&

SECOND
STATE

Serverless Functions on the Edge Cloud

Michael Yuan, WasmEdge Maintainer
https://github.com/WasmEdge/WasmEdge

\\H

Lambda Adoption Among AWS Users

55%
50%
45%
40%

35%

% of AWS users that have adopted Lambda

" HALF OF AWS USERS
- HAVE ADOPTED LAMBDA

Average daily invocations index (Q1°19 = 100)

7 o The rise of serverless functions

Average Daily Invocations per Lambda Function Index

500

LAMBDA FUNCTIONS ARE

“ INVOKED 3.5X MORE
OFTEN THAN 2 YEARS AGO

200

100

Q119 Q219 Q319 Q4'19 Q120 Q220 Q320 Q420 21

Source: Datadog

www.secondstate.io

({7~ SECOND
—JJ STATE

\\H

< > Azure Functions

Google
Cloud
Functions

S

Two and half types of serverless functions

A Vercel

N owzs

%> netlify

J

. J

N

/ Serverless in the Public CIoud\ f \
Serverless in the Edge Cloud
fastly

- amazon
-, cloudfront

CLOUDFLARE

@kamai
/

www.secondstate.io

1 sor°\What's the difference?

4 N

Serverless in the Public Cloud

L 2 Serve the infrastructure
% of a public cloud

o /

/ Serverless in the Edge Cloud \

Serve the application
) outside of the infrastructure

o /

www.secondstate.io

Cumulative Percentage of Functions

14 =2 Performance is a key requirement for edge clouds

Duration of Lambda Functions

100%

HALF OF LAMBDA

FUNCTI
THAN@OO MILLISECONDS

0 2000 4000 6000 8000 10000

50%

Sl - - . N |

Function Duration (ms) Source: Datadog

Bundled Usage Model

Workers on the Bundled Usage Model are intended for use cases below|50 ms.
Bundled Workers limits are based on CPU time, rather than duration . This

means that the time limit does not include the time a Worker is waiting for
responses from network calls. The billing model for Bundled Workers is based
on requests that exceed the included number of requests on the Paid plan.
Learn more about Usage Model pricing .

www.secondstate.io

7 2> Why WebAssembly

o Secure for multi-tenancy cloud environments

o Near native performance with sub-millisec cold start
o Very small footprint (1/10 of LXC alternatives)

o Large ecosystem (languages, SDKs, toolchains and standards)

https://wasmedge.org/wasm linux container/

www.secondstate.io

https://wasmedge.org/wasm_linux_container/

1 sEson WasmEdgeRuntime

L3

CLOUD NATIVE

COMPUTING FOUNDATION

A high performance Wasm runtime

e Near native performance with LLVM-based
AQT. Peer reviewed benchmark paper on IEEE
Computer:

e Supports awide variety of OSes including seL4
RTOS, Open Harmony, OpenWRT, and others

e Supports all popular CPU architectures
including Intel, ARM, Apple, and RISC-V

https://github.com/WasmEdge/WasmEdge

Optimized for cloud-native & edge

Works seamlessly with the container
ecosystem: Docker, containerd, CRI-O, various
k8s flavors etc.

Async networking with Tokio. Supports
microservices, web service clients, database
clients, cache, messaging queues etc.

Works well with service frameworks such as
k8s SDK, Dapr SDK etc.

Native support (i.e., GPU) for Al inference with
Tensorflow, OpenVINO, PyTorch etc.

First class support for JavaScript, including full
nodejs API, NPM, ES6, React SSR etc.

https://arxiv.org/abs/2010.07115

1 %2 Thereis no free lunch

The trade-offs between a general computing environment and opinionated high
performance frameworks

/ Serverless in the Public Cloud \

Just use Linux

&

docker

o %

/ Serverless in the Edge Cloud \

Opinionated languages and frameworks

s

o %

www.secondstate.io

Tooling ecosystem

% s Rust

S

e Supports complex call parameters via wasmedge_bindgen
e Supports host networking via wasmedge_wasi_socket
e Supports a tokio-like async runtime

o tokioMIO
o hyper

o reqwest

o http_req

e Supports Al inference in Tensorflow, OpenVINO, and PyTorch
e Supports wasi-crypto -> rustls -> HTTPS
e Ongoing: SSR for Rust web frameworks? (e.g., Yew)

https://wasmedge.org/book/en/dev/rust.html

www.secondstate.io

https://wasmedge.org/book/en/dev/rust.html

4 s JavaScript

e Aimsto support all Node.js APls
o Full support for HTTP /HTTPS networking
o The fetch() API

e Supports Al inference

e Supports JS modules
o ESé6
o CJSand NPM

e Supports React streaming SSR
e Supports JS APls implemented in Rust!

https://wasmedge.org/book/en/dev/js.html

www.secondstate.io

https://wasmedge.org/book/en/dev/js.html

14 =2 Databases and caches

e AnnaRS
o KV store optimized for edge use cases
o Use Rust tokio-based connector to access
e MySQL
o Use Rust tokio-based clients
o Use JSclients
e Other cloud databases
o Many provide MySQL compatible interfaces
o Or Rust tokio-based client libraries

https://github.com/WasmEdge/wasmedge-db-examples

www.secondstate.io

https://github.com/WasmEdge/wasmedge-db-examples

17 2 \WebAssembly and K8s

git clone https://github.com/containers/crun
cd crun
. /autogen.sh

./configure --with-wasmedge
make
sudo make +install

https://wasmedge.org/book/en/kubernetes.html

T T —

Kubernetes

KubeEdge SuperEdge OpenYurt

k8s k3s minikube kind microk8s

’

’

WebAssembly app

Linux container images 3
images

The container ecosystem

www.secondstate.io

https://wasmedge.org/book/en/kubernetes.html

1% 2 Dapr and service management frameworks

e Dapr
o Standalone WasmEdge apps as a Dapr sidecar app
o Communicate with Dapr via sockets using the WasmEdge Dapr SDK
o https://github.com/second-state/dapr-wasm
® essa-rs
o Astateful FaaS framework based on anna-rs
o Use Rust SDK to run functions in WasmEdge
o https://github.com/essa-project/essa-rs

www.secondstate.io

https://github.com/second-state/dapr-wasm
https://github.com/essa-project/essa-rs

5 =2 Host SDKs
Rust

Go

Python
Java

e o o o o
@

www.secondstate.io

Use cases

c

4 =2 Rendering on the edge

& isomorphic.secondstate.io

Server-side rendering on
WasmEdge

https://github.com/second-state/create-react-app-ssr-exa

Framework Preset

+ Create React App

wasmedge = --dir ... wasmedge_quickjs.wasm server-bu

Deployed successfully on X
http://isomorphic.secondstate.io:60009

www.secondstate.io

h * @
Ine project was DUlLT assuming 1T 1S nostea at /.

You can control this with the homepage field in your package.json.

The build folder is ready to be deployed.
You may serve it with a static server:

yarn global add serve
serve -s build

Find out more about deployment here:
https://cra.link/deployment

Done in 9.75s.
yarn run v1.22.18

warning Skipping preferred cache folder "/home/ssr/.cache/yarn" because i
warning Selected the next writable cache folder in the list, will be "/t
$ NODE_ENV=development webpack ——config webpack-wasmedge.server.js ——modq
warning Cannot find a suitable global folder. Tried these: "/usr/local,
asset index.js 258 KiB [emitted] [javascript module] (name: main)

runtime modules 937 bytes 4 modules
cacheable modules 240 KiB
modules by path ./node_modules/ 232 KiB 7 modules
modules by path ./src/ 4.65 KiB
./src/App.js 899 bytes [built] [code generated]
./src/logo.svg 2.64 KiB [built] [code generated]
./src/App.css 1.14 KiB [built] [code generated]
./server/wasmedge.js 2.62 KiB [built] [code generated]
external "std" 42 bytes [built] [code generated]
external "wasi_http" 42 bytes [built] [code generated]
external "wasi_net" 42 bytes [built] [code generated]
external "process" 42 bytes [built] [code generated]
webpack 5.69.1 compiled successfully in 1805 ms
Done in 2.28s.

kR KRR KRR KRR R K K
wasmedge —dir .:. wasmedge_quickjs.wasm server-build/index.js

isomorphic.secondstate.io

Edit src/App. js and save to reload.

Powered by

WasmEdge acts as a lightweight
container on the edge cloud for
SSR functions in React / Yew etc.

https://isomorphic.secondstate.io/

4 = Al inference on the edge

Data streaming framework
needs to embed user-defined
functions to process streaming
camera photos from a factory
assembly line to identify
defective products.

N/ ,‘ﬁ : G2
YOIV

Door camera photos need
to be processed and
identified on a device on or
close to the customer’s
premises for performance
and safety reasons.

14 =2 Serverless flow functions for SaaS automation

Connect an inbound connector (e.g., GitHub)
Connect an outbound connector (e.g., Slack)
Upload a flow function written in Rust or JavaScript

Filter & transform Github notifications before
sending to a Slack channel!

n Connector for WasmHaiku APP 1:11 PM

This is a test comment

https://docs.wasmhaiku.com/

This is a test comment
O juntao/juntao Aug 4th Added by GitHub

www.secondstate.io

https://docs.wasmhaiku.com/

4 s> HTTP microservice on the edge

#[tokio::main(flavor = "current_thread")]
async fn main() —> Result<(), Box<dyn std::error::Error + Send + Sync>> {
let addr = SocketAddr::from(([@, @, @, 0], 3000));

let listener = TcpListener::bind(addr).await?;
println!("Listening on http://{}", addr);
loop {

let (stream, _) = listener.accept().await?;

tokio: :task::spawn(async move {

if let Err(err) = Http::new().serve_connection(stream, service_fn(echo)).await {
println!("Error serving connection: {:?}", err);

async fn echo(req: Request<Body>) —-> Result<Response<Body>, hyper::Error> {

match (req.method(), req.uri().path()) {

// Serve some instructions at /
(&Method: :GET, "/") => Ok(Response::new(Body: : from(

"Try POSTing data to /echo such as: “curl localhost:3000/echo -XPOST -d 'hello world''",
D)

// Simply echo the body back to the client.
(&Method: :POST, "/echo") => Ok(Response::new(req.into_body())),

www.secondstate.io https://github.com/WasmEdge/wasmedge hyper demo

https://github.com/WasmEdge/wasmedge_hyper_demo

4 = Stateful serverless functions on the edge

e Microservices on the backend are also moving to the edge
e General purpose stateful serverless function runtimes

e Technology stack
o Orchestration: K8s, KubeEdge, OpenYurt, SuperEdge
Runtime services: Dapr, Layotto
Traffic management: Envoy, MSON, Nginx, APISIX
Persistence: AnnaDB, MySQL, and other cloud databases
Runtime container: WasmEdge - standalone runtime for full server apps
Extension services: ESSA, Suborbital, Fermyon

O O O O O

www.secondstate.io

% &% Summary

e Serverless functions are the new developer paradigm
o They are no longer just the "glue" for public cloud services
o They areincreasingly used as microservices to support business logic
o They should run on edge servers for performance and safety
e FEdge cloud serverless functions have unique requirements
o High performance - low cold start time
o Small footprint
o Security and safety

e WasmEdge is the Wasm runtime designed for edge serverless functions

www.secondstate.io

G s

&

E WasmEdgeRuntime

Discuss and learn more:

https://github.com/WasmEdge/WasmEdge

-1 CLOUD NATIVE

L=l COMPUTING FOUNDATION

www.secondstate.io

(N

sccOND Thanks !

STATE

