
Akraino Security Development 
Lifecycle (Akraino SDL)



Akraino SDL Applicability

• Deployed in a business or enterprise environment
• Processes personally identifiable information (PII) or other sensitive 

information
• Communicates regularly over the Internet or other network



Akraino SDL Overview

• Security training
• Requirements
• Design
• Implementation
• Verification
• Release
• Response



Akraino SDL Roles

• Security advisor/Privacy advisor
• Auditor
• Expert

• Team security champion/privacy champion
• Negotiate, accept, and track of minimum security and privacy requirements
• Maintain clear lines of communication with advisors and decision makers 



Security Training

• Secure design
• Threat modeling
• Secure coding
• Security testing
• Privacy
• Security response processes



Requirements

• Team subject to SDL policies?
• Security bug reporting tools
• Security bug bar
• 3rd-party code licensing security requirements
• Security plan
• Cost Analysis



Security Bug Tracking

• Security bug effect
• Not a Security Bug

• Spoofing

• Tampering

• Repudiation

• Information Disclosure

• Denial of Service

• Elevation of Privilege

• Attack Surface Reduction 

• Security bug cause
• Not a security bug
• Buffer overflow/underflow
• Arithmetic error (for example, integer 

overflow)

• SQL/Script injection
• Directory traversal
• Race condition
• Cross-site scripting

• Cryptographic weakness
• Weak authentication 
• Weak authorization/Inappropriate 

permission or access control list (ACL)
• Ineffective secret hiding
• Unlimited resource consumption 

(Denial of Service [DoS])

• Incorrect/No error messages
• Incorrect/No pathname 

canonicalization

• Other



Security Plan

• Team training
• Threat modeling
• Security push
• Final security review 



Cost Analysis

• Security risk assessment
• Project privacy impact rating



Security Risk Assessment

• What portions of the project will require threat models before 
release.
• What portions of the project will require security design reviews 

before release.
• What portions of the project will require penetration testing (pen 

testing) 
• Any additional testing or analysis requirements the security advisor 

deems necessary to mitigate security risks.
• Clarification of the specific scope of fuzz testing requirements



Privacy Impact Rating

• P1 high privacy risk
• P2 Moderate privacy risk
• P3 Low privacy risk



Design

• Risk Analysis
• Best Practices



Risk Analysis

• STRIDE threat model analysis
• Threats and vulnerabilities
• External code
• Threat models
• Design review for P1 privacy projects
• Detail privacy analysis

• NEAT security user experience



STRIDE

• Spoofing of user identity
• Tampering
• Repudiation
• Information disclosure (privacy breach or data leak)
• Denial of service
• Elevation of privilege



NEAT security UX

• Necessary
• Explained
• Actionable
• Tested



Best Practices
• Secure design principles
• Security design review
• Security architecture
• Assets & threat actors identified and addressed
• Identity and Access Management
• Cryptograph
• Mitigate against XSS
• Use memory-safe languages
• Be careful with error message
• Strong log-out and session management
• Confidentiality
• Integrity
• Availability



Secure Design Principles

• Secure defaults
• Defense-in-depth
• Separation of privilege
• Least privilege
• Least common mechanism
• Psychological acceptability
• Minimize default attack surface
• Input validation with whitelists



Security Architecture

• Attack surface measurement
• Product structure or layering



Cryptograph

• Use AES for symmetric enc/dec.

• Use 128-bit or better symmetric keys.

• Use RSA for asymmetric enc/dec and signatures.

• Use 2048-bit or better RSA keys.

• Use SHA-256 or better for hashing and message-authentication codes.

• Support certificate revocation.

• Limit lifetimes for symmetric keys and asymmetric keys without associated certificates.

• Support cryptographically secure versions of SSL (must not support SSL v2).

• Use cryptographic certificates reasonably and choose reasonable certificate validity periods.

• Properly use Transport Layer Security (TLS) when communicating with another entity
• Check the Common Name attribute to be sure it matches the host with which you intended to communicate.
• Verify that your service consults a certificate revocation list (CRL) for an updated list of revoked certificates at 

a frequent interval. 
• If your service is accessible via a browser, confirm that no security warnings appear at any visited URL for any 

supported browser.



Confidentiality

• Passwords stored on server as iterated salted hashes using bcrypt
• Remember me token: Cryptographic nonce is stored on client & 

bcrypt digest stored on server
• Email addresses only revealed to owner & admins
• HTTPS



Integrity

• HTTPS
• Data modification requires authorization
• Modifications to official application requires authentication



Availability

• Cloud & CDN deployment
• Timeout
• Can return to operation quickly after DDOS attack stops
• Login disabled mode
• Multiple backups



Implementation

• Common types of vulnerable implementations
• Hardening
• Securely reuse
• Deprecate unsafe functions
• Use approved tools
• Static code analysis



OWASP top 10 vulnerabilities
• Injection (including SQL injection)
• Auth & session
• XSS (Esp. SafeBuffer)
• Insecure object references
• Security misconfiguration
• Sensitive data exposure
• Missing access control
• CSRF
• Known vulnerabilities
• Unvalidated redirect/fwd
• XXE (2017 A4)
• Insecure Deserialization (2017 A8)
• Insufficient logging and monitoring (2017 A10)



Hardening
• Force HTTPS, including via HSTS (Http strict transport security)
• Hardened outgoing HTTP headers, including restrictive CSP
• HTTP-only Cookies
• User secure cookie over HTTPS
• CSRF token hardening
• Incoming rate limits
• Address Space Layout Randomization (ASLR)
• Harden or disable XML entity resolution
• Load DLLs securely
• Reflection and authentication relay defense
• Safe redirect, online only
• Do not use the Javascript eval() or equivalent functions
• Integer overflow/underflow
• Input validation and handling
• Encrypted email addresses
• Gravatar restricted



Securely reuse

• Review before use
• Get authentic version
• Use package manager



Verification

• Dynamic Program Analysis
• AppVerifier
• Sandbox

• Fuzz Testing
• Threat Model and Attack Surface review
• Penetration Test



Release

• Incident Response Plan
• An identified sustained engineering team
• On-call contacts with decision-making authority
• Security servicing plan for code inherited from other group
• Security servicing plan for licensed 3rd-party code

• Final security review
• Examination of

• Threat models
• Exception requests
• Tool output
• Performance against the previously determined quality gates or bug bars

• Release/Archive
• Certify
• Archive all pertinent information and data



FSR Outcomes

• Passed FSR
• Passed FSR with exceptions
• FSR with escalation



Response

• Security servicing and response execution



Simplified SDL Security Activities 


