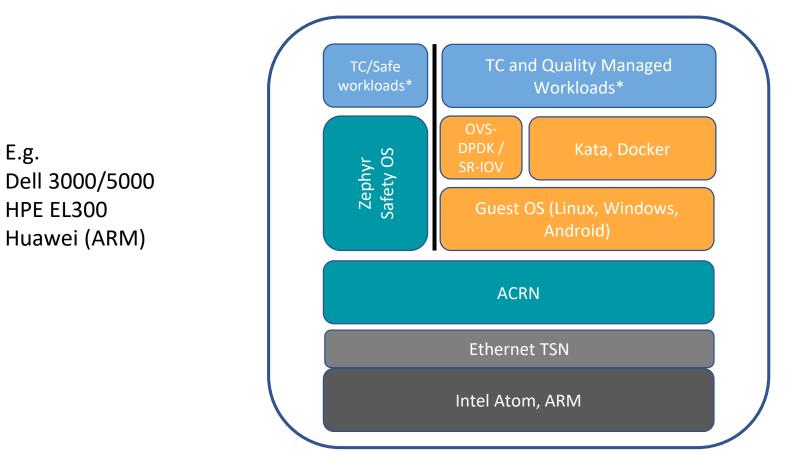

AKRAIIO EDGE STACK

Blueprint Submission for Time-critical Edge Compute

Intel Corporation, Inc.

Time-critical Edge Compute Blueprint: Use Cases

- Use cases in Manufacturing, Smart Buildings, general IIOT
 - \circ Virtualized PLC
 - Computer vision inference
 - Machine, sensor data inference
 - Process or discrete manufacturing closed loop control
 - Ethernet TSN
- Functional Safety capable use cases


 Discrete manufacturing soft PLC
- Onramp for 5G-URLLC

Time-critical Edge Compute Blueprint: Hardware and Partners

- Low power, ruggedized hardware E.g.
 - Dell 3000, 5000 IPC
 - HPE EL300
 - Huawei (ARM)
- Potential to attract new members to Akraino project

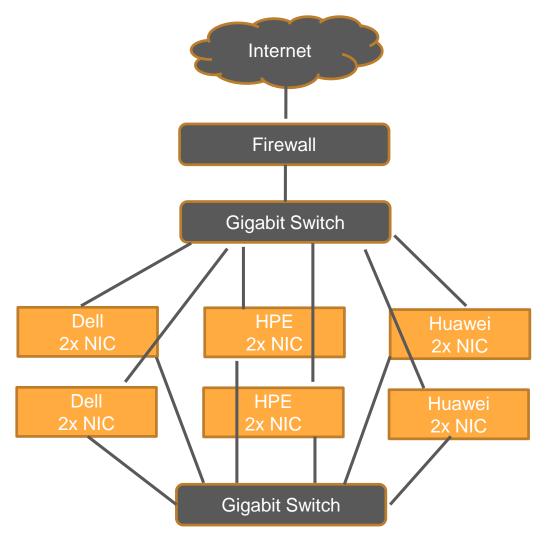
 Industrial ODM's e.g. Advantech, Adlink
 Industrial OEM's/ISV's e.g. TTTech, Nebbiolo, IOTech
 Industrial end-users e.g. ExxonMobil

Time-critical Edge Compute Blueprint: Base Architecture

Virtualized, Functionally Safe workloads in addition to others Easily Extensible and Expandable, by just adding more systems Evaluating Airship for ZTP and deployment * See next page for some sample targets

Open Source or potentially proprietary

Open Source


Containerized edge workloads

- Containerized workloads orchestrated via Kubernetes tuned for embedded deployments
- Sample workloads include
 - Tensorflow via Kubeflow
 OpenVINO for Video and Inference
 Closed loop control (e.g. IEC 61131)
 - EdgeX Foundry
 - Building automation controller

Community Lab and Validation Lab requirements

- Expect 2 boxes from each OEM partner (Dell, HPE, Huawei) for each environment
- Gigabit ethernet OK for now but blueprint will require TSN networking beyond R1

Backup: Deep dives for underlying technology

- Zephyr OS
- ACRN Hypervisor
- Kata Containers
- Celadon A fully Open Source Android Stack
- OVS-DPDK

A scalable real-time operating system (RTOS) supporting multiple hardware architectures, optimized for resource constrained devices, and built with security in mind. <u>https://www.zephyrproject.org/</u>

Overview – A Fully Featured Open Source RTOS (since 2016)

Safety

- Thread Isolation
- Stack Protection (HW/SW)
- Quality Managed (QM)
- Build time configuration
- No dynamic memory allocation
- FuSA (2019)

Security

- User-space
 support
- Crypto Support
- Software Updates
- Enables application code to scale

as 8k RAM

 Configurable and Modular

Configurable

can be configured

to run in as little

& Modular

Zephyr Kernel

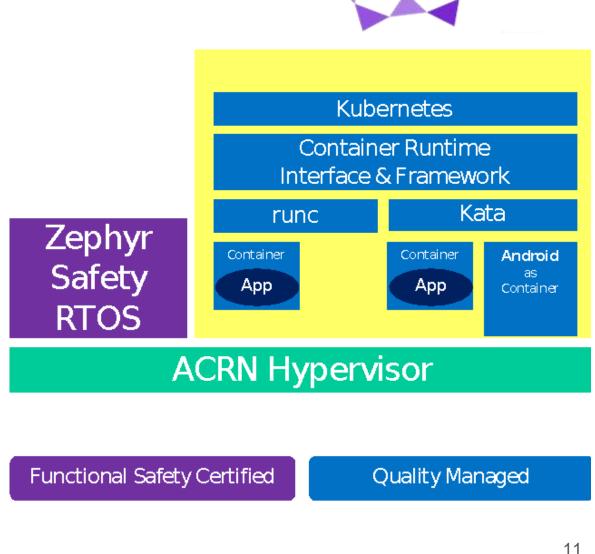
Cross Platform

- Support for multiple architectures
- Native Port
- Developed on Linux, Windows and MacOS

Open Source

- Licensed under
- Apache II License
- Managed by the Linux Foundation*
- Transparent
- development
- Fork it on Github!

Connected


- Full Bluetooth 5.0
- Support
- Bluetooth
- Controller
- BLE Mesh
- Thread Support
- Full featured native networking stack
- DFU (IP+BLE)

Zephyr[™] is not an ingredient, Zephyr[™] provides a complete solution.

Zephyr Enabled as a Safety Critical OS

- Runs on a custom hypervisor that is ٠ safety critical capable
- Security updates with the latest fixes •
- Similar to Cloud Software Defined • Infrastructure (SDI)

- Zephyr = FuSa (2019)Ш
- Linux = Quality Managed Ш
- Android = non-FuSa

Zephyr[™] OS Direction

Safety & Security

- Functional Safety (FuSa) core OS certification: secure & harden kernel (IEC61508 SIL3).
- Development model & process with safety and security in mind.
- Trusted Execution Environments.

E2E Platform

- Bootloader.
- Device firmware updates.
- Cloud connectivity.
- Development tools.

Expanded Use Cases

- Industrial, safety, and security features.
- Deep embedded usages (BLE, 802.15.4 (zigbee), BT Mesh.
- Advanced configurations and use cases: Multicore, SMP, AMP.

Ecosystem & Portability

- Improve support on Mac and Windows.
- IDE integration.
- 3rd party tools: tracing, profiling, debugging.
- LLVM, commercial compilers.
- Standard APIs and portability: POSIX layer (PSE54), BSD socket, and CMSIS RTOS.

ACRN

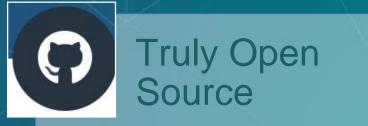
A Big Little Hypervisor for IoT Development

What is ACRN™?

ACRN is a flexible, lightweight reference hypervisor, built with real-time and safety-criticality in mind, optimized to streamline embedded development through an open source platform.

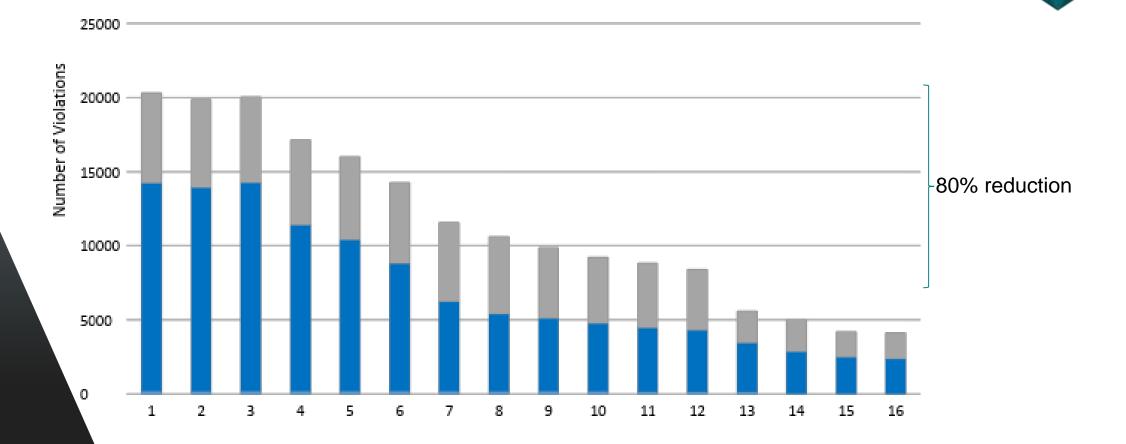
A Big Little Hypervisor for IoT Development

ACRN™ Features


Built for IoT

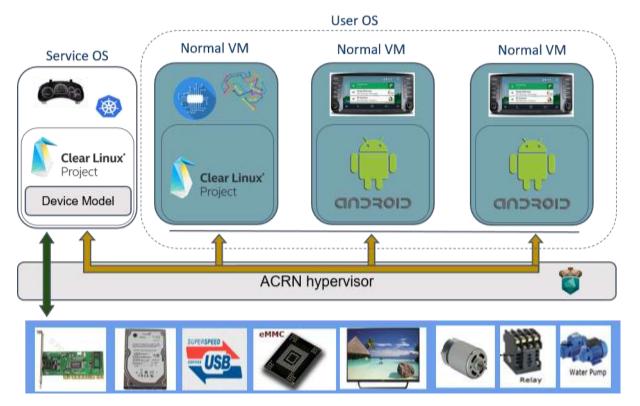
Features Roadmap - Proposal

Limited to specific HW

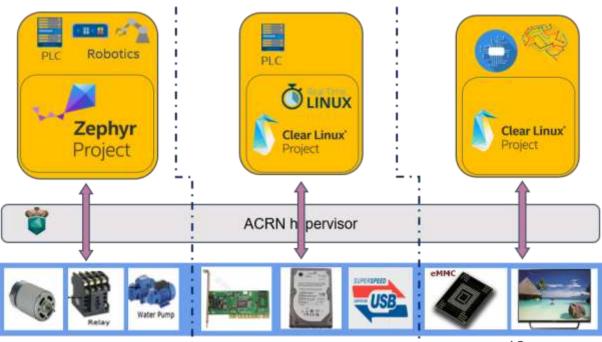

Pass through

*

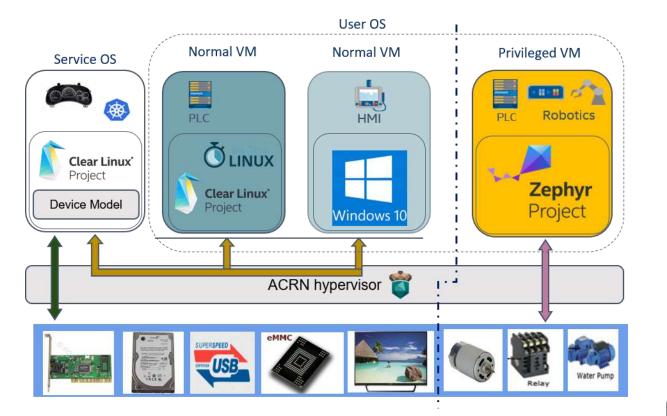
PT

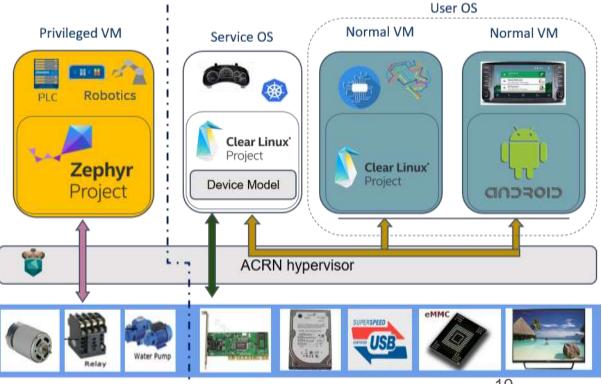

	Dates below are for reference	ence only and subject to ch	ange		
Area HW	 v0.1@Q2'18 APL NUC (UEFI) APL UP2 (UEFI) 	v0.2@Q3'18 • APL NUC (UEFI) • APL UP2 (UEFI)	 V0.5@Q4'18 APL NUC (UEFI) KBL NUC (UEFI) APL UP2 (UEFI) 	 V1.0@Q1'19 APL NUC (UEFI) KBL NUC (UEFI) APL UP2 (UEFI) 	 V1.x@2019 APL NUC (UEFI) KBL NUC (UEFI) APL UP2 (UEFI) ARM
Hypervisor	 VT-x VT-d CPU static-partitioning memory partitioning Virtio (v0.95) VHM EFI boot Clear Linux as guest 	 Virtio (v1.0) Power Management (Px/Cx) VM management ACRN debugging tool vSBL 	 Android as guest AliOS as guest Zephyr as guest MISRA C compliance Logical partitioning without SOS Trusty (Security) SBL boot 	 vHost Power Management (S3/S5) Hybrid Mode (Privilege VM loaded by SOS) Real Time phase I 	 Real Time phase II Hybrid Mode (Privilege VM loaded by hypervisor) Windows as guest VxWorks as guest Functional Safety capable CPU sharing OVMF ARM
I/O virtualization	 Storage Ethernet USB host controller (PT) USB device controller (PT) Audio (PT) WiFi (PT)* Touch (PT) 	 GPU Sharing: GPU Surface Sharing IPU Sharing* 	 GPU Prioritized Rendering Touch sharing IOC sharing* Audio sharing USB host controller Sharing USB DRD virtualization 	GPIO virtualization	 HECI sharing (Security) CSME/DAL sharing (Security) TPM Sharing (Security) eAVB/TSN Sharing SR-IOV*

Towards MISRA-C Compliance


- Statistics from commercial safety-qualified checker.
- False positives and intended deviations tracked in weekly-updated sheets.
- Pull requests are scanned hunting for new violations.

Sharing Mode




Partition Mode

Hybrid Mode

Kata Container Project

<u> https://katacontainers.io/</u>

Project Overview, Status

What is Kata?

• kata-runtime, an OCI (Open Containers Initiative) compliant runtime

○ Seamless integration into cloud native ecosystem

• "Providing the speed of containers with the security of virtual machines"

- OLight-weight enough to be used with micro-services design patterns
- O More than just security of virtual machines, it is an additional layer on top of existing container security primitives.
- Each container/pod is created within its on virtual machine

Who is Kata?

- Open source, open governance project with original contributions from Intel's Clear Containers and Hyper.sh's runV
- Under the Openstack Foundation Umbrella (not managed by openstack)
- Architecture Committee: Google, Huawei, Hyper.sh, Intel
- Contributors include: AMD, ARM, Branch, IBM, Intel, Google, Huawei, Hyper.sh, Microsoft, Nvidia, Openstack Fountain, Redhat, Suse, ZTE, 99Cloud ...

Where does Kata make sense?

Regulated and sensitive production environments

•Too many capabilities required which increase attack surface

Desire to easily run on multiple or custom kernel versions
 Legacy applications on older kernels in containerized environment
 Custom kernel features required

• Testing on cutting edge kernels

Where else does Kata make sense?

- Bare-metal infrastructure
- Mixed levels of trust
 - Multiple tenants
 - Untrusted workloads

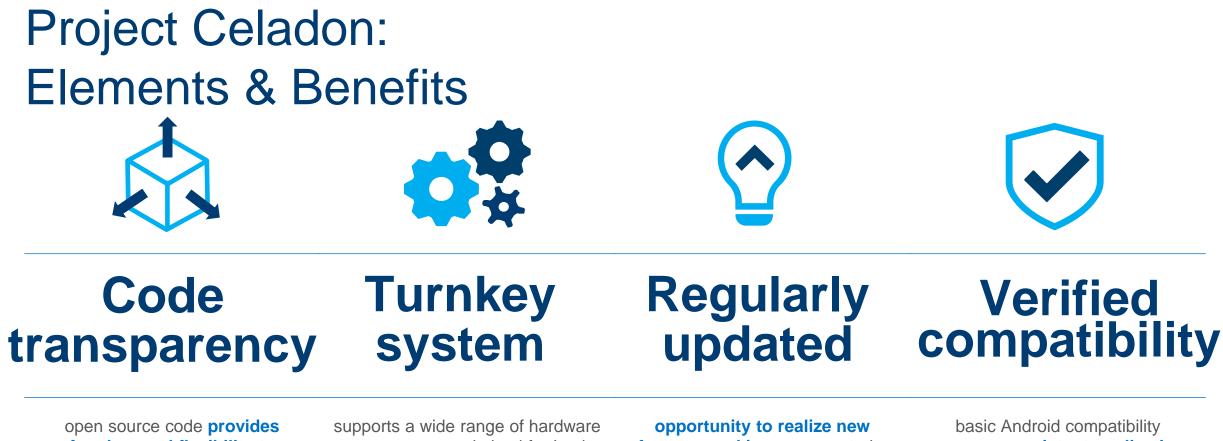
Kata Updates since release

etc.)

V1.0 (May 2018)	V1.2 (August 2018)
 Seamless integration with Kubernetes (CRI), Docker 	Support multiple architectures
 Hardware isolation using KVM/QEMU 	 VM-Factory support [1]
 Optimizations for minimal footprint and boot-time 	Vsock support [2]
 Seamless integration with major networking plugins 	 K8S deployment through container based daemonset
 Advanced networking available through 	[3]
DPDK (VPP/OVS and SR-IOV)	Bug fixes, enhancements
- High bandwidth, low latency networking	
 Ability to run custom kernels at the 	
container or pod level	[1] - https://github.com/kata-containers/runtime/pull/303
 Direct device assignment (GPU, RDMA, QAT, 	[2] - <u>https://github.com/kata-containers/runtime/issues/383</u>

[3] - https://github.com/kata-containers/packaging/pull/65

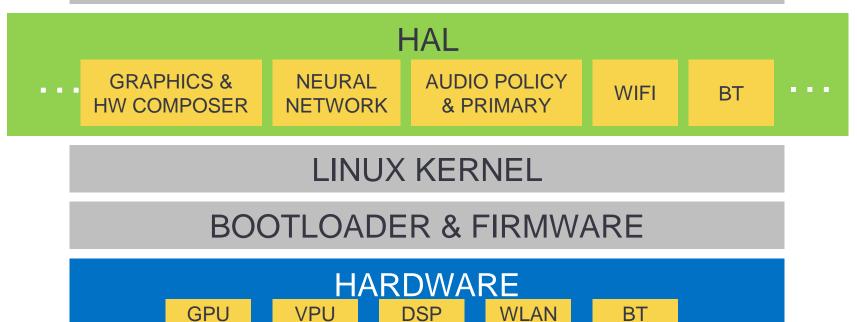
Kata Roadmap


V1.3 (September 2018)	Looking forward
Full network hotplug	Runtimeclass
Full storage hotplug	 More native integration with CRI (containerdv2 for
 Open-tracing support (Jaeger) 	CRIO)
CNI-Macvlan support	Security Enhancements
Containerd v2 shim	Live upgrade
	 Performance optimizations

See https://github.com/orgs/kata-containers/projects/12

Project Celadon

https://01.org/projectceladon/


freedom and flexibility to customize and accelerate development supports a wide range of hardware components optimized for Intel architecture making it easy for rapid prototyping and building new applications opportunity to realize new features and improvements by developing on the latest hardware implementations and Android software updates basic Android compatibility ensures consistent application and hardware environment and experience

Architecture

ANDROID APPLICATIONS

ANDROID FRAMEWORK

ANDROID NATIVE LIBRARIES & RUNTIME

Built on standard and familiar android stack architecture

https://www.dpdk.org/