
Project EVE Architecture and 
Security

Providing zero touch, zero trust, for any app on any network
Erik Nordmark, CTO, ZEDEDA

Sept 2022



The Edge, EVE, and LF-Edge

2



Edge means different things to different people

3

See https://www.lfedge.org/resources/publication-download/



Fit in Edge Continuum

4

Project EVE is focused on IoT 
workloads at the Smart 

Device Edge



SMB/ROBO

Residential

Mobile

Service Provider EdgeUser Edge

LF Edge - the end to end context
Deployment ready Open Source - use cases

Carrier
Access

Enterprise & 
IIOT

Carrier Cloud 
Data Center

Carrier
Interconnect

Internet / 
Web

Public Cloud

Enterprise Core & Cloud

USE OSS+SDO

Hosted Private 
Cloud

X-Project Collaboration 



App deployment is but the tip of the iceberg

Hardware LayerTEE/TPM Eth, RS 485, BTLE etc

Application Instance B Application Instance C Application Instance DApplication Instance A

Run “apps” 
at the edge

Support any
app on any HW

Manage
connectivity

Secure the
data & device

Monitor & manage
all edge resources and

EVE image

6

EVErouter:
DHCP
DNS
ACLs
VPN

EVEagent:
config, 
status, 
metrics

Downloader

EVEmanager:
instance orchestrator

Verifier
sha, sigs

HW 
info, 

metrics

Domain 
mgr

dom0Crypto 
device 

identity

Measured 
boot and 
remote 

attestation

Device 
onboarding

Disk 
encryption

TLS 1.2/1.3 + object signing

Baseos 
manager

Grub gpt 
priority 

boot

Network 
interface 
manager

log 
manager

local + 
NAT

I/O virtualizatiion
and

assignment

switch

cloud

Edge Virtualization Engine

Eth, wlan, 
wwan

Hardware 
watchdog

Linux 
watchdog

Remote instance local
consoles

Volume manager

EVE-EVC API - config, status, metrics, logs



EVE Architecture and Security

7



Project EVE Architecture

Hardware Layer

EVE-EVC API - config, status, metrics, logs

EVEagent:
config, 
status, 
metrics

Downloader

EVEmanager:
instance 

orchestrator

Verifier
sha, sigs

HW 
info, 

metrics

Domain 
mgr

dom0Crypto 
device 

identity

TEE/TPM

Measured 
boot and 
remote 

attestation

Device 
onboarding

Disk 
encryption

TLS 1.2/1.3 + object signing

Baseos 
manager

Grub gpt 
priority 

boot

Network 
interface 
manager

Device 
connectivity

log 
manager

Eth, RS 485, BTLE etc

Instance B

Instance C

Instance D

Driver domain(s)
Instance A

Edge Virtualization Engine

Eth, wlan, 
wwan

Hardware 
watchdog

Linux 
watchdogSelf 

update

Device 
connect-

ivity

Edge 
Container 
runtime

Deployed
Edge 

Containers

EVC sample: Adam Commercial EVC:

Device 
APIs

Device Identity 
Onboarding 

Security 
Foundation

EVErouter:
DHCP
DNS
ACLs
VPN

Instance 
connectivity

local + 
NAT

I/O virtualizatiion
and

assignment

switch

cloud

Remote instance local
consoles

Volume manager

Edge 
Container 
connect-
ivity and 
storage



Project EVE Architecture

Hardware Layer

EVE-EVC API - config, status, metrics, logs

EVErouter:
DHCP
DNS
ACLs
VPN

EVEagent:
config, 
status, 
metrics

Downloader

EVEmanager:
instance 

orchestrator

Verifier
sha, sigs

HW 
info, 

metrics

Domain 
mgr

dom0Crypto 
device 

identity

TEE/TPM

Measured 
boot and 
remote 

attestation

Device 
onboarding

Disk 
encryption

TLS 1.2/1.3 + object signing

Baseos 
manager

Grub gpt 
priority 

boot

Network 
interface 
manager

Device 
connectivity Instance 

connectivity

log 
manager

Eth, RS 485, BTLE etc

local + 
NAT

I/O virtualizatiion
and

assignment

switch

cloud

Instance B

Instance C

Instance D

Driver domain(s)
Instance A

Edge Virtualization Engine

Eth, wlan, 
wwan

Hardware 
watchdog

Linux 
watchdog

Remote instance local
consoles

Volume manager



Device Identity

› A device is identified by an X.509 certificate
› Generated by the TPM on first boot
› Currently self-signed and 20 year lifetime
› Only used by for the management traffic to the controller

› Controller can detect misbehaving devices (remote attestation, 
anomaly detection) and quarantine them (no applications run etc)
› No need for short certificate lifetimes nor CRLs for the device certs

› Device is imprinted with the controller to trust (a root CA certificate)
› Note: controller certs is normal server -> intermediate -> root CA 

certificate hierarchy

10



Device Onboarding

› Different processes to extract device certificate, serial number(s) to 
ship with hardware (depends on hardware vendor)

› Device can be pre-onboarded in factory to pre-install application 
software content

› User registers their hardware using device certificate and/or serial 
number
› Controller detects attempted duplicate registrations

› See https://github.com/lf-edge/eve/blob/master/docs/REGISTRATION.md 

11

https://github.com/lf-edge/eve/blob/master/docs/REGISTRATION.md


Device Onboarding - Most Secure

› EVE image is (pre-) installed; could be in untrustworthy environment
› In secure environment:

› EVE is booted (generates device key/cert in TPM)
› Device cert is extracted from the device and saved by user
› Device is powered off

› Device is shipped to installation site
› Device cert is used to onboard the device in the controller
› Typically combined with TPM measurement of firmware+software in 

secure environment

12



Device Onboarding - Easier to use

› EVE image is installed
› Install image includes an onboarding token (X.509 cert + private key)
› Could use unique token per device, or shared for entire production line
› Onboarding certificate(s) plus hardware serial numbers delivered 

electronically from factory to user
› Device is shipped to installation site

› Powered on (EVE generates device cert using TPM) and self-registers
› Onboarding cert + serial number used to onboard device in controller

› Attacker buys one device with onboarding token guesses serial numbers
› Will detect duplicate and refuse second registration

13



Device Onboarding - Middle Ground

› EVE image is installed
› Install image includes an onboarding token (X.509 cert + private key)
› Could use unique token per device, or shared for entire production line
› EVE generates random 128 bit soft serial and saves on USB stick
› Onboarding certificate(s) plus soft serial numbers delivered electronically 

from factory to user
› Device is shipped to installation site

› Powered on (EVE generates device cert using TPM) and self-registers
› Onboarding cert + soft serial used to onboard device in controller

› Attacker needs to guess 128 bit number

14



Device Boot

› EVE is supporting different boot firmware implementations
› generic UEFI firmware on both x86 and ARM
› legacy PC BIOS on x86 (such as for Google Compute Platform)
› open source Coreboot via the legacy PC BIOS payload
› board specific u-boot firmware (such as on Raspberry Pi ARM platform)

› Uses GPT partition tables with A/B boot partitions for failover
› Performs measured boot and remote attestation

› Detects rogue firmware and/or EVE/OS
› [In progress] also measuring hardware chassis intrusion log
› Changed measurements => require remote attestation to unlock application disks
› Same measurements => unlock and start applications (without controller connectivity)
› See https://wiki.lfedge.org/display/EVE/Measured+Boot+and+Remote+Attestation

› See https://github.com/lf-edge/eve/blob/master/docs/BOOTING.md 

15

https://wiki.lfedge.org/display/EVE/Measured+Boot+and+Remote+Attestation
https://github.com/lf-edge/eve/blob/master/docs/BOOTING.md


Measured Boot and Remote Attestation
› Requirements

› If no firmware/software change, then applications must come up after 
reboot without talking to controller

› If a change is detected the application must disks/volumes remain 
unreadable until remote attestation to controller has completed

› Integratable with secure boot and various BIOS update schemes
› Avoid any insecure maintenance state of device

› Approach
› Measured boot/remote attestation with TPM sealed keys as baseline
› Secure boot is optional
› Device needs to contact controller after a BIOS or EVE update (already 

needed to validate that EVE update worked)
›

16



Measured Boot - EVE Update Workflow
› Unchanged from the user perspective if no issues 
› If EVE with unknown sha’s is installed (e.g., opensource developer build)

› UI will flag as “Unknown Update Detected” 
Includes identifying the component with the mismatched hash

› Applications will not be started on device (their disks /volumes can not be 
decrypted)

› If the hashes are later added as acceptable to controller, then the 
applications will start. Or can update EVE to a known version with known 
hashes

› Above UUD flagged if there is a compromise to the EVE image as well

17



Measured Boot - BIOS Update Workflow
› Can handle any form of BIOS update to support different hardware

› E.g., physical access with USB stick and keyboard/screen
› Or service running in EVE (as application) to do this via a BMC

› The BIOS version+hash needs to be uploaded to controller as an acceptable one
› If EVE with unknown BIOS sha is installed:

› UI will flag as “Unknown Update Detected”
› Applications will not be started on device (their disks/volumes can not be 

decrypted)
› If the hashes are later added as acceptable in controller, then the 

applications will start. 
› Above UUD applies if there is a compromise to the BIOS image as well

18



Measured Boot - Key Unlock Implementation details 
▪ The application disks/volumes are encrypted using fscrypt or ZFS

▪ Filesystem has key(s) to encrypt the files, plus a key encryption key
▪ That KeK is sealed under the TPM thus can be retrieved when the PCR values 

are unchanged (after a power cycle or reboot)
▪ That KeK is also encrypted under the TPM private key and sent to controller as 

a “backup”
▪ Thus only the device with this particular TPM can decrypt it

▪ If the PCR values have changed, then controller will check the PCR values and 
the attestation chain it receives from the device
▪ If that corresponds to a known version/hash of EVE and BIOS, then 

controller will send the “backup“ encrypted KeK to the device
▪ Device will then seal that received KeK under the new PCR values

19



Key Takeaways
➢ Provide secure and scalable deployment/orchestration of devices, 

applications, volumes
➢ Make few environmental assumptions (no physical security, intermittent 

network connectivity)
➢ State of the art security foundation
➢ Scale from raspberry-pi size to edge servers with multiple GPUs, 

multiple drives, SR-IOV NICs
➢ Application developer can focus on their business logic

○ Deploying at distributed edge similar to deploying in cloud/DC
○ Application might need to handle intermittent connectivity

20


