. The following describes how to change a user password on the iBMC WebUI. For details about operations on the iBMC CLI, see the TaiShan Rack Server iBMC User Guide.

Changing the Initial Password of the Default iBMC User

Step 1 Log in to the iBMC WebUI and open the Local User page.

- If the iBMC version is earlier than V500, choose Configuration > Local Users. The page shown in Figure 5-32 is displayed.

 Figure 5-32 Local Users page (earlier than iBMC V500)

 ![Local Users page](image)

- If the iBMC version is V500 or later, choose User & Security > Local Users. The page shown in Figure 5-33 is displayed.

 Figure 5-33 Local Users page (iBMC V500 or later)

 ![Local Users page](image)

Step 2 Modify user information.

- If the iBMC version is earlier than V500, locate the user and click 🎨. The page shown in Figure 5-34 is displayed.
If the iBMC version is V500 or later, locate the user and click **Edit**. The page shown in **Figure 5-35** is displayed.

Step 3 Change the user password by following on-screen instructions.

The password must meet the following complexity requirements:

- Contain 8 to 20 characters.
Changing the Initial iBMC U-Boot Password

Step 1 Log in to the iBMC CLI over the serial port.

Step 2 Run the following command to restart the iBMC:

```bash
iBMC:/->ipmcset -d reset
```

The command output is as follows:

This operation will reboot IPMC system. Continue? [Y/N]:

Step 3 Enter y.

The system restarts.

Step 4 Press Ctrl+B immediately when the system displays the message

Hit ‘ctrl + b’ to stop autoboot: 1

Step 5 Enter the default password for the iBMC U-Boot.

The following prompt indicates that you have logged in to the U-Boot.

```bash
u-boot>
```

Step 6 Run the following command to change the U-Boot password:

```bash
u-boot> passwd
```

The following information is displayed:

Enter old password:

Step 7 Enter the old password.

NOTE

The default password is Admin@9000.

The following information is displayed:

Enter new password:

Step 8 Enter a new password.

The following information is displayed:

Enter the new password again:

Step 9 Enter the new password again.

If the command output is as follows, the password has been changed:
Un-Protected 1 sectors
Erasing Flash...
done

Erased 1 sectors
Writing to Flash... done
done
Protected 1 sectors

password be changed successfully.

Step 10 Run the following command to exit U-Boot:

 boot

 ----End

5.10.7 Configuring RAID

Step 1 Log in to the iBMC WebUI. For details, see 5.10.4 Logging In to the iBMC WebUI.

Step 2 Query RAID controller card information.

- If the iBMC version is earlier than V500, choose Information > System Info > Other Devices. The page shown in Figure 5-36 is displayed.

![Figure 5-36 RAID controller card information (earlier than iBMC V500)](image)

- If the iBMC version is V500 or later, choose System > Storage Management. The page shown in Figure 5-37 is displayed.

![Figure 5-37 RAID controller card information (iBMC V500 or later)](image)

NOTE

The information shown in Figure 5-37 is for reference only. The actual information may differ.

Step 3 Configure a RAID array.
The RAID configuration method varies according to the RAID controller card model. For details, see the *RAID Controller Card User Guide (Kunpeng Processors)*.

----End

5.10.8 Configuring the BIOS

Figure 5-38 shows the process for configuring the BIOS.

NOTE

For details, see the *BIOS Parameter Reference (Kunpeng 920 Processor)*.

Figure 5-38 BIOS configuration process

1. **Start**
2. **Restart the server.**
3. **Set the server boot priority.**
4. **Set the PXE.**
5. **Set the BIOS password.**
6. **End**

Restart the server

Step 1 Log in to the Remote Virtual Console. For details, see *8.1 Logging In to the Remote Virtual Console*.

Step 2 On the Remote Virtual Console, click or on the menu bar.

Step 3 Select *Forced System Reset*.

The system displays "Are you sure to perform this operation?"

Step 4 Click *Yes*.

The server restarts.
Step 5 Press **Delete** or **F4** on the startup screen shown in **Figure 5-39**.

- **NOTE**
 - Press **F12** to boot from the network.
 - Press **F2** for boot options.
 - Press **F6** to enter the SP boot screen.

Figure 5-39 BIOS startup screen

Step 6 Enter the BIOS password when prompted.

- **NOTE**
 - The default password for logging in to the BIOS is **Admin@9000**. Change the administrator password immediately after your first login. For details, see **Set the BIOS password**.
 - For security purposes, change the administrator password periodically.
 - The system will be locked if incorrect passwords are entered three consecutive times. Restart the server to unlock it.

----End

Set the server boot priority

Step 1 Press ← and → to switch to the **Boot** screen, as shown in **Figure Boot screen**.
Step 2 Select **Boot Type Order** and press **Enter**.

The **Boot Type Order** screen is displayed.

NOTE

The default boot sequence is **Hard Disk Drive > CD or DVD-ROM Drive > PXE > Others**.

Step 3 Select a boot option and press "+" or "+" to change the boot order.

- Press "+" to move a boot option up.
- Press "-" to move a boot option down.

NOTE

The server will boot in the order displayed.

Step 4 Press F10.

The **Save Configuration&Exit** dialog box is displayed.

Step 5 Select **Yes** and press **Enter**.

----End

Set the PXE

- Setting the PXE for an LAN on motherboard (LOM)

 a. Select **Advanced** and press **Enter**.

 The **Advanced** screen is displayed, as shown in **Figure 5-41**.
b. Select **LOM Configuration > PXE Configuration** and press **Enter**.

c. Set the PXE for NICs.

 i. Select the network port such as **PXE1 Configuration**, and press **Enter**.

 ii. In the dialog box that is displayed, select **Enable** and press **Enter**.

d. Select **PXE Boot Capability** and press **Enter**. In the dialog box that is displayed, select the PXE boot network protocol.

 ▪ UEFI: IPv4

 ▪ UEFI: IPv6

 ▪ UEFI: IPv4/IPv6

e. Press **F10**.

 The system displays “Save configuration changes and reset and exit?”

f. Select **Yes** and press **Enter** to save the setting.

 • Setting the PXE for a NIC connected to the server

 NOTE

 The displayed information varies according to the external NIC when you configure the PXE. The following procedure uses the SP570 NIC as an example.

 a. Select **Advanced** and press **Enter**.

 The **Advanced** screen is displayed, as shown in Figure 5-42.
Figure 5-42 Advanced screen

![Advanced screen](image1)

b. Select **Network Device List** and press Enter.

c. Select the network port (such as **Network Device MAC: 48:F8:DB:D9:84:23**) of the external NIC and press Enter.

The **Network Device MAC:48:F8:DB:D9:84:23** screen is displayed, as shown in **Figure 5-43**.

Figure 5-43 Network Device MAC:48:F8:DB:D9:84:23 screen

![Network Device MAC:48:F8:DB:D9:84:23](image2)
d. Select **Huawei Network Adapter Configuration Wizard** and press Enter.

 The **Main Configuration Page** screen is displayed, as shown in **Figure 5-44**.

Figure 5-44 Main Configuration Page screen

![Main Configuration Page](image)

e. Set the parameters as required.

f. Press **F10**.

 The system displays "Save configuration changes and reset and exit?"

 g. Select **Yes** and press **Enter** to save the setting.

Set the BIOS password

 Step 1 Press ← or → to select the **Security** menu, as shown in **Figure 5-45**.
Figure 5-45 Security

![Security Screen](image)

Step 2 Select **SET Supervisor Password** and press **Enter**, and set the administrator password. Before setting the password, you must enter the current administrator password.

NOTE

- The administrator password must meet the following requirements:
 - Contains 8 to 16 characters.
 - Contains special characters (including spaces) and at least two types of the following characters: uppercase letters, lowercase letters, and digits.
 - Cannot be the same as any of the previous five passwords.
- The default password is **Admin@9000**.

Step 3 (Optional) After a password is set, select **Clear Supervisor Password** to delete the password.

Step 4 Press F10.

The **Save Configuration&Exit** dialog box is displayed.

Step 5 Select **Yes** and press **Enter**.

----End

Selecting a Language

Step 1 On the **Main** screen, choose **Select Language**, as shown in **Figure 5-46**.
Step 2 Press Enter.

The Language screen is displayed.

Step 3 Select the language to be used and press Enter.

Step 4 Press F10.

The system displays "Save configuration changes and reset and exit?"

Step 5 Select Yes and press Enter to save the settings.

----End

5.10.9 Installing an OS

The server is compatible with different types of OSs. Use the Intelligent Computing Compatibility Checker to check compatible OSs.

The installation method varies according to the OS type. For details, see the installation guide of each OS.

NOTE

You can log in to https://support.huawei.com/enterprise, choose TECHNICAL SUPPORT > Product Support > Server - Intelligent Computing > TaiShan Servers, and click the product model to go to the document page of the product. Then search, browse, and download the installation guide of each OS.
5.10.10 Upgrading the System

NOTE
Upgrade server drivers, firmware, and management software as needed.

Obtaining Documents

- TaiShan Rack Server Upgrade Guide
- TaiShanServer iDriver 3.0.0 Driver Version Mapping
- Release Notes

Upgrading Firmware or Management Software

Upgrade the raid card firmware, mainboard CPLD and drive backplane CPLD on the iBMC WebUI. For details, see the TaiShan Rack Server Upgrade Guide.

Updating Drivers

If the existing driver versions on a server are inconsistent with those in the driver version mapping, install the drivers of required versions. Otherwise, the server may operate abnormally. For details, see the OS installation guide.
The *TaiShan Server Troubleshooting* covers:

- **Troubleshooting process**
 Troubleshooting is a process of using appropriate methods to find the cause of a fault and rectify the fault. The troubleshooting process is to narrow down the scope of possible causes for a fault to reduce troubleshooting complexity, identify the root cause, and rectify the fault.

- **Fault information collection**
 If a fault occurs on a server, collect logs for fault diagnosis.

- **Fault diagnosis**
 Fault diagnosis rules and tools help Huawei technical support engineers and maintenance engineers to analyze and rectify faults according to alarms and hardware fault symptoms.

- **Software and firmware upgrade**
 Software and firmware upgrade packages can be downloaded by server model and installed as needed.

- **Preventive maintenance**
 Preventive maintenance promptly detects, diagnoses, and rectifies server faults.
Chapter 7 Warranty and Safety

7.1 Maintenance and Warranty

For details, see Maintenance & Warranty.

7.2 Safety

For details, see Huawei Server Safety Information.
8 Common Operations

8.1 Logging In to the Remote Virtual Console

8.1.1 Logging In to the Remote Virtual Console through the iBMC WebUI

Procedure (Earlier Than iBMC V500)

Step 1 Log in to the iBMC WebUI.
For details, see 5.10.4 Logging In to the iBMC WebUI.

Step 2 On the menu bar, choose Remote Console. The Remote Console page is displayed, as shown in Figure 8-1.
Figure 8-1 Remote Console page

Step 3 Click Java Integrated Remote Console (Private), Java Integrated Remote Console (Shared), HTML5 Integrated Remote Console (Private), or HTML5 Integrated Remote Console (Shared) to access the real-time operation console of the server, as shown in Figure 8-2 and Figure 8-3.

NOTE

- **Java Integrated Remote Console (Private)**: allows only one local user or VNC user to access and manage the server at a time.
- **Java Integrated Remote Console (Shared)**: allows two local users or five VNC users to access and manage the server at a time. The users can see each other's operations.
- **HTML5 Integrated Remote Console (Private)**: allows only one local user or VNC user to access and manage the server at a time.
- **HTML5 Integrated Remote Console (Shared)**: allows two local users or five VNC users to access and manage the server at a time. The users can see each other's operations.
Figure 8-2 Real-time operation console (Java)

![Figure 8-2 Real-time operation console (Java)](image)

POWER OFF

Figure 8-3 Real-time operation console (HTML5)

![Figure 8-3 Real-time operation console (HTML5)](image)

POWER OFF

----End
Procedure (iBMC V500 and Later)

Step 1 Log in to the iBMC WebUI.
For details, see 5.10.4 Logging In to the iBMC WebUI.

Step 2 In the lower right corner of the home page, click Virtual Console. See Figure 8-4.

Figure 8-4 Virtual console

Step 3 Click on the right of Start and select Java Integrated Remote Console (Private), Java Integrated Remote Console (Shared), HTML5 Integrated Remote Console (Private), or HTML5 Integrated Remote Console (Shared) to log in to the remote virtual console. See Figure 8-5 or Figure 8-6.

NOTE

- Java Integrated Remote Console (Private): allows only one local user or VNC user to access and manage the server at a time.
- Java Integrated Remote Console (Shared): allows two local users or five VNC users to access and manage the server at a time. The users can see each other’s operations.
- HTML5 Integrated Remote Console (Private): allows only one local user or VNC user to access and manage the server at a time.
- HTML5 Integrated Remote Console (Shared): allows two local users or five VNC users to access and manage the server at a time. The users can see each other’s operations.
Figure 8-5 Real-time operation console (Java)

Authorized users only. All activities may be monitored and reported. Activate the web console with: systemctl enable --now cockpit.socket

Hint: Num Lock on

localhost login:

---End

Figure 8-6 Real-time operation console (HTML5)

Authorized users only. All activities may be monitored and reported. Activate the web console with: systemctl enable --now cockpit.socket

Hint: Num Lock on

localhost login:
8.1.2 Logging In to the Server Using the IRC

Download the Independent Remote Console (IRC) at IRC.

Windows

The following Windows versions are supported:

- Windows 7 32-bit or 64-bit
- Windows 8 32-bit or 64-bit
- Windows 10 32-bit or 64-bit
- Windows Server 2008 R2 32-bit or 64-bit
- Windows Server 2012 64-bit

Step 1 Configure an IP address for the client (PC) to enable communication between the client and the iBMC.

The IP address configured and the iBMC management network port IP address must be on the same network segment.

Step 2 Double-click KVM.exe.

A dialog box similar to the one shown in Figure 8-7 is displayed.

Figure 8-7 Login interface

![Login interface](image)

Step 3 Enter the network address, user name, and password.

The network address can be in any of the following formats:

- *iBMC management network port IP address* (IPv4 or IPv6 address):Port number
- *iBMC domain name address*:Port number
NOTE

- Enter an IPv6 address in brackets or an IPv4 address directly, for example, \[2001::64\]:444 or \192.168.100.1:444\.
- When the port number is the default port number 443, the port number can be left blank.

Step 4 Select a login mode, and click Connect.
- **Shared Mode**: allows two users to access and manage a server at a time. The two users can see each other’s operations.
- **Private Mode**: allows only one user to access and manage a server at a time.

Information shown in Figure 8-8 is displayed.

Figure 8-8 Security risk information

![Security warning](image)

Step 5 Perform any of the following operations based on the actual situation:
- Click Yes to open the IRC.
- Click No to return to the login interface.
- Click Import CA to import the CA certificate (*.cer, *.crt, or *.pem). After the CA certificate is imported, the security risk dialog box will no longer be displayed.

The IRC of the server is displayed, as shown in Figure 8-9.
Ubuntu

Supported OSs: Ubuntu 14.04 LTS and Ubuntu 16.04 LTS

Step 1 Configure an IP address for the client (PC) to enable communication between the client and the iBMC.

The IP address configured and the iBMC management network port IP address must be on the same network segment.

Step 2 Open the console and set the folder where the IRC is stored as the working folder.

Step 3 Run the `chmod 777 KVM.sh` command to set the permission for the IRC.

Step 4 Run `./KVM.sh` to start the IRC.

A dialog box similar to the one shown in Figure 8-10 is displayed.
Step 5 Enter the network address, user name, and password.

The network address can be in any of the following formats:

- *iBMC management network port IP address (IPv4 or IPv6 address):Port number*
- *iBMC domain name address:Port number*

NOTE

- Enter an IPv6 address in brackets or an IPv4 address directly, for example, *[2001::64]:444* or *192.168.100.1:444*.
- When the port number is the default port number *443*, the port number can be left blank.

Step 6 Select a login mode, and click **Connect**.

- **Shared Mode**: allows two users to access and manage a server at the same time. The two users can see each other's operations.
- **Private Mode**: allows only one user to access and manage a server at a time.

Information shown in Figure 8-11 is displayed.

Step 7 Perform any of the following operations based on the actual situation:

- Click **Yes** to open the IRC.
- Click **No** to return to the login interface.
Click **Import CA** to import the CA certificate (*.cer, *.crt, or *.pem). After the CA certificate is imported, the security risk dialog box will no longer be displayed.

The IRC of the server is displayed, as shown in **Figure 8-12**.

Figure 8-12 IRC of the server

---End

Mac OS

Supported OS: Mac OS X El Capitan

Step 1 Configure an IP address for the client (PC) to enable communication between the client and the iBMC.

The IP address configured and the iBMC management network port IP address must be on the same network segment.

Step 2 Open the console and set the folder where the IRC is stored as the working folder.

Step 3 Run the `chmod 777 KVM.sh` command to set the permission for the IRC.

Step 4 Run `./KVM.sh` to start the IRC.

A dialog box similar to the one shown in **Figure 8-13** is displayed.
Step 5 Enter the network address, user name, and password.

The network address can be in any of the following formats:

- *iBMC management network port IP address (IPv4 or IPv6 address):Port number*
- *iBMC domain name address:Port number*

NOTE
- Enter an IPv6 address in brackets or an IPv4 address directly, for example, *[2001::64]:444* or *192.168.100.1:444*.
- When the port number is the default port number 443, the port number can be left blank.

Step 6 Select a login mode, and click **Connect**.

- **Shared Mode**: allows two users to access and manage a server at the same time. The two users can see each other’s operations.
- **Private Mode**: allows only one user to access and manage a server at a time. Information shown in **Figure 8-14** is displayed.

Figure 8-14 Security risk information

Step 7 Perform any of the following operations based on the actual situation:
- Click **Yes** to open the IRC.
- Click **No** to return to the login interface.
- Click **Import CA** to import the CA certificate (*.cer, *.crt, or *.pem). After the CA certificate is imported, the security risk dialog box will no longer be displayed.

The IRC of the server is displayed, as shown in **Figure 8-15**.

Figure 8-15 IRC of the server

8.2 Logging In to the iBMC CLI

NOTE
- A user will be locked out after five consecutive login failures with wrong passwords. The user is automatically unlocked 5 minutes later, and an administrator can unlock the user on the CLI.
- For security purposes, change your initial password at your first login and change the password periodically.
- By default, the CLI timeout interval is 15 minutes.

Logging In over SSH

Secure Shell (SSH) provides secure remote login and other network services on a non-secure network. A maximum of five users can log in over SSH at the same time.
SSH supports the **AES128-CTR**, **AES192-CTR**, and **AES256-CTR** encryption algorithms. When you log in to the iBMC over SSH, select a proper encryption algorithm.

Step 1 Download an SSH communication tool to a local client.

Step 2 Connect the client to the server management network port directly or through a network.

Step 3 Set the client IP address so that the client can communicate with the server iBMC management network port.

Step 4 On the client, open the SSH tool and set related parameters, such as the IP address.

Step 5 Connect to the iBMC and enter the user name and password.

NOTE
- Local and LDAP users can both log in to the iBMC CLI over SSH.
- To log in to the iBMC, LDAP users do not need to enter information about the domain server, which is automatically assigned by the system.

Logging In over the Serial Port

Step 1 Set the serial port as the iBMC serial port.

- To set the serial port through the iBMC CLI, do as follows:
 a. Log in to the iBMC CLI over SSH.
 b. Run the following command to change the serial port direction:
     ```
     ipmcset -d serialdir -v <option>
     ```
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
</table>
| <option> | Serial port direction | The value options of this parameter and the value meanings vary according to the server model. You are advised to run the `ipmcget -d serialdir` command to view the value options. For the server, the options are as follows:
- 0: sets the serial port on the server panel as the system serial port.
- 1: sets the serial port on the server panel as the iBMC serial port.
- 2: sets the SOL port as the system serial port.
- 3: sets the SOL port as the iBMC serial port.
- 4: sets the serial port on the SDI V3 card panel as an SCCL port.
- 5: sets the serial port on the SDI V3 card panel as an IMU port.
- 6: sets the serial port on the SDI V3 card panel as an SCCL port.
- 7: sets the serial port on the SDI V3 card panel as an IMU port.
To set the panel serial port as the iBMC serial port, run the `ipmcset -d serialdir -v 1` command.
NOTE
- If no SDI V3 is installed in a server, <option> can be 0 to 3 only.
- If one SDI V3 card is installed, the values 4 and 5 are available for setting the ports on the SDI V3 in I/O module 1 or 2.
- If two SDI V3 cards are installed, the values 4 to 7 are available. The values 4 and 5 are used for setting the ports on the SDI V3 in I/O module 1, while the values 6 and 7 are for the ports on the SDI V3 in I/O module 2. |

- To set the serial port by using a jumper, do as follows:
 a. Power off the server and remove the power cables.
 b. Place the jumper cap on COM_SW pins. For details about the jumper position, see Mainboard and iBMC Card Connectors in the TaiShan 200 Server Maintenance and Service Guide (Model 2280).
 c. Connect the power cables and power on the server.

Step 2 Use a serial cable to connect the terminal serial port and the server serial port.

Step 3 Open HyperTerminal and set the following parameters:
- **Bits per second**: 115200
- **Data bits**: 8
- **Parity**: None
- **Stop bits**: 1
- **Flow control**: None

Figure 8-16 shows the port settings.

Figure 8-16 HyperTerminal Properties

Step 4 Enter the user name and password to access the CLI.

8.3 Logging In to the Server over a Serial Port Using PuTTY

Use PuTTY to log in to the server over a serial port in any of the following scenarios:

- The server is configured for the first time at a site.
- A remote connection to the server cannot be established.

NOTE

- Visit the chiark website and download the PuTTY software from the homepage.
- PuTTY of an earlier version may cause server login failures. You are advised to use PuTTY of the latest version.
Procedure

Step 1 Double-click PuTTY.exe.

The PuTTY Configuration window is displayed.

Step 2 In the navigation tree, choose Connection > Serial.

Step 3 Set the login parameters.

Example:
- Serial Line to connect to: COMn
- Speed (baud): 115200
- Data bits: 8
- Stop bits: 1
- Parity: None
- Flow control: None

n in COMn indicates a serial port number, and its value is an integer.

Figure 8-17 PuTTY Configuration - Serial

Step 4 In the navigation tree, choose Session.

Step 5 Select Serial under Connection type, as shown in Figure 8-18.
Step 6 Set **Close window on exit** to **Only on clean exit**, as shown in Figure 8-18.

Set **Saved Sessions** and click **Save**. Next time you can simply double-click the saved settings under **Saved Sessions** to log in to the server.

Step 7 Click **Open**.

The **PuTTY** window is displayed.

Step 8 Enter the user name and password.

If the login is successful, the server host name is displayed on the left of the prompt.

----End

8.4 Logging In to the Server over a Network Port Using PuTTY

The login method described in this chapter applies to components that support SSH access, for example, iBMC and OS.

Use PuTTY to remotely log in to the server over a local area network (LAN) and configure and maintain the server.
NOTE

- Visit the chiark website and download the PuTTY software from the homepage.
- PuTTY of an earlier version may cause server login failures. You are advised to use PuTTY of the latest version.

Procedure

Step 1 Set an IP address and a subnet mask or add route information for the PC to communicate with the server.

On the PC command-line interface (CLI), run the following command to check whether the IP address is reachable:

Ping Server IP address
- If yes, go to Step 2.
- If no, check the network connection, rectify the fault, and go to Step 1.

Step 2 Double-click PuTTY.exe.

The PuTTY Configuration window is displayed, as shown in Figure 8-19.

Figure 8-19 PuTTY Configuration window

Step 3 In the navigation tree, choose Session.

Step 4 Set the login parameters.
The parameters are described as follows:

- **Host Name (or IP address)**: Enter the IP address of the server to be accessed, for example, **191.100.34.32**.
- **Port**: Retain the default value **22**.
- **Connection type**: Retain the default value **SSH**.
- **Close window on exit**: Retain the default value **Only on clean exit**.

NOTE

Configure **Host Name (or IP address)** and **Saved Sessions**, and click **Save**. You can double-click the saved record under **Saved Sessions** to log in to the server the next time.

Step 5 Click **Open**.

The PuTTY window is displayed.

NOTE

If this is your first login to the server, the PuTTY Security Alert dialog box is displayed. Click **Yes** to proceed.

If an incorrect user name or password is entered, you must set up a new PuTTY session.

Step 6 Enter the user name and password.

If the login is successful, the server host name is displayed on the left of the prompt.

----End

8.5 Querying the Processor Model of a Server

You can query the processor model of a server using the following methods:

- Open the chassis cover and remove the CPU heat sink. Check and record the processor model on the mainboard processor silkscreen. For details about how to open the chassis cover and remove the CPU heat sink, see the TaiShan 200 Server Maintenance and Service Guide (Model 2280).
- Query the processor model on the BIOS
- Query the processor model on the iBMC

Querying the Processor Model on the BIOS

Step 1 Log in to the Remote Virtual Console. For details, see 8.1 Logging In to the Remote Virtual Console.

Step 2 On Remote Virtual Console, click 🔄 or 🥕 on the menu bar.

Step 3 Select **Forced System Reset**.

The system displays “Are you sure you want to perform this operation?”

Step 4 Click **Yes**.

The server is restarted.
Step 5 Press **Delete** or **F4** if the boot screen shown in Figure 8-20 is displayed.

NOTE
- Press **F12** to boot from the network.
- Press **F2** for boot options.

Figure 8-20 BIOS boot screen

![BIOS boot screen](image)

Step 6 Enter the BIOS password as prompted to switch to the BIOS setting page.

NOTE
- The default BIOS password is **Admin@9000**.
- For security purposes, change the administrator password periodically.
- The system will be locked if an incorrect password is entered three consecutive times. Restart the server to unlock it.

Step 7 On the **Main** screen, choose **Select Language**, as shown in Figure 8-21.
Step 8 Record the value of CPU Info.

----End

Querying the Processor Model on the iBMC (Earlier Than iBMC V500)

Step 1 Log in to the iBMC WebUI. For details, see [5.10.4 Logging In to the iBMC WebUI](#).

Step 2 Choose **Information > System Info > Processors** and view the processor model in the **Model** column.
Querying the Processor Model on the iBMC (iBMC V500 or Later)

Step 1 Log in to the iBMC WebUI. For details, see 5.10.4 Logging In to the iBMC WebUI.

Step 2 Choose **System > System Info** and click **Processors** to view the processor model.
9 Support and Other Resources

9.1 Technical Support

Technical Support Website

Technical documents are available on the technical support website: https://e.huawei.com.

Self-Service Platform and Community

Learn more about servers and communicate with experts at:

- Huawei Server Information Self-Service Platform for specific server product documentation.
- Huawei server intelligent Q&A system for quick learning about products.
- Huawei Enterprise Support Community (Server) for learning and discussion.

News

For notices about product life cycles, warnings, and updates, visit Product Bulletins.

Cases

Learn about server applications at Knowledge Base.

Huawei Technical Support

If a fault persists after taking the above measures, contact technical support at your local Huawei office. If a local Huawei office is not available, contact Huawei technical support as follows:

- Enterprise customers:
 Send emails to support_e@huawei.com or visit Global Service Hotline.
9.2 Maintenance Tools

Table 9-1 lists the software tools required for routine maintenance of Huawei servers.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Server Model and Software Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FusionServer Tools SmartKit</td>
<td>See the FusionServer Tools 2.0 SmartKit User Guide.</td>
<td>SmartKit contains tools required for operations such as batch deployment, maintenance, and upgrade of server devices. Download link: FusionServer Tools</td>
</tr>
</tbody>
</table>
A.1 BIOS

The basic input/output system (BIOS) is the most basic software loaded to a computer hardware system. It provides an abstraction layer between the computer hardware and the OS. It is used to perform hardware initialization during the boot process and provide runtime services for the OS and programs. Figure A-1 shows the BIOS position in the system.

The BIOS data is stored on the Serial Peripheral Interface (SPI) flash memory. The BIOS performs a power-on self-test (POST), initializes CPU and memory, checks the I/O and boot device, and finally boots the OS. The BIOS also supports the advanced configuration and power interface (ACPI) and hot swap setting.

HUAWEI Kunpeng 920 platform server is a patented BIOS product with independent intellectual property rights. It supports customization and provides a variety of in-band and out-of-band configuration functions as well as high scalability.
A.2 iBMC

The iBMC is a Huawei proprietary intelligent management system that remotely manages servers.

The iBMC complies with Intelligent Platform Management Interface (IPMI) standards. It provides various functions, including keyboard, video, and mouse (KVM) redirection, text console redirection, remote virtual media, and reliable hardware monitoring and management.

The iBMC provides the following features:

- Multiple management interfaces for system integration
 The iBMC provides IPMI, CLI, Data Center Manageability Interface (DCMI), Redfish interfaces, Hypertext Transfer Protocol Secure (HTTPS), and SNMP.

- Fault detection and alarm management
 The iBMC implements fault detection and alarm management, ensuring stable, uninterrupted 24/7 system operation.

- Virtual KVM and virtual media
 The iBMC provides virtual KVM and virtual media, facilitating remote maintenance.

- WebUI
 The iBMC provides a web-based UI for setting and querying device information.

- System breakdown screenshots and video playback
 The iBMC allows screenshots and videos to be created when the system breaks down. The screenshots and videos help to identify the cause of system breakdown.

For details, see the BIOS Parameter Reference (Kunpeng 920 Processor).
- Screen snapshots and videos
 The iBMC offers screen snapshots and videos, which simplify routine preventive maintenance, recording, and auditing.
- Support for DNS and LDAP
 The iBMC supports domain name system (DNS) and Lightweight Directory Application Protocol (LDAP) to implement domain management and directory service.
- Active/standby backup
 The iBMC works in active/standby mode to ensure system reliability. If the active iBMC is faulty, the standby iBMC takes over services immediately.

For more information about the iBMC, see the *TaiShan Rack Server iBMC User Guide*.

A.3 Glossary

B

BMC
baseboard management controller

The BMC complies with the Intelligent Platform Management Interface (IPMI) standard, responsible for collecting, processing, and storing sensor signals, and monitoring the operating status of each component. The BMC provides the hardware status and alarm information about the managed objects for the management module, so that the management module can manage the objects.

E

Ethernet
A baseband local area network (LAN) architecture developed by Xerox Corporation in cooperation with DEC and Intel. Ethernet uses Carrier Sense Multiple Access/Collision Detection (CSMA/CD) and supports a data transfer rate of 10 Mbps on multiple cables. The Ethernet specification is the basis for the IEEE 802.3 standard.

G

Generic Routing Encapsulation (GRE)

Generic Routing Encapsulation is an internet based term applied to the encapsulation of IP datagrams tunneled through the internet. Generic Routing Encapsulation (GRE) is a mechanism for encapsulating any network layer protocol over any other network. GRE serves as a Layer 3 tunneling protocol, and provides a tunnel for transparently transmitting data packets.

H

hot swap
In a running system, insertion or removal of a component does not affect normal running of the system.
KVM keyboard, video, and mouse

M mezzanine card A card connected to the mainboard through the connector, level to the mainboard. It is used on a device which has high requirement for space usage.

P panel The front-most or rear most element of a server, which serves to mount components, such as handles, indicators, and ports, and also seals the front of the chassis for airflow and electromagnetic compatibility (EMC).

PCle A computer expansion bus standard based on the existing PCI programming and communication standards and a faster serial communication system. Intel is a major contributor to this standard. PCIe is used only for interconnection between applications. A PCI system can be turned into a PCIe one by modifying the physical layer instead of software. PCIe delivers a faster speed and can replace almost all existing bus standards including AGP and PCI.

R RAID redundant array of independent disks
A storage technology that combines multiple drives into a logical unit in several ways called "RAID levels", providing redundancy and delivering higher storage performance than a single disk.

redundancy The ability of a system to keep functioning normally in the event of a device failure by having a backup device automatically replace the faulty one.

S system event log (SEL) A non-volatile storage area and associated interfaces for storing system platform events for later retrieval.

server A special computer that provides various services for clients over a network.

U U A unit defined in International Electrotechnical Commission (IEC) 60297-1 to measure the height of a cabinet, chassis, or subrack. 1 U = 44.45 mm = 1.75 in.
A.4 Acronyms and Abbreviations

A
AC alternating current

B
BIOS Basic Input/Output System
BMC Baseboard Management Controller

C
CLI command-line interface

D
DC direct current
DDR4 Double Date Rate 4
DDDC Double Device Data Correction
DIMM dual in-line memory module
DRAM dynamic random access memory
DVD digital video disc

E
ECC Error Checking and Correcting

F
FC Fibre Channel
FCC Federal Communications Commission
FTP File Transfer Protocol

G
GE Gigabit Ethernet

H
GPU Graphics Processing Unit
HA High Availability
HDD hard disk drive
HPC High Performance Computing
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
I
iBMC Intelligent Baseboard Management Controller
IEC International Electrotechnical Commission
IOPS input/output operations per second
IP Internet Protocol
IPMB Intelligent Platform Management Bus
IPMI Intelligent Platform Management Interface
K
KVM keyboard, video, and mouse
L
LRDIMM load-reduced dual in-line memory module
LED light emitting diode
LOM LAN on motherboard
M
MAC Media Access Control
N
NBD next business day
NC-SI Network Controller Sideband Interface
P
PCIe Peripheral Component Interconnect Express
PDU power distribution unit
PHY physical layer
PXE Preboot Execution Environment
Q
QPI QuickPath Interconnect
R
RAID redundant array of independent disks
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>Reliability, Availability and Serviceability</td>
</tr>
<tr>
<td>RDIMM</td>
<td>registered dual in-line memory module</td>
</tr>
<tr>
<td>RJ45</td>
<td>Registered Jack 45</td>
</tr>
<tr>
<td>RoHS</td>
<td>Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>SAS</td>
<td>Serial Attached Small Computer System Interface</td>
</tr>
<tr>
<td>SATA</td>
<td>Serial Advanced Technology Attachment</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>SOL</td>
<td>Serial Over LAN</td>
</tr>
<tr>
<td>SSD</td>
<td>solid-state drive</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>TCG</td>
<td>Trusted Computing Group</td>
</tr>
<tr>
<td>TCM</td>
<td>Trusted Cryptography Module</td>
</tr>
<tr>
<td>TCO</td>
<td>Total Cost of Ownership</td>
</tr>
<tr>
<td>TDP</td>
<td>Thermal Design Power</td>
</tr>
<tr>
<td>TET</td>
<td>Trusted Execution Technology</td>
</tr>
<tr>
<td>TFM</td>
<td>Trans Flash Module</td>
</tr>
<tr>
<td>TFTP</td>
<td>Trivial File Transfer Protocol</td>
</tr>
<tr>
<td>TPM</td>
<td>Trusted Platform Module</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>UEFI</td>
<td>Unified Extensible Firmware Interface</td>
</tr>
<tr>
<td>UID</td>
<td>unit identification light</td>
</tr>
<tr>
<td>UL</td>
<td>Underwriter Laboratories Inc.</td>
</tr>
<tr>
<td>USB</td>
<td>universal serial bus</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VGA</td>
<td>Video Graphics Array</td>
</tr>
<tr>
<td>VLAN</td>
<td>virtual local area network</td>
</tr>
</tbody>
</table>
A.5 Sensor List (Server Configured with the Kunpeng 920 7260, 5250, or 5230 Processor)

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Description</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Temp</td>
<td>Air inlet temperature</td>
<td>Right mounting ear</td>
</tr>
<tr>
<td>Outlet Temp</td>
<td>Air outlet temperature</td>
<td>iBMC card</td>
</tr>
<tr>
<td>CPU N Core Rem</td>
<td>CPU core temperature</td>
<td>CPU. N indicates the CPU number. The value ranges from 1 to 2.</td>
</tr>
<tr>
<td>CPU N Prochot</td>
<td>CPU Prochot</td>
<td></td>
</tr>
<tr>
<td>CPU N VDDQ Temp</td>
<td>CPU VDDQ temperature</td>
<td>CPU 1: Components in positions U1 on the mainboard. CPU 2: Components in positions U2 on the mainboard. N indicates the CPU number. The value ranges from 1 to 2.</td>
</tr>
<tr>
<td>CPU N VRD Temp</td>
<td>CPU VRD temperature</td>
<td>CPU 1: Components in positions U1 on the mainboard. CPU 2: Components in positions U2 on the mainboard. N indicates the CPU number. The value ranges from 1 to 2.</td>
</tr>
<tr>
<td>CPU N MEM Temp</td>
<td>CPU DIMM temperature</td>
<td>DIMMs of CPU N. N indicates the CPU number. The value ranges from 1 to 2.</td>
</tr>
<tr>
<td>Disk N Temp</td>
<td>SSD temperature</td>
<td>N indicates the physical drive slot number.</td>
</tr>
<tr>
<td>FAN N Speed</td>
<td>Fan speed sensor</td>
<td>Fan module. N indicates the fan module number. The value ranges from 1 to 4.</td>
</tr>
<tr>
<td>Power</td>
<td>Server input power</td>
<td>Total PSU power.</td>
</tr>
<tr>
<td>Power N</td>
<td>PSU input power</td>
<td>PSU. N indicates the PSU number. The value is 1 or 2.</td>
</tr>
<tr>
<td>CPU N Status</td>
<td>CPU status</td>
<td>CPU. N indicates the CPU number. The value ranges from 1 to 2.</td>
</tr>
<tr>
<td>Sensor</td>
<td>Description</td>
<td>Component</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>CPU(N) Memory</td>
<td>DIMM status</td>
<td>DIMMs of CPU(N). (N) indicates the DIMM number. The value ranges from 1 to 2.</td>
</tr>
<tr>
<td>PSU(N) Fan Status</td>
<td>PSU fan status</td>
<td>PSU. (N) indicates the PSU number. The value is 1 or 2.</td>
</tr>
<tr>
<td>PSU(N) Temp Status</td>
<td>PSU presence</td>
<td></td>
</tr>
<tr>
<td>PSU(N) Status</td>
<td>PSU status</td>
<td></td>
</tr>
<tr>
<td>Power Button</td>
<td>Power button status</td>
<td>Right mounting ear</td>
</tr>
<tr>
<td>UID Button</td>
<td>UID button status</td>
<td></td>
</tr>
<tr>
<td>DISK(N)</td>
<td>Drive status</td>
<td>Drive. (N) indicates the physical drive slot number.</td>
</tr>
<tr>
<td>FAN(N) Presence</td>
<td>Fan presence</td>
<td></td>
</tr>
<tr>
<td>FAN(N) Status</td>
<td>Fan status</td>
<td></td>
</tr>
<tr>
<td>RTC Battery</td>
<td>RTC battery status. An alarm is generated when the voltage is lower than 1 V.</td>
<td>CMOS battery</td>
</tr>
<tr>
<td>DIMM(N)</td>
<td>DIMM status</td>
<td>DIMM. (N) indicates the DIMM slot number.</td>
</tr>
<tr>
<td>PSU(N) Inlet Temp</td>
<td>PSU air inlet temperature</td>
<td>PSU. (N) indicates the PSU number. The value is 1 or 2.</td>
</tr>
<tr>
<td>PSU(N) Redundancy</td>
<td>Redundancy failure due to PSU removal</td>
<td></td>
</tr>
<tr>
<td>BMC Boot Up</td>
<td>BMC startup events</td>
<td>N/A</td>
</tr>
<tr>
<td>SEL Status</td>
<td>SEL full or clearing events</td>
<td>(N) indicates the number of the component.</td>
</tr>
<tr>
<td>Op. Log Full</td>
<td>Operation log full or clearing events</td>
<td></td>
</tr>
<tr>
<td>Sec. Log Full</td>
<td>Security log full or clearing events</td>
<td></td>
</tr>
<tr>
<td>CPU Usage</td>
<td>CPU usage</td>
<td></td>
</tr>
<tr>
<td>Memory Usage</td>
<td>Memory usage</td>
<td></td>
</tr>
<tr>
<td>BMC Time Hopping</td>
<td>Time hopping</td>
<td></td>
</tr>
<tr>
<td>NTP Sync Failed</td>
<td>NTP synchronization failure and recovery events</td>
<td></td>
</tr>
<tr>
<td>Sensor</td>
<td>Description</td>
<td>Component</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Host Loss</td>
<td>System monitoring software (BMA) link loss detection</td>
<td></td>
</tr>
<tr>
<td>SYS 12V_2</td>
<td>Mainboard 12.0 V voltage (the second output 12 V voltage detection for soft-start (riser module + NIC0 module))</td>
<td></td>
</tr>
<tr>
<td>SYS 12V_3</td>
<td>Mainboard 12.0 V voltage (the third output 12 V voltage detection for soft-start (CPU1 + fan module))</td>
<td></td>
</tr>
<tr>
<td>SYS 12V_4</td>
<td>Mainboard 12.0 V voltage (the third output 12 V voltage detection for soft-start (CPU2 + fan module))</td>
<td></td>
</tr>
<tr>
<td>SYS 12V_5</td>
<td>Mainboard 12.0 V voltage (the fifth output 12 V voltage detection for soft-start (built-in drive backplane + CPU 2))</td>
<td></td>
</tr>
<tr>
<td>SYS 12V_6</td>
<td>Mainboard 12.0 V voltage (the sixth output 12 V voltage detection for soft-start (front-drive backplane))</td>
<td></td>
</tr>
<tr>
<td>CPU/VDDQ_AB</td>
<td>CPU memory voltage</td>
<td></td>
</tr>
<tr>
<td>CPU/VDDQ_CD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU/VRD Temp</td>
<td>CPU VRD voltage</td>
<td></td>
</tr>
<tr>
<td>CPU/VDDAVS</td>
<td>CPU VDDAVS voltage</td>
<td></td>
</tr>
<tr>
<td>CPU/HVCC</td>
<td>CPU HVVC voltage</td>
<td></td>
</tr>
<tr>
<td>CPU/N_VDDAVS</td>
<td>CPU N_VDDAVS voltage</td>
<td></td>
</tr>
<tr>
<td>CPU/VDDFIX</td>
<td>CPU VDDFIX voltage</td>
<td></td>
</tr>
<tr>
<td>SAS Cable</td>
<td>Entity presence</td>
<td></td>
</tr>
<tr>
<td>PSN/VIN</td>
<td>Input voltage</td>
<td></td>
</tr>
<tr>
<td>PwrOk Sig. Drop</td>
<td>Voltage dip status</td>
<td></td>
</tr>
<tr>
<td>Sensor</td>
<td>Description</td>
<td>Component</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>ACPI State</td>
<td>ACPI status</td>
<td></td>
</tr>
<tr>
<td>SysFWProgress</td>
<td>Software process and system startup errors</td>
<td></td>
</tr>
<tr>
<td>SysRestart</td>
<td>System restart causes</td>
<td></td>
</tr>
<tr>
<td>Boot Error</td>
<td>Boot error</td>
<td></td>
</tr>
<tr>
<td>Watchdog2</td>
<td>Watchdog</td>
<td></td>
</tr>
<tr>
<td>Mngmnt Health</td>
<td>Management subsystem health status</td>
<td></td>
</tr>
<tr>
<td>RiserN Card</td>
<td>Entity presence</td>
<td></td>
</tr>
<tr>
<td>RAID Presence</td>
<td>Whether the RAID controller card is installed</td>
<td></td>
</tr>
<tr>
<td>RAID/N Temp</td>
<td>Temperature of the RAID controller card</td>
<td></td>
</tr>
<tr>
<td>PCIe Status</td>
<td>PCIe status</td>
<td></td>
</tr>
<tr>
<td>PwrOn TimeOut</td>
<td>Power-on timeout</td>
<td></td>
</tr>
<tr>
<td>PwrCap Status</td>
<td>Power capping status</td>
<td></td>
</tr>
<tr>
<td>HDD Backplane</td>
<td>Drive backplane entity presence</td>
<td></td>
</tr>
<tr>
<td>HDD BP Status</td>
<td>Drive backplane health status</td>
<td></td>
</tr>
<tr>
<td>NIC/N Temp</td>
<td>Temperature of the NIC</td>
<td></td>
</tr>
<tr>
<td>NIC OM Temp</td>
<td>OM temperature of the NIC</td>
<td></td>
</tr>
<tr>
<td>NIC1-N Link Down</td>
<td>Network port link status of NIC 1</td>
<td></td>
</tr>
<tr>
<td>NIC2-N Link Down</td>
<td>Network port link status of NIC 2</td>
<td></td>
</tr>
<tr>
<td>System Notice</td>
<td>Hot restart reminder and fault diagnosis program information collection</td>
<td></td>
</tr>
<tr>
<td>System Error</td>
<td>System suspension or restart. Check the background logs</td>
<td></td>
</tr>
</tbody>
</table>
A.6 Sensor List (Server Configured with the Kunpeng 920 5220 or 3210 Processor)

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Description</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Temp</td>
<td>Air inlet temperature</td>
<td>Right mounting ear</td>
</tr>
<tr>
<td>Outlet Temp</td>
<td>Air outlet temperature</td>
<td>iBMC card</td>
</tr>
<tr>
<td>CPU(N) Core Rem</td>
<td>CPU core temperature</td>
<td>CPU. (N) indicates the CPU number. The value is 1 or 2.</td>
</tr>
<tr>
<td>CPU(N) Prochot</td>
<td>CPU Prochot</td>
<td></td>
</tr>
<tr>
<td>CPU(N) VDDQ Temp</td>
<td>CPU VDDQ temperature</td>
<td>CPU 1: Components in positions U1 on the mainboard. CPU 2: Components in positions U2 on the mainboard. (N) indicates the CPU number. The value is 1 or 2.</td>
</tr>
<tr>
<td>CPU(N) VRD Temp</td>
<td>CPU VRD temperature</td>
<td>CPU 1: Components in positions U1 on the mainboard. CPU 2: Components in positions U2 on the mainboard. (N) indicates the CPU number. The value is 1 or 2.</td>
</tr>
<tr>
<td>CPU(N) MEM Temp</td>
<td>CPU DIMM temperature</td>
<td>DIMMs of CPU(N). (N) indicates the CPU number. The value is 1 or 2.</td>
</tr>
<tr>
<td>Disks Temp</td>
<td>Highest temperature among the temperature of all drives</td>
<td>-</td>
</tr>
<tr>
<td>FANN(N) Speed</td>
<td>Fan speed sensor</td>
<td>Fan module. (N) indicates the fan module number. The value ranges from 1 to 4.</td>
</tr>
<tr>
<td>Power</td>
<td>Server input power</td>
<td>Total PSU power</td>
</tr>
<tr>
<td>Power(N)</td>
<td>PSU input power</td>
<td>PSU. (N) indicates the PSU number. The value is 1 or 2.</td>
</tr>
<tr>
<td>CPU(N) Status</td>
<td>CPU status</td>
<td>CPU. (N) indicates the CPU number. The value is 1 or 2.</td>
</tr>
<tr>
<td>Sensor</td>
<td>Description</td>
<td>Component</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CPU/N Memory</td>
<td>DIMM status</td>
<td>DIMMs of CPU/N. N indicates the DIMM number. The value is 1 or 2.</td>
</tr>
<tr>
<td>PS/N Fan Status</td>
<td>PSU fan status</td>
<td>PSU. N indicates the PSU number. The value is 1 or 2.</td>
</tr>
<tr>
<td>PS/N Temp Status</td>
<td>PSU presence</td>
<td></td>
</tr>
<tr>
<td>PS/N Status</td>
<td>PSU status</td>
<td></td>
</tr>
<tr>
<td>Power Button</td>
<td>Power button status</td>
<td>Right mounting ear</td>
</tr>
<tr>
<td>UID Button</td>
<td>UID button status</td>
<td></td>
</tr>
<tr>
<td>DISKN</td>
<td>Drive status</td>
<td>Drive. N indicates the physical drive slot number.</td>
</tr>
<tr>
<td>FAN/N Presence</td>
<td>Fan presence</td>
<td>Fan module. N indicates the fan module number. The value ranges from 1 to 4.</td>
</tr>
<tr>
<td>FAN/N Status</td>
<td>Fan status</td>
<td></td>
</tr>
<tr>
<td>RTC Battery</td>
<td>RTC battery status. An alarm is generated when the voltage is lower than 1 V.</td>
<td>CMOS battery</td>
</tr>
<tr>
<td>DIMMN</td>
<td>DIMM status</td>
<td>DIMM. N indicates the DIMM slot number.</td>
</tr>
<tr>
<td>PS/N Inlet Temp</td>
<td>PSU air inlet temperature</td>
<td>PSU. N indicates the PSU number. The value is 1 or 2.</td>
</tr>
<tr>
<td>PS Redundancy</td>
<td>Redundancy failure due to PSU removal</td>
<td>PSU</td>
</tr>
<tr>
<td>BMC Boot Up</td>
<td>BMC startup events</td>
<td>N/A. N indicates the component ID.</td>
</tr>
<tr>
<td>SEL Status</td>
<td>SEL full or clearing events</td>
<td></td>
</tr>
<tr>
<td>Op. Log Full</td>
<td>Operation log full or clearing events</td>
<td></td>
</tr>
<tr>
<td>Sec. Log Full</td>
<td>Security log full or clearing events</td>
<td></td>
</tr>
<tr>
<td>CPU Usage</td>
<td>CPU usage</td>
<td></td>
</tr>
<tr>
<td>Memory Usage</td>
<td>Memory usage</td>
<td></td>
</tr>
<tr>
<td>BMC Time Hopping</td>
<td>Time hopping</td>
<td></td>
</tr>
<tr>
<td>NTP Sync Failed</td>
<td>NTP synchronization failure and recovery events</td>
<td></td>
</tr>
<tr>
<td>Sensor</td>
<td>Description</td>
<td>Component</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Host Loss</td>
<td>System monitoring software (BMA) link loss detection</td>
<td></td>
</tr>
<tr>
<td>SYS 12V_1</td>
<td>Mainboard 12.0 V voltage (the second output 12 V voltage detection for soft-start (fan module))</td>
<td></td>
</tr>
<tr>
<td>SYS 12V_2</td>
<td>Mainboard 12.0 V voltage (the third output 12 V voltage detection for soft-start (CPU2 + rear-drive backplane))</td>
<td></td>
</tr>
<tr>
<td>SYS 12V_3</td>
<td>Mainboard 12.0 V voltage (the fourth output 12 V voltage detection for soft-start (CPU1 + CPU2))</td>
<td></td>
</tr>
<tr>
<td>SYS 12V_4</td>
<td>Mainboard 12.0 V voltage (the fifth output 12 V voltage detection for soft-start (front-drive backplane))</td>
<td></td>
</tr>
<tr>
<td>SYS 12V_5</td>
<td>Mainboard 12.0 V voltage (the sixth output 12 V voltage detection for soft-start (NIC + riser card + RAID controller card + rear-drive backplane))</td>
<td></td>
</tr>
<tr>
<td>CPU/N VDDQ_AB</td>
<td>CPU memory voltage</td>
<td></td>
</tr>
<tr>
<td>CPU/N VDDQ_CD</td>
<td>CPU memory voltage</td>
<td></td>
</tr>
<tr>
<td>CPU/N VRD Temp</td>
<td>CPU VRD voltage</td>
<td></td>
</tr>
<tr>
<td>CPU/N VDDAVS</td>
<td>CPU VDDAVS voltage</td>
<td></td>
</tr>
<tr>
<td>CPU/N VDDFIX</td>
<td>CPU VDDFIX voltage</td>
<td></td>
</tr>
<tr>
<td>SAS Cable</td>
<td>Entity presence</td>
<td></td>
</tr>
<tr>
<td>PS/N VIN</td>
<td>Input voltage</td>
<td></td>
</tr>
<tr>
<td>PwrOk Sig. Drop</td>
<td>Voltage dip status</td>
<td></td>
</tr>
<tr>
<td>ACPI State</td>
<td>ACPI status</td>
<td></td>
</tr>
<tr>
<td>Sensor</td>
<td>Description</td>
<td>Component</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>SysFWProgress</td>
<td>Software process and system startup errors</td>
<td></td>
</tr>
<tr>
<td>SysRestart</td>
<td>System restart causes</td>
<td></td>
</tr>
<tr>
<td>Boot Error</td>
<td>Boot error</td>
<td></td>
</tr>
<tr>
<td>Watchdog2</td>
<td>Watchdog</td>
<td></td>
</tr>
<tr>
<td>Mngmnt Health</td>
<td>Management subsystem health status</td>
<td></td>
</tr>
<tr>
<td>Riser/N Card</td>
<td>Entity presence</td>
<td></td>
</tr>
<tr>
<td>RAID Presence</td>
<td>Whether the RAID controller card is installed</td>
<td></td>
</tr>
<tr>
<td>RAID Temp</td>
<td>Temperature of the RAID controller card</td>
<td></td>
</tr>
<tr>
<td>PCIe Status</td>
<td>PCIe status</td>
<td></td>
</tr>
<tr>
<td>PwrOn TimeOut</td>
<td>Power-on timeout</td>
<td></td>
</tr>
<tr>
<td>PwrCap Status</td>
<td>Power capping status</td>
<td></td>
</tr>
<tr>
<td>HDD Backplane</td>
<td>Drive backplane entity presence</td>
<td></td>
</tr>
<tr>
<td>HDD BP Status</td>
<td>Drive backplane health status</td>
<td></td>
</tr>
<tr>
<td>NIC/Temp</td>
<td>Temperature of the NIC</td>
<td></td>
</tr>
<tr>
<td>NIC OM Temp</td>
<td>OM temperature of the NIC</td>
<td></td>
</tr>
<tr>
<td>NIC1-N Link Down</td>
<td>Network port link status of NIC 1</td>
<td></td>
</tr>
<tr>
<td>NIC2-N Link Down</td>
<td>Network port link status of NIC 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(N 1. 2. 3. 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(N 1. 2. 3. 4)</td>
<td></td>
</tr>
<tr>
<td>System Notice</td>
<td>Hot restart reminder and fault diagnosis program information collection</td>
<td></td>
</tr>
<tr>
<td>System Error</td>
<td>System suspension or restart. Check the background logs</td>
<td></td>
</tr>
<tr>
<td>Cert OverDue</td>
<td>Certificate expiration check</td>
<td></td>
</tr>
<tr>
<td>RTC time</td>
<td>RTC clock status</td>
<td></td>
</tr>
</tbody>
</table>