EVE-OS Overview

How to Modernize the Edge and Stay Secure
Learning Content

› Edge Computing Challenges
› How EVE Modernizes the Industrial Edge
› Commercial Ecosystem Opportunities
› EVE Technology and Security Overview
› Embracing LF Edge Open Source Community Collaboration
Challenges at the Edge

- **Security**
 - No guarantee of network security
 - No guarantee of physical security
 - Onerous security overlays at the edge

- **Diversity of deployed infrastructure**
 - Mixture of remote devices
 - Plethora of apps to orchestrate
 - App integration with several Clouds

- **Scale and automation**
 - Huge # of edge devices, geographically disperse
 - Long maintenance lifecycle (7+ years)

- **Unreliable connectivity**
 - Network outages, latency, expensive bandwidth
 - Might not even control edge network
How EVE Modernizes the Industrial Edge

EVE addresses the unique properties of distributed edge computing nodes deployed outside of the traditional datacenter

Diversity
Inherent diversity of technology and domain expertise required

Scale
Unprecedented scale and geographic distribution of deployed nodes

No Perimeter
No physical or network perimeter dictates a zero trust security model

The distributed edge needs a standard foundation for orchestration and virtualization that is flexible, open and agnostic
Challenges Solved with Edge Virtualization

Edge Virtualization Engine (EVE)
- Abstraction layer designed for the edge
- Created and donated by ZEDEDA to LF
- Open sourced under Apache License v2
- Part of Linux Foundation LF Edge Project

Any Cloud
- Historian, SCADA or On-Premises System

Any Application

VM or Container

Any Gateway at IoT Scale

No Compromise to Security
- (TPM and vTPM)

Deploy, Secure and Manage
- Gateway and Apps at Scale

Any Gateway at IoT Scale

Open EVE Controller

Open Source

CLI interface tool

Hardware

SaaS
- Web Console
- App Marketplace

Commercial

Open EVE Controller

Open Source

ZEDEDA

LF Edge Project
Example ZEDEDA Enterprise Integration
EVE Technology and Security Overview
EVE Architecture

EVE-OS
- RAM overhead: 500M
- CPU overhead: 1 core
- Disk overhead: 500M

EVE managed, workload-centric storage

User Edge Compute Hardware

Open API

EVE Controller

Hypervisor (KVM [default] or Xen, ACRN)

Partition A

Partition B

Disk overhead: 500M

RAM overhead: 500M

CPU overhead: 1 core
EVE-OS to EVE Controller “Onboarding”

- Cryptographic device identity created when EVE-OS installed (factory)
 - Key pair generated in TPM; private key never leaves TPM
 - Device is imprinted with the controller to trust (a root CA certificate)
- Device can be pre-onboarded in factory, optionally with applications too
- User registers their hardware using device certificate or serial number
- See https://github.com/lf-edge/eve/blob/master/docs/REGISTRATION.md
Remote Manage Any Edge Node

- Any type of silicon and device
- Automated on-boarding
- Autonomous operations

No field expertise required
Publicly Documented APIs

EVE-OS
Secure API over TLS

EVE Controller (ZEDCloud or Open EVC)
Secure API over HTTPS

EVE-OS API
https://github.com/lf-edge/eve/tree/master/api

ZEDCloud API
https://zedcontrol.zededa.net/api/v1/docs/

Open EVC Interface (API)
EVE API Security Works Through Firewalls, Proxies

1. TLS to trusted parties (direct to controller and/or via proxy)
2. End-to-end signature over payload (proxy can not view nor modify)
3. Sensitive data encrypted end-to-end (also at rest)
Zero Trust
People, Process, and Technology

- **People**
 - Remove need for device usernames/passwords
 - Role-based access control (RBAC) and multi-tenancy in controller

- **Process**
 - “Zero Touch” hardware deployment to field
 - Design for 7+ year lifetime at the edge
 - Secure, scalable distribution of updates
 - API reports (resource usage, firewall violations) enable analytics in controller

- **Standard security technologies for the user edge**
 - Hardware root of trust (e.g., TPM)
 - Crypto-based identification
 - Measured boot and remote attestation
 - Encryption at rest and in-flight (TLS); keys sealed by TPM
 - Signed images for EVE-OS and applications
 - Use hypervisors for strong isolation and defense in depth
 - Distributed firewall for every app
 - Physical security – port isolation
 - Support deployment of virtual security appliances
Embracing LF Edge Open Source Collaboration
Community Collaboration Resources

Project page https://www.lfedge.org/projects/eve/
Wiki https://wiki.lfedge.org/display/EVE/EVE
 › Mailing list https://lists.lfedge.org/g/eve
 › Zoom calls (calendar subscription on wiki)
GitHub https://github.com/lf-edge/eve
Slack https://lfedge.slack.com

Roadmap
https://wiki.lfedge.org/display/EVE/Feature+Roadmap
Ready to Transform Your Edge?