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Privacy Preserving Technologies and Open
Sourced Projects: Challenges and Opportunities

Review the current privacy preserving technologies
Summarize the popular open source projects

Review both current and in progress standard/regulations/law
Discuss challenges and opportunities for production
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Privacy Preserving for Federated Learning



Growing Demand of Privacy Enhancing Computing

“‘By 2025, 60% of large organizations will use one or more privacy enhancing
computation techniques in analytics, business intelligence or cloud computing. ”

Source: Gartner

Increasing Need for Federated Learning
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Privacy Goals for Federated Learning
(e.g. Statistics and Machine Learning)

No data leak, constrain the sensitive data to authorized entities.
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Source: UN Handbook for Privacy Preserving Techniques
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Open Source Frameworks for Federated Learning

1. Federated Al Technology Enabler, Webank Fin tech ,
https://qithub.com/OpenFederatedlLearning/FATE
https://qgithub.com/OpenFederatedLearning/egagroll

FedML, USC, https://aithub.com/OpenFederatedLearning/FedML

Fedlearner, Bytedance, hiips://github.com/OpenFederatedLearning/fedlearner
Harmonia, AL Labs Taiwan, https://qithub.com/OpenFederatedLearning/harmonia
Openfl, Intel, https://github.com/OpenFederatedlLearning/openfl

PaddleFL, Baidu, htips://github.com/OpenFederatedlLearning/PaddleFL

PySyft, OpenMined, https://github.com/OpenFederatedLearning/PySyft
Tensorflow Federated, Google, hitps://github.com/OpenFederatedLearning/federated
IONFL, Jingdong, htips://github.com/OpenFederatedLearning/9nfl
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Privacy Preserving Techniques

Privacy preserving technique allows sharing sensitive personal information
while preserving users' privacy. Below are the technologies used in Federated
Learning:

Anonymization (weakest)

Differential Privacy

Fully Homomorphic Encryption (FHE)

Zero Knowledge Proof

Secure Multi-Party Computation (MPC)

Confidential Computing through TEE (e.g. SGX and TrustZone)
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Federated Learning Stack

Client

Anonymization

Server

Differential Privacy

Zero Knowledge Proof

Fully Homomorphic Encryption

Secure Multi-Party Computation

Trusted Execution Environment
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Anonymization

The goal of anonymization is to anonymize data so that the data could not

be associated with any one individual.

e Data Generalization (achieve k-anonymity and |-diversity):
o k-anonymity: General a data property, so that in the group the data belongs to, at least k-1 individuals
who have the same properties.
o |-diversity: Anonymized data set for its’ sensitive attributes.
e Adding Noise to Data:
o By adding mathematical noise to data, make it difficult to ascertain whether any one individual is part of

a data set.
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Differential Privacy

Differential Privacy provides output privacy for statistics and
databases.
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Open Source Projects of Differential Privacy

Diffprivlib, built and supported by IBM, is also designed for data scientists, but is slightly more focused on machine learning tasks.

http://www.bipr.net/diffpriv/

Google has Tensorflow privacy, a library for training machine learning models with privacy for training data.

https://qgithub.com/tensorflow/privacy

Uber use have SQL-diff for dataflow analysis & differential privacy for SQL queries.

https://github.com/uber-archive/sql-differential-privacy

PING by Microsoft, is a SQL query engine with differential privacy preserved.

https://www.microsoft.com/en-us/research/project/privacy-integrated-queries-ping/

PSl is a framework for pipelined differential privacy analysis, http://psiprivacy.org/static/about/index.html

PipelineDP is a framework developed by OpenMined, for performing Differentially private data aggregation https://pipelinedp.io/

OpenDP is a community-supported set of tools designed for data scientists. It includes implementations of many of the tools we have

discussed in this series. https://qithub.com/OpenFederatedlLearning/smartnoise-samples
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Fully Homomorphic Encryption

Homomorphic Encryption cryptosystem is a cryptosystem whose decryption is a morphism.

Decrypt(a*b) = Decrypt(a) * Decrypt(b)

Homomorphic Encryption cryptosystem allows operate on ciphertexts without decryption.
It ensures end-to-end semantically secure, which is ensuring security against honest but curious adversaries.
Different from confidential computing, FHE takes a software-based data encryption/protection.

Since FHE does not perform computational processing in Trusted Execution Environment (TEE), and unauthorized
access or modification of data and application code during processing might occur. Thus, FHE does not support
application code integrity nor code confidentiality.
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https://github.com/Fully-Homomorphic-Encryption/Docs/blob/main/src/fully-homomorphic-encryption.md

1.

2.

3.

4.

Fully Homomorphic Encryption

Pre-FHE, where operations are limited for unbounded homomorphic encryption operations

O

0O O O O O O

@)

RSA cryptosystem (unbounded number of modular multiplications)

ElGamal cryptosystem (unbounded number of modular multiplications)

Goldwasser—Micali cryptosystem (unbounded number of exclusive or operations)

Benaloh cryptosystem (unbounded number of modular additions)

Paillier cryptosystem (unbounded number of modular additions)

Sander-Young-Yung system (after more than 20 years solved the problem for logarithmic depth circuits)
Boneh—Goh—Nissim cryptosystem (unlimited number of addition operations but at most one multiplication)
Ishai-Paskin cryptosystem (polynomial-size branching programs)

First-generation FHE, based on lattice model, however "limited to evaluating low-degree polynomials over encrypted data" [3] .

O

Marten van Dijk, Craig Gentry, Shai Halevi and Vinod Vaikuntanathan (idea lattice)

Second-generation FHE, based on RLWE and NTRU related problem.

@)

O

O

@)

The Brakerski-Gentry-Vaikuntanathan (BGV, 2011) scheme.

NTRU-based scheme by Lopez-Alt, Tromer, and Vaikuntanathan (LTV, 2012).

The Brakerski/Fan-Vercauteren (BFV, 2012) scheme,on Brakerski's scale-invariant cryptosystem.

The NTRU-based scheme by Bos, Lauter, Loftus, and Naehrig (BLLN, 2013),building on LTV and Brakerski's scale-invariant cryptosystem;

Third-generation FHE
Craig Gentry, Amit Sahai, and Brent Waters (GSW), on building FHE schemes that avoids an expensive "relinearization" step in homomorphic

O

@)

multiplication.

FHEW (2014), ring variants of the GSW cryptosystem f‘e AKRAINO

TFHE (2016), ring variants of the GSW cryptosystem
CKKS scheme, focuses on machine learning, conducts efficient rounding operations in encrypted state.
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Open Source Projects of Fully Homomorphic
Encryption
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Zero Knowledge Proof

Zero Knowledge Proofs provides the ability to prove honest
computation without revealing inputs.

A zero-knowledge proof has three salient properties:

e Completeness: If the statement is true and both the prover and the verifier follow the
protocol; the verifier will accept the proof.

e Soundness: If the statement is false, and the verifier follows the protocol; the verifier will
not be convinced by the proof.

e Zero-knowledge: If the statement is true and the prover follows the protocol; the verifier will
not learn any confidential information from the interaction with the prover except that the
statement is true.

Source: UN Handbook for Privacy Preserving Techniques https://docs.google.com/document/d/1GYu6UJI81jR8LgooXVDsYk1s6FIM-SbOvo3oLHgIFhY/edit#
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Usecase of Zero Knowledge Proof at Edge

checking that taxes have been properly paid by some company or person;
checking that a given loan is not too risky;
checking that data is retained by some record keeper (without revealing or transmitting
the data);
e checking that an airplane has been properly maintained and is fit to fly.

In many of the above auditing and compliance checking scenarios the underlying computation is
a data analysis algorithm. Thus zero knowledge enables proofs that a given output is the output
of a correct data analysis on some sensitive input data.

Source: UN Handbook for Privacy Preserving Techniques https://docs.google.com/document/d/1GYu6UJI81jR8LgooXVDsYk1s6FIM-SbOvo3oLHgIFhY/edit#
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Open Source Projects of Zero Knowledge Proof

e SNARKSs (Succinct Non-Interactive Argument of Knowledge

1.
2
3
4.
5.
6
7
8

e STAR
1.

Zokrates a great SNARK domain specific language (DSL) for generating proofs and validating them on
Ethereum https://github.com/ZeroKnowlegeProof/ZoKrates

Bellman Rust implementation htips://github.com/ZeroKnowlegeProof/bellman

Snarky OCaml implementation (DSL) https://github.com/ZeroKnowlegeProof/snarky

LIbsnark C++ https://github.com/ZeroKnowlegeProof/libsnark

lden3’s Circum (DSL) & SnarkJS Javascript Implementation https://github.com/ZeroKnowlegeProof/circom
Republic Protocol’s zksnark-rs (DSL) Rust implementation https://github.com/ZeroKnowlegeProof/zksnark-rs
DIZK Java Distributed system https://github.com/ZeroKnowlegeProof/dizk

Go-SNARK zkSNARK library implementation in Go https://github.com/ZeroKnowlegeProof/go-snark-study
Ks

C++ implementation https://github.com/ZeroKnowlegeProof/libSTARK

e Bulletproofs

1.

Benedikt's Bunz Java implementation https://github.com/ZeroKnowlegeProof/BulletProoflLib
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Secure Multi-Party Computation

e Garbled Circuit(Andrew Chi-Chih Yao, FOCS'86) -> high
bandwidth, high latency

e Secret Sharlng(Shamlr and Blakley 1979) -> low computation,
low communication

e Oblivious Transfer (Rabin 1981) -> sent n msg, receiver
receive one of them, could also be used in private set
iIntersection, private information retrieval
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Open Source Projects of Secure Multi-Party Computation

ABY/ABY3 - 2PC/3PC with secret sharing and garbled circuits https://github.com/encryptogroup/ABY https://github.com/ladnir/aby3
BatchDualEx - 2PC with garbled circuits https://github.com/osu-crypto/batchDualEx

Carbyne Stack - MPC with Kubernetes, Istio, and Knative https://carbynestack.io/

CrypTen, Facebook, MPC in PyTorch https://qgithub.com/facebookresearch/CrypTen

EMP-toolkit - 2PC and MPC with garbled circuits https://github.com/emp-toolkit

Fancy-Garbling - 2PC with arithmetic garbled circuits in Rust https://github.com/spaceships/fancy-garbling

FRESCO - MPC supporting TinyTables or SPDZ protocols http://fresco.readthedocs.io/en/latest/

HoneyBadgerMPC - confidentiality layer for blockchains for output delivery https://github.com/initc3/HoneyBadgerMPC

JIFF - JavaScript https://github.com/multiparty/jiff/

MPyC - BGW https://www.win.tue.nl/~berry/mpyc/

Obliv-C - 2PC with garbled circuits; secure against semi-honest adversaries. http://oblivc.org/

Obliv-dava - Faithful reimplementation of Java using Obliv-C.https://github.com/Calctopia-OpenSource/jdk10u

Rosetta - 3PC TensorFlow htips://github.com/LatticeX-Foundation/Rosetta/

MOTION - Mixed-Protocol MPC framework supporting full-threshold boolean and arithmetic GMW and BMR
https://github.com/encryptogroup/MOTION

MP-SPDZ - SPDZ, SPDZ2k, MASCOT, Overdrive, BMR garbled circuits, Yao's garbled circuits, and computation based on three-party replicated
secret sharing as well as Shamir's secret sharing https://github.com/data61/MP-SPDZ

Sharemind - 2PC or 3PC with secret sharing https://sharemind.cyber.ee/

Tf-encrypted - 3PC with secret sharing on TensorFlow-based applications. https://github.com/tf-encrypted/tf-encrypted
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Confidential Computing through TEE

Confidential Computing leverages hardware-based Trusted Execution
Environments (TEE) to protect data in use.

It preserves: (defined by CCC)
e “Data confidentiality: Unauthorized entities cannot view data while it is in use within the TEE.”
e “Data integrity: Unauthorized entities cannot add, remove, or alter data while it is in use within the TEE.”
e “Code integrity: Unauthorized entities cannot add, remove, or alter code executing in the TEE.”

Source: Confidential Computing Consortium
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Open Source Projects of Confidential Computing

Projects on Intel SGX:

© NSOk WN-

1.
12.

SGX SDK with samples: hitps://github.com/intel/linux-sax
Gramine Build: https://gramine.readthedocs.io/en/latest/devel/building.html

Open Enclave SDK: hitps://github.com/openenclave/openenclave
MesaTEE, https://github.com/Confidential Computing/incubator-teaclave
Fortanix TEE, https://github.com/Confidential Computing/rust-sgx
Enclave Development Platform (EDP), Fortanix https://edp.fortanix.com/
Google Aslyo TEE, htips://asylo.dev/

Anjuna Redis: hitps://docs.anjuna.io/apps/redis/installing.html

Anjuna: https://docs.anjuna.io/anjuna-runtime/anjuna-documentation/latest/index.html.

EGo, Edgeless htips://www.ego.dev/
MarbleRun, Edgeless htips://marblerun.sh/
EdgelessDB, Edgeless hiips://www.edgeless.systems/products/edgelessdb/
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Open Source Projects of Confidential Computing

e Projects on RISCV TEE
1. Penglai MPU (sPMP) https://penglai-enclave.systems/
Keystone, https://keystone-enclave.org/
OpenTitan, ePMP for RoT chain https://docs.opentitan.org/sw/device/silicon_creator/mask_rom/docs/memory_protection/
ibex core supports ePMP , and Seagate is using ePMP on their cores even before it was ratified. https://github.com/lowRISC/ibex
SiFive provides cores with PMP, similar to IOPMP. https://forums.sifive.com/t/pmp-reqgisters-and-user-mode/3448
HexFive developed multizone, https://github.com/Confidential Computing/multizone-sdk
OP-TEE, RISC-V version https://archive.fosdem.org/2021/schedule/event/tee_teep/
RISC-V AP-TEE, https://github.com/riscv-admin/trusted-computing/tree/main/specifications/AP-TEE
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Summary

Technology Performance Generability Security Description Maturity Suggested for
Production
Anonymization High High Medium depends on noise | High Yes
level and data
Differential Privacy High Low Medium depends on noise | Increasing No
level and data
Fully Homomorphic Low Medium High high cost of Increasing No
Encryption computation and
low cost of
communication
Zero Knowledge Low Low High used in secure Increasing Yes
Proof authentication
protocols
Secure Multi-Party Low to Medium High High high cost of High No
Computation computation and
communication
Confidential High High edium to high need to trust Increasing, expectto | Yes

Computing through
TEE

AKRAIND

hardware
providers

mature in about one
year
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Privacy Preserving Standards, Regulations and Laws
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ISO/IEC 29101:2013 (Information technology — Security techniques — Privacy architecture
framework) is one of the oldest standards efforts that handles secure computing. It presents
architectural views for information systems that process personal data and show how Privacy
Enhancing Technologies such as secure computing, but also pseudonymisation, query
restrictions and more could be deployed to protect Personally Identifiable Information.

ISO/IEC 29101 pre-dates the European General Data Protection Regulation (GDPR), so it does
not include all the latest knowledge on secure computing and its role in regulation. For example,
it is unaware of the view of anonymised processing and using secure computing might actually
not be processing in the sense of the law.

ISO/IEC 19592-1:2016 (Information technology — Security techniques — Secret sharing —
Part 1: General) focuses on the general model of secret sharing and the related terminology. It
introduces properties that secret sharing schemes could have, e.g. the homomorphic property
that is a key aspect for several MPC systems.

ISO/IEC 19592-2:2017 (Information technology — Security techniques — Secret sharing —
Part 2: Fundamental mechanisms) introduces specific schemes. It starts with the classic ones
like Shamir and replicated secret sharing. All schemes are systematically described using the
terms and properties from Part 1. There were originally plans to have more parts for this
standard that would describe MPC paradigms, but work has not started yet.

SpJepuels Jualng

Source: UN Handbook for Privacy Preserving Techniques https://docs.google.com/document/d/1GYu6UJI81jR



ISO/IEC 18033-6 (Information technology security techniques — Encryption algorithms —
Part 6: Homomorphic encryption) is a standard on homomorphic encryption schemes

Given the more conservative nature of ISO/IEC when it comes to encryption schemes, it is
attempting to focus on the ones with multiple known industrial uses. However, as it is still work
in progress, it is unclear how it will turn out in the end.

The Homomorphic Encryption Standardization Initiative? is an open standardisation
initiative for fully homomorphic encryption with participants from industry, government and
academia. The initiative attempts to build broad community agreement on security levels,
encryption parameters, encryption schemes, core library API, and eventually the
programming model, with the goal of driving adoption of this technology.

ISO/IEC 20889 (Privacy enhancing data de-identification terminology and

classification of techniques) is another project that approaches privacy technologies a bit
differently. This project will result in a standard that describes ways to turn identifiable data
into de-identified data. Here, the choices include various noise-based techniques,
cryptographic techniques and more.

ssalbold ul spiepuels

Source: UN Handbook for Privacy Preserving Techniques https://docs.google.com/document/d/1GYu6UJI81jR



Privacy Preserving: Challenges and Opportunities to
Use in Production
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Opportunities and Challenges

The tradeoff between utility

and privacy

(

)

Utility Privacy

~ Identity authenticity
~ Data authenticity

~ Data integrity

- Computational integrity

Third-party trust

Recursive enforcement
problem

Contrived trust

Single point of failure

~ Input

- Computation

~ Output

The bundling problem The copy problem

Challenges facing
privacy-enhancing
technologies in
the loT

The loT impact on privacy

~ Heterogeneity and interoperability
- Computation power

- Storage capacity

~ Real-time communication

~ Data quality

~ Ambiguous data ownership

~ Privacy disparity

- Pricing

Attacks on privacy

Legal

Source: https://blog.openmined.org/classifying-the-challenges-of-privacy-enhancing-technologies-pets-in-iot-data-markets/
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Classification of challenges in Production

® The Narrow Challenges
® The Broad Challenges

30



The Narrow Challenges

e The Utility and privacy trade-off:
o Adilemma of preserving the privacy and deriving useful insight from data
o PETs ensure plausible deniability, but could reduce data authenticity
e The Recursive Enforcement Problem (REP):
o Manifests itself in a multi-layered supervision structure
o Issue of trust and cost of third party supervision affects PETs maturity
e The Copy Problem (CP):
o One could lose control of data as it becomes tradable asset
o Fear of potentially forgoing the benefits derived from shared data
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The Broad Challenges

e The attacks on privacy:

o Data re-identification

o Could be any of data forwarding, roles collision, or side channel attacks
e The Legal challenges:

o Laws appears reactionary rather than proactive

o Stringent privacy regulation could stifle free markets and innovations
e The loT impact on privacy

o Constrained by such factors as context and employed technologies

o More details on the next slide
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The Shortcomings of Edge Computing

Heterogeneity and Interoperability
Computation power

Storage capacity and real-time communication
Data quality

Ambiguous data ownership

Privacy disparity

Pricing
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Summary of Challenges of Edge Computing

Establish thresholds that balance the trade-off between data authenticity and

privacy
Maturity of PETs could help reduce the recursive enforcement problem and the

copy problem
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Challenges in Production

Reduce computation and communication overhead on encrypted data for resource limited
nodes/parties, for example, data size after FHE expands to 1 to 4 orders of magnitude.
The bottlenecks lie in the node/party which has the smallest computation resource and
network resource

Federated learning requires all nodes/parties to be online, perform collaborative and
synchronized compute and communication. Thus avoiding straggler-nodes/parties and
synchronization is important.

Interconnectivity between different nodes/parties is important. Due to different privacy
preserving algorithms, communication between nodes/parties require a common protocol.
Avoiding reinviting wheels, reducing overhead for deployment cluster with different cloud
providers. Share common APIs for parties who stores their data on various platforms.
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Future Work in Production

Optimization on algorithms, de-couple computation modules, re-orchestration of calculation modules.
Reduce communication overhead by reducing communication frequency, and communication data size.
Tracing and identification of resource limited nodes/parties, define the traces to be collected.

Integrity preserving tracing and logging system for federated learning platforms.

Using C++/C and compiler optimization for accelerating algorithm implementation.

Using hardware acceleration (GPU, TPU, FPGA, ASIC) for acceleration of new encryption technologies and
privacy preserving related protocols.

Pipeline scheduling for data consumption, data read/write, data encryption/decryption, data transportation,
computation and storage.

Safety and security measurements and grading for the federated learning platforms.

Automatic evaluation and standardization of federated learning platforms for its performance.

Enhance explanatory of federated learning.
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Thanks for listening
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