
Blueprint Submission for
Time-critical Edge Compute

Intel Corporation, Inc.

1

Time-critical Edge Compute Blueprint: Use Cases

● Use cases in Manufacturing, Smart Buildings, general IIOT
○ Virtualized PLC
○ Computer vision inference
○ Machine, sensor data inference
○ Process or discrete manufacturing closed loop control
○ Ethernet TSN

● Functional Safety capable use cases
○ Discrete manufacturing soft PLC

● Onramp for 5G-URLLC

2

Time-critical Edge Compute Blueprint: Hardware and
Partners

3

● Low power, ruggedized hardware
○ Dell 3000, 5000 IPC
○ Huawei XXX industrial gateway

● Potential to attract new members to Akraino project
○ Industrial ODM’s e.g. Advantech, Adlink
○ Industrial OEM’s/ISV’s e.g. TTTech, Nebbiolo, IOTech
○ Industrial end-users e.g. ExxonMobil

4

Time-critical Edge Compute Blueprint: Deployment Scenarios

5

Containerized edge workloads

● Containerized workloads orchestrated via Kubernetes tuned for
lightweight, time-critical embedded deployments

● Sample workloads include
○ Tensorflow via Kubeflow
○ OpenVINO for Video and Inference
○ Closed loop control (e.g. IEC 61131)
○ EdgeX Foundry
○ Building controller

6

Demo

7

This stack is largely functional today.

Work ahead is in hardware software validation and validation of the
workloads described.

Demo Link: https://youtu.be/1qkRJlulUSY

https://youtu.be/1qkRJlulUSY

Backup: Deep dives for underlying technology

● Zephyr OS
● ACRN Hypervisor
● Kata Containers
● Celadon - A fully Open Source Android Stack
● OVS-DPDK

8

A scalable real-time operating system (RTOS) supporting
multiple hardware architectures, optimized for resource

constrained devices, and built with security in mind.
https://www.zephyrproject.org/

9

https://www.zephyrproject.org/

Overview – A Fully Featured Open Source RTOS (since 2016)

Safety

•Thread Isolation
•Stack Protection
(HW/SW)

•Quality Managed
(QM)

•Build time
configuration

•No dynamic
memory allocation

•FuSA (2019)

Security

•User-space
support

•Crypto Support
•Software Updates

Configurable
& Modular
•Zephyr Kernel can
be configured to
run in as little as
8k RAM

•Enables
application code
to scale

•Configurable and
Modular

Cross
Platform

•Support for
multiple
architectures

•Native Port
•Developed on
Linux, Windows
and MacOS

Open Source

•Licensed under
Apache II License

•Managed by the
Linux Foundation*

•Transparent
development

•Fork it on Github!

Connected

•Full Bluetooth 5.0
Support

•Bluetooth
Controller

•BLE Mesh
•Thread Support
•Full featured
native networking
stack

•DFU (IP+BLE)

Zephyr™ is not an ingredient, Zephyr™ provides a complete solution.

11

Zephyr™ OS Direction

Safety & Security
- Functional Safety (FuSa) core OS certification:

secure & harden kernel (IEC61508 SIL3).

- Development model & process with safety and
security in mind.

- Trusted Execution Environments.

E2E Platform
- Bootloader.

- Device firmware updates.

- Cloud connectivity.

- Development tools.

Expanded Use Cases
- Industrial, safety, and security features.

- Deep embedded usages (BLE, 802.15.4 (zigbee), BT
Mesh.

- Advanced configurations and use cases: Multicore,
SMP, AMP.

Ecosystem & Portability
- Improve support on Mac and Windows.

- IDE integration.

- 3rd party tools: tracing, profiling, debugging.

- LLVM, commercial compilers.

- Standard APIs and portability: POSIX layer (PSE54),
BSD socket, and CMSIS RTOS.

A Big Little Hypervisor for IoT Development

What is ACRN™?

ACRN is a flexible, lightweight
reference hypervisor, built with
real-time and safety-criticality in
mind, optimized to streamline
embedded development
through an open source
platform.

A Big Little Hypervisor for IoT Development
14

ACRN™ Features

 Small Footprint

 Built for IoT

 Adaptability

Built for
Real-Time

 Safety Criticality

Truly Open
Source

15

Features Roadmap - Proposal
Dates below are for reference only and subject to change

Area v0.1@Q2‘18 v0.2@Q3’18 V0.5@Q4’18 V1.0@Q1‘19 V1.x@2019

HW

• APL NUC (UEFI)

• APL UP2 (UEFI)

• APL NUC (UEFI)

• APL UP2 (UEFI)

• APL NUC (UEFI)

• KBL NUC (UEFI)

• APL UP2 (UEFI)

• APL NUC (UEFI)

• KBL NUC (UEFI)

• APL UP2 (UEFI)

• APL NUC (UEFI)

• KBL NUC (UEFI)

• APL UP2 (UEFI)

• ARM

Hypervisor

• VT-x

• VT-d

• CPU static-partitioning

• memory partitioning

• Virtio (v0.95)

• VHM

• EFI boot

• Clear Linux as guest

• Virtio (v1.0)

• Power Management
(Px/Cx)

• VM management

• ACRN debugging tool

• vSBL

• Android as guest

• AliOS as guest

• Zephyr as guest

• MISRA C compliance

• Logical partitioning
without SOS

• Trusty (Security)

• SBL boot

• vHost

• Power Management
(S3/S5)

• Hybrid Mode (Privilege
VM loaded by SOS)

• Real Time phase I

• Real Time phase II

• Hybrid Mode (Privilege VM
loaded by hypervisor)

• Windows as guest

• VxWorks as guest

• Functional Safety capable

• CPU sharing

• OVMF

• ARM

I/O
virtualization

• Storage

• Ethernet

• USB host controller (PT)

• USB device controller
(PT)

• Audio (PT)

• WiFi (PT)*

• Touch (PT)

• GPU Sharing:

• GPU Surface Sharing

• IPU Sharing*

• GPU Prioritized
Rendering

• Touch sharing

• IOC sharing*

• Audio sharing

• USB host controller
Sharing

• USB DRD virtualization

• GPIO virtualization • HECI sharing (Security)

• CSME/DAL sharing
(Security)

• TPM Sharing (Security)

• eAVB/TSN Sharing

• SR-IOV*

* Limited to specific HW

PT Pass through

16

Towards MISRA-C Compliance

• Statistics from commercial safety-qualified checker.
• False positives and intended deviations tracked in weekly-updated sheets.
• Pull requests are scanned hunting for new violations.

80% reduction

17

Sharing Mode

Partition Mode

18

Hybrid Mode

19

Kata Container Project
https://katacontainers.io/

Project Overview, Status

20

https://katacontainers.io/

What is Kata?

● kata-runtime, an OCI (Open Containers Initiative) compliant runtime
○ Seamless integration into cloud native ecosystem

● “Providing the speed of containers with the security of virtual machines”
○ Light-weight enough to be used with micro-services design patterns

○ More than just security of virtual machines, it is an additional layer on top of existing
container security primitives.

○ Each container/pod is created within its on virtual machine

21

Who is Kata?

● Open source, open governance project with original contributions from
Intel’s Clear Containers and Hyper.sh’s runV

● Under the Openstack Foundation Umbrella (not managed by openstack)

● Architecture Committee: Google, Huawei, Hyper.sh, Intel

● Contributors include: AMD, ARM, Branch, IBM, Intel, Google, Huawei,
Hyper.sh, Microsoft, Nvidia, Openstack Fountain, Redhat, Suse, ZTE,
99Cloud …

22

Where does Kata make sense?

● Regulated and sensitive production environments

● Too many capabilities required which increase attack surface

● Desire to easily run on multiple or custom kernel versions
○ Legacy applications on older kernels in containerized

environment
○ Custom kernel features required
○ Testing on cutting edge kernels

23

Where else does Kata make sense?

● Bare-metal infrastructure

● Mixed levels of trust
○ Multiple tenants
○ Untrusted workloads

24

V1.0 (May 2018) V1.2 (August 2018)

• Seamless integration with Kubernetes (CRI), Docker

• Hardware isolation using KVM/QEMU

• Optimizations for minimal footprint and boot-time

• Seamless integration with major networking plugins

◦ Advanced networking available through

DPDK (VPP/OVS and SR-IOV)

 - High bandwidth, low latency networking

▪ Ability to run custom kernels at the

container or pod level

• Direct device assignment (GPU, RDMA, QAT,

etc.)

• Support multiple architectures

• VM-Factory support [1]

• Vsock support [2]

• K8S deployment through container based daemonset

[3]

• Bug fixes, enhancements

[1] - https://github.com/kata-containers/runtime/pull/303

[2] - https://github.com/kata-containers/runtime/issues/383

[3] - https://github.com/kata-containers/packaging/pull/65

25

https://github.com/kata-containers/runtime/pull/303
https://github.com/kata-containers/runtime/issues/383
https://github.com/kata-containers/packaging/pull/65

V1.3 (September 2018) Looking forward

• Full network hotplug

• Full storage hotplug

• Open-tracing support (Jaeger)

• CNI-Macvlan support

• Containerd v2 shim

• Runtimeclass

• More native integration with CRI (containerdv2 for

CRIO)

• Security Enhancements

• Live upgrade

• Performance optimizations

See https://github.com/orgs/kata-containers/projects/12

26

Project Celadon

27

https://01.org/projectceladon/

Project Celadon:
Elements & Benefits

supports a wide range of hardware
components optimized for Intel
architecture making it easy for

rapid prototyping and building
new applications

opportunity to realize new
features and improvements by

developing on the latest hardware
implementations and Android

software updates

basic Android compatibility
ensures consistent application
and hardware environment and

experience

open source code provides
freedom and flexibility to
customize and accelerate

development

28

Code
transparency

Turnkey
system

Regularly
updated

Verified
compatibility

Architecture
ANDROID APPLICATIONS

ANDROID FRAMEWORK

ANDROID NATIVE LIBRARIES & RUNTIME

HAL

LINUX KERNEL

BOOTLOADER & FIRMWARE

HARDWARE

GRAPHICS &
HW COMPOSER WIFI BTNEURAL

NETWORK
AUDIO POLICY

& PRIMARY
…

WLAN BTDSPGPU VPU

…

Built on standard and familiar android stack architecture

30

https://www.dpdk.org/

