Blueprint Proposal: Public Cloud Edge Interface Family

(Type 2: Federated Multi-Access Edge Cloud Platform)

KubeEdge MEC Team March, 2021

PCEI Overview

The purpose of Public Cloud Edge Interface (PCEI) Blueprint family is to specify a set of open APIs for enabling Multi-Domain Interworking across functional domains that provide Edge capabilities/applications and require close cooperation between the Mobile Edge, the Public Cloud Core and Edge, the 3rd-Party Edge functions as well as the underlying infrastructure such as Data Centers, Compute hardware and Networks.

Typical PCEI Use Cases

- Distributed Online/Cloud Gaming.
- Traffic Steering/UPF Distribution/Shunting capability -- distributing User Plane Functions in the appropriate Data Center Facilities on qualified compute hardware for routing the traffic to desired applications and network/processing functions/applications.
- Location Services -- location of a specific UE, or identification of UEs within a geographical area, facilitation of server-side application workload distribution based on UE and infrastructure resource location.
- ❖ QoS acceleration/extension provide low latency, high throughput for Edge applications. Example: provide continuity for QoS provisioned for subscribers in the MNO domain, across the interconnection/networking domain for end-to-end QoS functionality.
- ❖ Network Slicing provisioning and management providing continuity for network slices instantiated in the MNO domain, across the Public Cloud Core/Edge as well as the 3Rd-Party Edge domains, offering dedicated resources specifically tailored for application and functional needs (e.g. security) needs.
- Mobile Hybrid/Multi-Cloud Access provide multi-MNO, multi-Cloud, multi-MEC access for mobile devices (including IoT) and Edge services/applications
- ❖ Enterprise Wireless WAN access provide high-speed Fixed Wireless Access to enterprises with the ability to interconnect to Public Cloud and 3rd-Party Edge Functions, including the Network Functions such as SD-WAN.
- ❖ Local Break-Out (LBO) Examples: video traffic offload, low latency services, roaming optimization.

Proposed Blueprint Introduction

- ❖ Type II of PCEI family focuses on solution with a mobile game deployed across multiple heterogenous edge nodes using various network access modes including mobile and Wifi.
- A simulated mobile access environment is used to mimic a real time device access condition changes.
- ❖ The key component is a federated multi-access edge cloud platform it features several key components.
- ❖ The platform sits between applications and underlying heterogeneous edge infrastructure and also abstracts the multi-access interface and exposes application developer friendly APIs.
- This blueprint leverages upstream project KubeEdge as baseline platform this includes the enhanced KubeFed compatible federation function.

Use Case Scenario

Cloud Gaming Detail Flow using KubeEdge

- KubeEdge provides the logical MEC station abstraction by using K8S labels to group edge nodes into logical MEC stations.
- Operator deploys cloud gaming workload to the specified MEC station/s in accordance to the MEC application placement policies.
- UE retrieves the optimal location-aware endpoint address of the edge node (using cloud core side Service Discovery service interface).
- UE establishes session to the retrieved edge cloud telco UPF service (provides support for multi-access protocols).
- ❖ UE connects to the cloud gaming service instance on the edge node.
- Cloud Core side application migration service subscribes to UE location tracking events or resource rebalancing scenario. 4
- Upon UE mobility or resource rebalancing scenario, application migration service uses Cloud core side Service Discovery service interface to retrieve the address of new appropriate location-aware edge node. (2)
- Cloud Core side application migration service initiates UE application state migration process between edge nodes.
 - Edge-to-Edge state migration (using east-west multi-mesh networking).
- UE connects to new edge telco UPF service.
- Redirect UE connection to the new cloud gaming service instance on the new edge node.

Disparate Multi-Access Protocols Migration Challenges AKRAIND

- Challenges due to Intra & Inter Operator Roaming
 - ❖ WIFI ⇔ WIFI transition
 - ❖ 5G ⇔ 5G transition
 - ❖ WIFI ⇔ 5G transition

KubeEdge Project Overview

- Built upon Kubernetes, 100% compatible with Kubernetes APIs
- Optimized node components and runtimes for edge
- Bidirectional multiplexing message channel
- · Metadata persistence at the edge, local autonomy
- Support for extensive edge applications and protocols
- Simplified access and control of edge devices
- Unified management of cloud and edge applications and resources

KubeEdge Architecture

An extensible framework to maximize the compute power at edge

Local persistent metadata management

An Edge-Cloud channel not just for node control, but also for application

Enables node-cloud, node-node communications

Enabler for digital transformation of the physical world

Multi-Operators Deployment Topologies

Thank You!