
Privacy Preserving Technologies and
Open Source Projects:
Challenges and Opportunities

Wenhui Zhang , Bytedance Inc.
Chinmay Shah , OpenMined Org.
Callis Ezenwaka, Barewave

Privacy Preserving Technologies and Open Source
Projects: Challenges and Opportunities

● Review the current privacy preserving technologies
● Summarize the popular open source projects
● Review both current and in progress standard/regulations/law
● Discuss challenges and opportunities for production

2

Privacy Preserving for Federated Learning

3

Growing Demand of Privacy Enhancing Computing

“By 2025, 60% of large organizations will use one or more privacy enhancing
computation techniques in analytics, business intelligence or cloud computing. ”

Source: Gartner

4

Increasing Need for Federated Learning

Privacy Goals for Federated Learning
(e.g. Statistics and Machine Learning)

5

No data leak, constrain the sensitive data to authorized entities.

Source: UN Handbook for Privacy Preserving Techniques

Open Source Frameworks for Federated Learning

8/28/20 6

1. Federated AI Technology Enabler, Webank Fin tech ,
https://github.com/OpenFederatedLearning/FATE
https://github.com/OpenFederatedLearning/eggroll

2. FedML, USC, https://github.com/OpenFederatedLearning/FedML
3. Fedlearner, Bytedance, https://github.com/OpenFederatedLearning/fedlearner
4. Harmonia, AL Labs Taiwan, https://github.com/OpenFederatedLearning/harmonia
5. Openfl, Intel, https://github.com/OpenFederatedLearning/openfl
6. PaddleFL, Baidu, https://github.com/OpenFederatedLearning/PaddleFL
7. PySyft, OpenMined, https://github.com/OpenFederatedLearning/PySyft
8. Tensorflow Federated, Google, https://github.com/OpenFederatedLearning/federated
9. 9NFL, Jingdong, https://github.com/OpenFederatedLearning/9nfl

https://github.com/OpenFederatedLearning/FATE
https://github.com/OpenFederatedLearning/eggroll
https://github.com/OpenFederatedLearning/FedML
https://github.com/OpenFederatedLearning/fedlearner
https://github.com/OpenFederatedLearning/harmonia
https://github.com/OpenFederatedLearning/PaddleFL
https://github.com/OpenFederatedLearning/PySyft
https://github.com/OpenFederatedLearning/federated
https://github.com/OpenFederatedLearning/9nfl

Privacy Preserving Techniques

7

Privacy Preserving Techniques

Privacy preserving technique allows sharing sensitive personal information
while preserving users' privacy. Below are the technologies used in Federated
Learning:

1. Anonymization (weakest)
2. Differential Privacy
3. Fully Homomorphic Encryption (FHE)
4. Zero Knowledge Proof
5. Secure Multi-Party Computation (MPC)
6. Confidential Computing through TEE (e.g. SGX and TrustZone)

8/28/20 8

Federated Learning Stack

9

Trusted Execution Environment

Client Server

Anonymization Differential Privacy

Fully Homomorphic Encryption

Secure Multi-Party Computation

Zero Knowledge Proof

Anonymization

The goal of anonymization is to anonymize data so that the data could not

be associated with any one individual.

8/28/20 10

● Data Generalization (achieve k-anonymity and l-diversity):

○ k-anonymity: General a data property, so that in the group the data belongs to, at least k-1 individuals

who have the same properties.

○ l-diversity: Anonymized data set for its’ sensitive attributes.

● Adding Noise to Data:

○ By adding mathematical noise to data, make it difficult to ascertain whether any one individual is part of

a data set.

Differential Privacy

Differential Privacy provides output privacy for statistics and
databases.

8/28/20 11

Open Source Projects of Differential Privacy

8/28/20 12

1. Diffprivlib, built and supported by IBM, is also designed for data scientists, but is slightly more focused on machine learning tasks.

http://www.bipr.net/diffpriv/

2. Google has Tensorflow privacy, a library for training machine learning models with privacy for training data.

https://github.com/tensorflow/privacy

3. Uber use have SQL-diff for dataflow analysis & differential privacy for SQL queries.

https://github.com/uber-archive/sql-differential-privacy

4. PING by Microsoft, is a SQL query engine with differential privacy preserved.

https://www.microsoft.com/en-us/research/project/privacy-integrated-queries-pinq/

5. PSI is a framework for pipelined differential privacy analysis, http://psiprivacy.org/static/about/index.html

6. PipelineDP is a framework developed by OpenMined, for performing Differentially private data aggregation https://pipelinedp.io/

7. OpenDP is a community-supported set of tools designed for data scientists. It includes implementations of many of the tools we have

discussed in this series. https://github.com/OpenFederatedLearning/smartnoise-samples

http://www.bipr.net/diffpriv/
https://github.com/tensorflow/privacy
https://github.com/uber-archive/sql-differential-privacy
https://www.microsoft.com/en-us/research/project/privacy-integrated-queries-pinq/
http://psiprivacy.org/static/about/index.html
https://pipelinedp.io/
https://opendp.org/use-our-tools
https://github.com/OpenFederatedLearning/smartnoise-samples

Fully Homomorphic Encryption

8/28/20 13

Homomorphic Encryption cryptosystem is a cryptosystem whose decryption is a morphism.

Decrypt(a*b) = Decrypt(a) * Decrypt(b)

Homomorphic Encryption cryptosystem allows operate on ciphertexts without decryption.

It ensures end-to-end semantically secure, which is ensuring security against honest but curious adversaries.

Different from confidential computing, FHE takes a software-based data encryption/protection.

Since FHE does not perform computational processing in Trusted Execution Environment (TEE), and unauthorized
access or modification of data and application code during processing might occur. Thus, FHE does not support
application code integrity nor code confidentiality.

https://github.com/Fully-Homomorphic-Encryption/Docs/blob/main/src/fully-homomorphic-encryption.md

Fully Homomorphic Encryption

8/28/20 14

1. Pre-FHE, where operations are limited for unbounded homomorphic encryption operations
○ RSA cryptosystem (unbounded number of modular multiplications)
○ ElGamal cryptosystem (unbounded number of modular multiplications)
○ Goldwasser–Micali cryptosystem (unbounded number of exclusive or operations)
○ Benaloh cryptosystem (unbounded number of modular additions)
○ Paillier cryptosystem (unbounded number of modular additions)
○ Sander-Young-Yung system (after more than 20 years solved the problem for logarithmic depth circuits)
○ Boneh–Goh–Nissim cryptosystem (unlimited number of addition operations but at most one multiplication)
○ Ishai-Paskin cryptosystem (polynomial-size branching programs)

2. First-generation FHE, based on lattice model, however "limited to evaluating low-degree polynomials over encrypted data" [3] .
○ Marten van Dijk, Craig Gentry, Shai Halevi and Vinod Vaikuntanathan (idea lattice)

3. Second-generation FHE, based on RLWE and NTRU related problem.
○ The Brakerski-Gentry-Vaikuntanathan (BGV, 2011) scheme.
○ NTRU-based scheme by Lopez-Alt, Tromer, and Vaikuntanathan (LTV, 2012).
○ The Brakerski/Fan-Vercauteren (BFV, 2012) scheme,on Brakerski's scale-invariant cryptosystem.
○ The NTRU-based scheme by Bos, Lauter, Loftus, and Naehrig (BLLN, 2013),building on LTV and Brakerski's scale-invariant cryptosystem;

4. Third-generation FHE
○ Craig Gentry, Amit Sahai, and Brent Waters (GSW), on building FHE schemes that avoids an expensive "relinearization" step in homomorphic

multiplication.
○ FHEW (2014), ring variants of the GSW cryptosystem
○ TFHE (2016), ring variants of the GSW cryptosystem
○ CKKS scheme, focuses on machine learning, conducts efficient rounding operations in encrypted state.

https://github.com/Fully-Homomorphic-Encryption/Docs/blob/main/src/fully-homomorphic-encryption.md

Open Source Projects of Fully Homomorphic
Encryption

8/28/20 15

https://github.com/Fully-Homomorphic-Encryption/Docs/blob/main/src/fully-homomorphic-encryption.md

Zero Knowledge Proof
Zero Knowledge Proofs provides the ability to prove honest

computation without revealing inputs.

8/28/20 16

Source: UN Handbook for Privacy Preserving Techniques https://docs.google.com/document/d/1GYu6UJI81jR8LgooXVDsYk1s6FlM-SbOvo3oLHglFhY/edit#

Usecase of Zero Knowledge Proof at Edge

8/28/20 17

Source: UN Handbook for Privacy Preserving Techniques https://docs.google.com/document/d/1GYu6UJI81jR8LgooXVDsYk1s6FlM-SbOvo3oLHglFhY/edit#

Open Source Projects of Zero Knowledge Proof

8/28/20 18

● SNARKs (Succinct Non-Interactive Argument of Knowledge
1. Zokrates a great SNARK domain specific language (DSL) for generating proofs and validating them on

Ethereum https://github.com/ZeroKnowlegeProof/ZoKrates
2. Bellman Rust implementation https://github.com/ZeroKnowlegeProof/bellman
3. Snarky OCaml implementation (DSL) https://github.com/ZeroKnowlegeProof/snarky
4. LIbsnark C++ https://github.com/ZeroKnowlegeProof/libsnark
5. Iden3’s Circum (DSL) & SnarkJS Javascript Implementation https://github.com/ZeroKnowlegeProof/circom
6. Republic Protocol’s zksnark-rs (DSL) Rust implementation https://github.com/ZeroKnowlegeProof/zksnark-rs
7. DIZK Java Distributed system https://github.com/ZeroKnowlegeProof/dizk
8. Go-SNARK zkSNARK library implementation in Go https://github.com/ZeroKnowlegeProof/go-snark-study

● STARKs
1. C++ implementation https://github.com/ZeroKnowlegeProof/libSTARK

● Bulletproofs
1. Benedikt's Bunz Java implementation https://github.com/ZeroKnowlegeProof/BulletProofLib

https://github.com/ZeroKnowlegeProof/ZoKrates
https://github.com/ZeroKnowlegeProof/bellman
https://github.com/ZeroKnowlegeProof/snarky
https://github.com/ZeroKnowlegeProof/libsnark
https://github.com/iden3/circom
https://github.com/ZeroKnowlegeProof/circom
https://github.com/ZeroKnowlegeProof/zksnark-rs
https://github.com/ZeroKnowlegeProof/dizk
https://github.com/ZeroKnowlegeProof/go-snark-study
https://github.com/ZeroKnowlegeProof/libSTARK
https://github.com/ZeroKnowlegeProof/BulletProofLib

Secure Multi-Party Computation

● Garbled Circuit(Andrew Chi-Chih Yao, FOCS'86) -> high
bandwidth, high latency

● Secret Sharing(Shamir and Blakley 1979) -> low computation,
low communication

● Oblivious Transfer (Rabin 1981) -> sent n msg, receiver
receive one of them, could also be used in private set
intersection, private information retrieval

8/28/20 19

Open Source Projects of Secure Multi-Party Computation
● ABY/ABY3 - 2PC/3PC with secret sharing and garbled circuits https://github.com/encryptogroup/ABY https://github.com/ladnir/aby3
● BatchDualEx - 2PC with garbled circuits https://github.com/osu-crypto/batchDualEx
● Carbyne Stack - MPC with Kubernetes, Istio, and Knative https://carbynestack.io/
● CrypTen, Facebook, MPC in PyTorch https://github.com/facebookresearch/CrypTen
● EMP-toolkit - 2PC and MPC with garbled circuits https://github.com/emp-toolkit
● Fancy-Garbling - 2PC with arithmetic garbled circuits in Rust https://github.com/spaceships/fancy-garbling
● FRESCO - MPC supporting TinyTables or SPDZ protocols http://fresco.readthedocs.io/en/latest/
● HoneyBadgerMPC - confidentiality layer for blockchains for output delivery https://github.com/initc3/HoneyBadgerMPC
● JIFF - JavaScript https://github.com/multiparty/jiff/
● MPyC - BGW https://www.win.tue.nl/~berry/mpyc/
● Obliv-C - 2PC with garbled circuits; secure against semi-honest adversaries. http://oblivc.org/
● Obliv-Java - Faithful reimplementation of Java using Obliv-C.https://github.com/Calctopia-OpenSource/jdk10u
● Rosetta - 3PC TensorFlow https://github.com/LatticeX-Foundation/Rosetta/
● MOTION - Mixed-Protocol MPC framework supporting full-threshold boolean and arithmetic GMW and BMR

https://github.com/encryptogroup/MOTION
● MP-SPDZ - SPDZ, SPDZ2k, MASCOT, Overdrive, BMR garbled circuits, Yao's garbled circuits, and computation based on three-party replicated

secret sharing as well as Shamir's secret sharing https://github.com/data61/MP-SPDZ
● Sharemind - 2PC or 3PC with secret sharing https://sharemind.cyber.ee/
● Tf-encrypted - 3PC with secret sharing on TensorFlow-based applications. https://github.com/tf-encrypted/tf-encrypted

8/28/20 20

https://github.com/encryptogroup/ABY
https://github.com/ladnir/aby3
https://github.com/osu-crypto/batchDualEx
https://carbynestack.io/
https://github.com/facebookresearch/CrypTen
https://github.com/emp-toolkit
https://github.com/spaceships/fancy-garbling
http://fresco.readthedocs.io/en/latest/
https://github.com/initc3/HoneyBadgerMPC
https://github.com/multiparty/jiff/
https://www.win.tue.nl/~berry/mpyc/
http://oblivc.org/
https://github.com/Calctopia-OpenSource/jdk10u
https://github.com/LatticeX-Foundation/Rosetta/
https://github.com/encryptogroup/MOTION
https://github.com/data61/MP-SPDZ
https://sharemind.cyber.ee/
https://github.com/mortendahl/tf-encrypted/
https://github.com/tf-encrypted/tf-encrypted

Confidential Computing through TEE

Confidential Computing leverages hardware-based Trusted Execution
Environments (TEE) to protect data in use.

8/28/20 21

It preserves: (defined by CCC)

● “Data confidentiality: Unauthorized entities cannot view data while it is in use within the TEE.”
● “Data integrity: Unauthorized entities cannot add, remove, or alter data while it is in use within the TEE.”
● “Code integrity: Unauthorized entities cannot add, remove, or alter code executing in the TEE.”

Source: Confidential Computing Consortium

Open Source Projects of Confidential Computing

8/28/20 22

● Projects on Intel SGX:
1. SGX SDK with samples: https://github.com/intel/linux-sgx
2. Gramine Build: https://gramine.readthedocs.io/en/latest/devel/building.html
3. Open Enclave SDK: https://github.com/openenclave/openenclave
4. MesaTEE, https://github.com/ConfidentialComputing/incubator-teaclave
5. Fortanix TEE, https://github.com/ConfidentialComputing/rust-sgx
6. Enclave Development Platform (EDP), Fortanix https://edp.fortanix.com/
7. Google Aslyo TEE, https://asylo.dev/
8. Anjuna Redis: https://docs.anjuna.io/apps/redis/installing.html
9. Anjuna: https://docs.anjuna.io/anjuna-runtime/anjuna-documentation/latest/index.html.

10. EGo, Edgeless https://www.ego.dev/
11. MarbleRun, Edgeless https://marblerun.sh/
12. EdgelessDB, Edgeless https://www.edgeless.systems/products/edgelessdb/

https://github.com/intel/linux-sgx
https://gramine.readthedocs.io/en/latest/devel/building.html
https://github.com/openenclave/openenclave
https://github.com/ConfidentialComputing/incubator-teaclave
https://github.com/ConfidentialComputing/rust-sgx
https://edp.fortanix.com/
https://asylo.dev/
https://docs.anjuna.io/apps/redis/installing.html
https://docs.anjuna.io/anjuna-runtime/anjuna-documentation/latest/index.html
https://www.ego.dev/
https://marblerun.sh/
https://www.edgeless.systems/products/edgelessdb/

Open Source Projects of Confidential Computing

8/28/20 23

● Projects on RISCV TEE
1. Penglai MPU (sPMP) https://penglai-enclave.systems/
2. Keystone, https://keystone-enclave.org/
3. OpenTitan, ePMP for RoT chain https://docs.opentitan.org/sw/device/silicon_creator/mask_rom/docs/memory_protection/
4. ibex core supports ePMP , and Seagate is using ePMP on their cores even before it was ratified. https://github.com/lowRISC/ibex
5. SiFive provides cores with PMP, similar to IOPMP. https://forums.sifive.com/t/pmp-registers-and-user-mode/3448
6. HexFive developed multizone, https://github.com/ConfidentialComputing/multizone-sdk
7. OP-TEE, RISC-V version https://archive.fosdem.org/2021/schedule/event/tee_teep/
8. RISC-V AP-TEE, https://github.com/riscv-admin/trusted-computing/tree/main/specifications/AP-TEE

https://docs.opentitan.org/sw/device/silicon_creator/mask_rom/docs/memory_protection/
https://archive.fosdem.org/2021/schedule/event/tee_teep/
https://github.com/riscv-admin/trusted-computing/tree/main/specifications/AP-TEE

Summary

24

Technology Performance Generability Security Description Maturity Suggested for
Production

Anonymization High High Medium depends on noise
level and data

High Yes

Differential Privacy High Low Medium depends on noise
level and data

Increasing No

Fully Homomorphic
Encryption

Low Medium High high cost of
computation and
low cost of
communication

Increasing No

Zero Knowledge
Proof

Low Low High used in secure
authentication
protocols

Increasing Yes

Secure Multi-Party
Computation

Low to Medium High High high cost of
computation and
communication

High No

Confidential
Computing through
TEE

High High medium to high need to trust
hardware
providers

Increasing, expect to
mature in about one
year

Yes

Privacy Preserving Standards, Regulations and Laws

25

C
urrent S

tandards

26Source: UN Handbook for Privacy Preserving Techniques https://docs.google.com/document/d/1GYu6UJI81jR8LgooXVDsYk1s6FlM-SbOvo3oLHglFhY/edit#

 S
tandards in P

rogress

27Source: UN Handbook for Privacy Preserving Techniques https://docs.google.com/document/d/1GYu6UJI81jR8LgooXVDsYk1s6FlM-SbOvo3oLHglFhY/edit#

Privacy Preserving: Challenges and Opportunities to
Use in Production

28

Challenges in Production

1. Reduce computation and communication overhead on encrypted data for resource limited
nodes/parties, for example, data size after FHE expands to 1 to 4 orders of magnitude.
The bottlenecks lie in the node/party which has the smallest computation resource and
network resource

2. Federated learning requires all nodes/parties to be online, perform collaborative and
synchronized compute and communication. Thus avoiding straggler-nodes/parties and
synchronization is important.

3. Interconnectivity between different nodes/parties is important. Due to different privacy
preserving algorithms, communication between nodes/parties require a common protocol.

4. Avoiding reinviting wheels, reducing overhead for deployment cluster with different cloud
providers. Share common APIs for parties who stores their data on various platforms.

29

Future Work in Production

1. Optimization on algorithms, de-couple computation modules, re-orchestration of calculation modules.
2. Reduce communication overhead by reducing communication frequency, and communication data size.
3. Tracing and identification of resource limited nodes/parties, define the traces to be collected.
4. Integrity preserving tracing and logging system for federated learning platforms.
5. Using C++/C and compiler optimization for accelerating algorithm implementation.
6. Using hardware acceleration (GPU, TPU, FPGA, ASIC) for acceleration of new encryption technologies and

privacy preserving related protocols.
7. Pipeline scheduling for data consumption, data read/write, data encryption/decryption, data transportation,

computation and storage.
8. Safety and security measurements and grading for the federated learning platforms.
9. Automatic evaluation and standardization of federated learning platforms for its performance.

10. Enhance explanatory of federated learning.

30

PipelineDP OpenMined

Wenhui Zhang Bytedance Inc wenhui.zhang@bytedance.com
Abinav Ravi Venkatakrishnan deepc GmbH subramathreya@gmail.com

Chinmay Shah Openmined cs@chinmayshah.xyz

OpenMined Org
 OpenMined (https://www.openmined.org/) is a group of open-source developers
that is focused on developing privacy preserving technologies tools.
OpenMined’s mission is to make privacy preserving machine learning
(PPML) accessible.

8/28/20 32

https://www.openmined.org/

Differential Privacy
Who are using differential Privacy?

33

Example Application using differential Privacy?

Differential Privacy Based Machine Learning Process

34

Original Machine Learning Process

Differential Privacy Based Machine Learning Process

PipelineDP
One of the most important privacy preserving technologies in the privacy
preserving technologies ecosystem is Differential privacy.
PipelineDP (https://pipelinedp.io/) is an open source tool to build differential
privacy on private data pipelines.
Based on PyDP to provide provide output privacy.

8/28/20 35

https://blog.openmined.org/announcing-pipelinedp-an-api-for-applying-differential-privacy-in-production/

PipelineDP Architecture

8/28/20 36

PipelineDP process large datasets using batch processing, supports Apache Beam, Apache Spark etc.

DPEngine is the heart of PipelineDP. Developers can use DPEngine directly, there are also developer-facing
APIs that resemble regular (non-private) APIs of the popular frameworks.

PipelineBackend is an abstraction for low-level data processing operations (map, join, combine, filter, etc.). It
enabled connection with data located in Apache Beam, Apache Spark or even locally.

DPEngine

8/28/20 37

Ref: https://github.com/google/differential-privacy/blob/main/common_docs/Differential_Privacy_Computations_In_Data_Pipelines.pdf

● Encapsulates the complexities of
differential privacy, such as:
○ protecting outliers and rare

categories,
○ generating safe noise,
○ privacy budget accounting.

● Supports many standard
computations, such as count, sum,
and average.

Data Pipeline with Differential Privacy

38

Original Data Pipeline

Data Pipeline with Differential Privacy

How to Use
1.Install Python and run on the command line `pip install pipeline-dp

pyspark absl-py`

2.Run python python run_on_beam.py --input_file=<path to data.txt from 3>

--output_file=<...>

8/28/20 39

How to Use

8/28/20 40

Blueprint Proposal: Data Privacy Blueprint Family

41

Case Attributes Description Informational
Type Data Privacy Blueprint Family – PipelineDP

Blueprint Family - Proposed Name Data Privacy Blueprint Family

Use Case Provide FaaS (Function as a Service) for Differential Privacy for Serverless Applications

Blueprint proposed Name PipelineDP

Initial POD Cost (capex) Unicycle less than $150k: 3 Arm bare metal machines, 1 10G switch

Scale & Type For the smallest deployment, this requires 2 Arm bare metal machines. For large deployments, this
could span to large number of bare metal machines.

Applications Differentially private data aggregation for large scale online education, telemedicine, Hospitals, Govs,
Teleco and Schools.

Power Restrictions Less than 10Kw

Infrastructure orchestration

Kubeless
Docker 1.13.1 or above and K8s 1.10.2 or above- Container Orchestration
OS - MAC/Linux
Under Cloud Orchestration - Airship v1.0

SDN OVS

Workload Type

Here are some examples of how to use PipelineDP:

● Apache Spark example
● Apache Beam example
● Framework-free example
● Example with all frameworks

https://github.com/OpenMined/PipelineDP/blob/main/examples/movie_view_ratings/run_on_spark.py
https://github.com/OpenMined/PipelineDP/blob/main/examples/movie_view_ratings/run_on_beam.py
https://github.com/OpenMined/PipelineDP/blob/main/examples/movie_view_ratings/run_without_frameworks.py
https://github.com/OpenMined/PipelineDP/blob/main/examples/movie_view_ratings/run_all_frameworks.py

Data Privacy Blueprint Family – PipelineDP

Akraino
Upper
Cloud

Lifecycle
Tools

AirShip
Under
Cloud

Lifecycle

Akraino Chest

AI Tools box

Declarative
Configuration

Narad
(Inventory)

ETE Testing
OpenStack Tempest

ETE Security tools

PINC
(N/W Orchestration)

CICD
(Community)

Rover (whitebox)Satellite

ETE Operations tools

Documentation

Customer Edge

Admin GUI User GUIAkraino GUI

APIs

Applications & VNFs
Edge Application and
APIs

Lightweight Edge App
Orchestration

Edge Application and
Orchestration

NFV Orchestration NFV & Domain Specific
Orchestrator

PipelineDP

Community - TBD

Akraino Workflow CamundaPlatform Workflows

Edge Platform
Software Components

Infra Orchestration Kubernetes

Network Control Plane

Operation System MAC

OVSNetwork Data Plane
Calico

Storage

Dashboard

Network Edge NC – Multinode Cluster

ServerlessNetwork Edge
Micro Services

D
a
w
n
*

Akraino - new Upstream Future release

*To be
contributed
to Airship

PipelineDP

Spark

Single Server
(Rover)

Beam

Ubuntu (UNDER TEST)

PipelineDP

PipelineDP Code

› Github: https://github.com/OpenMined/PipelineDP
› Website: https://pipelinedp.io/
› API: https://pipelinedp.io/api-documentation/index.html
› Utility analysis: https://github.com/OpenMined/PipelineDP/tree/main/utility_analysis
› Proposal: https://wiki.akraino.org/display/AK/OpenMined+PipelineDP

8/28/20 43

https://github.com/OpenMined/PipelineDP
https://pipelinedp.io/
https://pipelinedp.io/api-documentation/index.html
https://github.com/OpenMined/PipelineDP/tree/main/utility_analysis
https://wiki.akraino.org/display/AK/OpenMined+PipelineDP

Thanks for listening

8/28/20 44

Opportunities and Challenges

45

Source: https://blog.openmined.org/classifying-the-challenges-of-privacy-enhancing-technologies-pets-in-iot-data-markets/

Classification of challenges in Production

● The Narrow Challenges
● The Broad Challenges

46

The Narrow Challenges

● The Utility and privacy trade-off:
○ A dilemma of preserving the privacy and deriving useful insight from data
○ PETs ensure plausible deniability, but could reduce data authenticity

● The Recursive Enforcement Problem (REP):
○ Manifests itself in a multi-layered supervision structure
○ Issue of trust and cost of third party supervision affects PETs maturity

● The Copy Problem (CP):
○ One could lose control of data as it becomes tradable asset
○ Fear of potentially forgoing the benefits derived from shared data

47

The Broad Challenges

● The attacks on privacy:
○ Data re-identification
○ Could be any of data forwarding, roles collision, or side channel attacks

● The Legal challenges:
○ Laws appears reactionary rather than proactive
○ Stringent privacy regulation could stifle free markets and innovations

● The IoT impact on privacy
○ Constrained by such factors as context and employed technologies
○ More details on the next slide

48

The Shortcomings of Edge Computing

● Heterogeneity and Interoperability
● Computation power
● Storage capacity and real-time communication
● Data quality
● Ambiguous data ownership
● Privacy disparity
● Pricing

49

Summary of Challenges of Edge Computing

● Establish thresholds that balance the trade-off between data authenticity and
privacy

● Maturity of PETs could help reduce the recursive enforcement problem and the
copy problem

50

