

High Performance Robotics Edge Platform

Safe, private, cost-effective robot solution

Signalogic, Inc. Dallas, Texas

Contents

Problems and needs

- real-time voice commands: hands-free operation, safety / emergency concerns
- data privacy
- high performance onboard processing without costly cloud compute resources

Robotics edge platform

- software EdgeStream™ platform optimized for high performance edge computing / analytics
- hardware extremely small form-factor, quad core server. Low SWaP ¹
- containerized solution

Akraino SESS Blueprint

- Fujitsu + Ritsumeikan University
- food preparation and handling robotics

Architecture and data flow

core / thread data flow – ASR, vision, failure prediction

Signal processing

- noise reduction, sound classification
- failure prediction

ASR²

- urgent commands, factory hands-free environment
- 20K word vocabulary, high accuracy

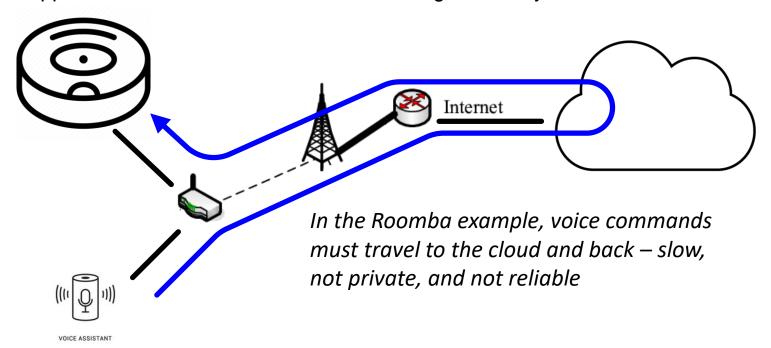
Roomba lab demo

- robotics server and battery "dead bugged" on a Roomba
- voice commands processed and sent to Roomba APIs via USB; e.g. "watch out !", "stop", "turn left", etc

¹ Size, weight, and power consumption

² Automatic speech recognition

Cloud tradeoffs in High Performance Robotics Signalogic.



For high performance robotics the cloud ...

- lacks provide data privacy (e.g. background conversations, proprietary sounds)
- cannot guarantee real-time response in human safety / emergency situations
- is cost-prohibitive as number of robots increases

... but the cloud enables

- management and orchestration of containerized robotics solutions
- app interfaces robot status and monitoring, telemetry, event notification

High Performance Robotics Needs

"Laws of robotics"

- respond to voice commands, especially urgent safety / emergency commands
- avoid people, animals, property
- do not break things and do not incur legal liability
- operate with zero trust in cloud responses ground situation takes precedence

Cannot be cost-prohibitive to scale

- as an example, AWS "Lightsail" compute instances cost \$80 per month
 - dedicated, always available, high performance quad x86 cores with SSE
 - 8 GB mem, 320 GB SSD
- cost adds up for multiple robots

Maintain strict data privacy

- background sounds, conversation are considered strictly private
- data may be sent to cloud for AI training, within carefully defined policies

Ultra low SWaP

- under 50 W power consumption with no fans
- extremely small form-factor
- must be physically lightweight, especially for mobile robots

RobotHPC™ Edge Platform - Software

EdgeStream[™] software

- optimized for per core high performance, low energy usage
- deployed with telecom, lawful interception, and gov/mil customers
- using quad-core Atom, handles up to three (3) concurrent ASR streams, three (3) far-field microphones for one stream, other sensor types, or some combination

Input from USB or RTP packets

- input from one more sensors, microphones
- input from RTP packet streams (IP/UDP, sensors or microphones with Ethernet interface)
- wide range of codecs supported (AMR, EVS, G711, etc) if needed

Development environment

- Ubuntu 20.04, gcc/g++ 9.x
- command line, WinSCP, gdebug ... standard Linux and WinX tools

Supports containerization and cloud orchestration

RobotHPC™ Edge Platform - Hardware

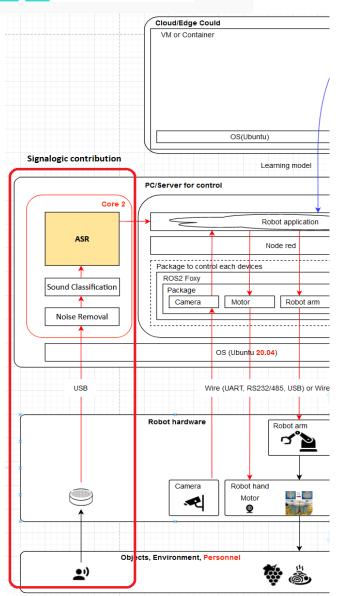
Ultra low SWaP server

- small pico ITX form-factor, 3.5" x 3.5"
- high performance quad-core Atom (x5-E3940), 8 GB mem
- low power ~50 W, no fans
- integrated SSD, WiFi, HDMI, USB, etc.

Flexible, easy-to-use, standard

- code developed on x86 lab / cloud servers, runs on robotics servers w/o changes. No IDEs, JTAG emulators, or special "translation tools" / "porting tools" for AI frameworks
- standard Linux (Ubuntu 20.04), gcc/g++, debug tools
- 100% compatible with mainstream open source edge computing and analytics
- 100% compatible with mainstream containerization and cloud orchestration

SSES Akraino Blueprint


Fujitsu + Ritsumeikan University

- food preparation and handling for manufacturing and enterprise customers
- hands-free operation wet environment, workers wearing gloves
- safety and emergency needs
- robots include x86 based small servers

Signalogic contribution

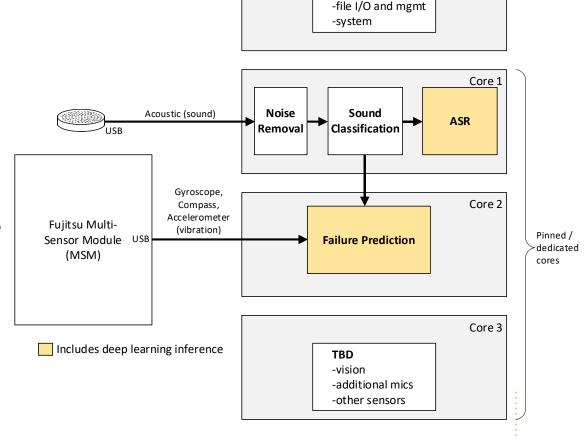
- speech recognition high performance, high vocabulary ASR
- optimized solution, consumes one (1) x86 core from available pool of cores

SSES architecture diagram showing RobotHPC™ data flow

Core / Thread Data Flow

Core 0

Pinned x86 cores


- noise removal, sound classification, ASR
- failure prediction
- TBD, as needed
- one core reserved for Linux

Each core runs end-to-end thread

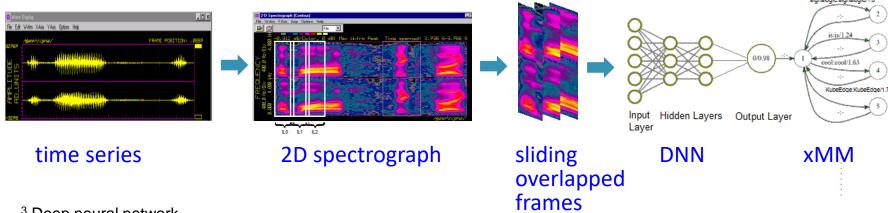
- real-time
- including input and output

EdgeStream[™] software

- makes this type of real-time architecture possible – no thread slicing
- no spinlocks
- data passed between cores with lock-free buffers

Linux -network

ASR Data Flow



Wideband audio input

- 16 kHz sampling rate, 16-bit data
- input from one or more USB microphones, A/D converters, etc

Frequency domain "images"

- formed by overlap FFT analysis of incoming time series data
- each FFT frame output is similar to cochlea in human ears
- groups of FFT frames form images
- successive images are called "TDNN" (time delayed DNN 3), similar to series of CNN 4
- xMM ⁵ applied to DNN outputs

³ Deep neural network

⁴ Convolutional neural network

⁵ Hidden Markov model, Gaussian mixed model

Signal Processing

Noise removal

- spectral subtraction and other methods minimize environment background noise
- target robot noise, e.g. motors, wheels, brushes
- detect and minimize incidental background conversation

Sound classification

- voice, sound, noise

Failure prediction

- incorporate multiple sensors (vibration, acceleration, acoustic)
- apply deep learning methods
- recognize "sequences of sounds", similar to language sentences

ASR

Capabilities

- urgent / safety voice commands; e.g. "stop", "watch out"
- operating commands; e.g. "change mode", "discard"
- large vocabulary, context-awareness provides error resistance, reducing false positives
- currently running in real-time on robotics edge platform in the lab (x5-E3940 Atom)

Deep learning architecture

- combines xMM and DNN technology
- based on Kaldi open source, which is used by Alexa, Google Home, and Cortana

Processing intensive

real-time on one (1) x5-E3940 core, but not by a large margin (RTF ⁶ approx 2)

Fast development / debug / test

 develop, debug, and test on any x86 (with SSE), run on the robotics platform. No conversion to "internal representation", model translation tools, etc needed

⁶ Real-time factor

Roomba Demo Objectives

Edge computing high performance

- real-time
- respond to voice commands, especially urgent commands
- vision avoid people, pets, property. Don't break things

Cloud independence

- operate with zero trust in cloud commands on-the-ground situation takes precedence
- factory background conversation, sounds are strictly private
- cloud data storage, training only under well-defined, controlled conditions

Extremely low SWaP

- operate with ~50 W power consumption, no fans
- ultra small form-factor
- physically lightweight, especially suitable for mobile robots

"Not now roomba"

Roomba Lab Demo

Robotics edge platform

- "dead bugged" onto Roomba 680
- quad-core Atom server, no fans
- 12V dc (battery or AC adapter)
- USB interface to Roomba RS-232
- line-in or USB microphone

Lab interface

- standard server tools used for development, test, and debug – WinSCP, cmd line, gdebug, etc.
- for hands-on lab work, HDMI monitor, keyboard available

USB to RS-232 DIN adapter USB to RS-232 DIN adapter System battery 12V dc in

Roomba real-time voice control

- real-time ASR, 20k word vocabulary
- translate recognized ASR text to Roomba command APIs

Roomba lab demo

Github and Docker Hub

Akraino

SSES Blueprint wiki page:
 https://wiki.akraino.org/display/AK/CPS+Robot+Blueprint+family

Github

- SigSRF software page: https://github.com/signalogic/SigSRF_SDK
- example command lines for reference apps and demos
- documentation

Docker Hub

ready-to-run Ubuntu and CentOS containers https://hub.docker.com/u/signalogic

Demos and reference apps

- ready-to-run containers on Docker Hub, installation Rar packages on Github
- help with installing and running demos available over Skype (no charge)

Source code

- developed entirely in US
- no dependencies on 3rd party libraries

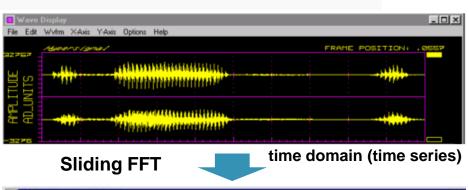
Thanks!

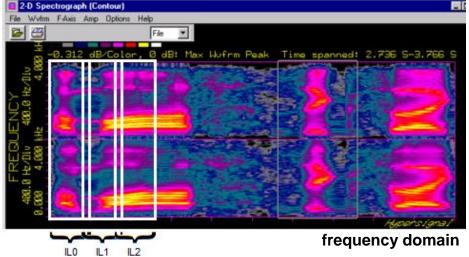
- Q&A
- Follow-up questions / comments: info@signalogic.com
- Web page: https://signalogic.com/edgestream

Supplemental

• Following slides are background info ...

ASR Basics




Deep Learning Architecture

- combines previous generation xMM¹ technology with DNNs (Deep Neural Networks)
- relies on extensive training and "augmentation" methods
- Kaldi open source is basis for Alexa, Google Home, and Cortana

Frequency domain "images"

- formed by sliding FFT analysis of incoming time series data. Each FFT frame output is similar to cochlea in human ears
- groups of FFT frames form images
- successive images are called "TDNN" (time delayed DNN), similar to series of CNNs²

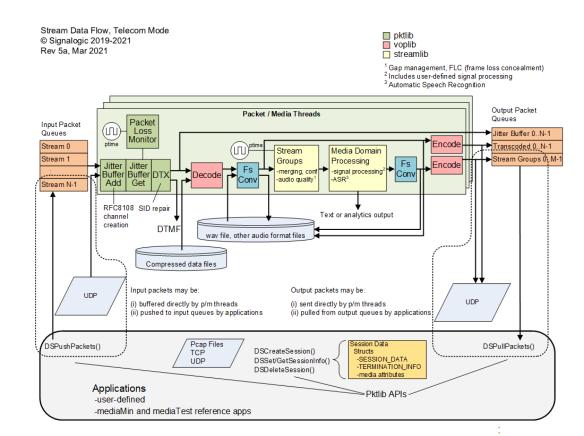
DNN Input Layers (ILn)

^{00.98 | 1 |} cool:cool/1.63 | 4 | | KubeEdge KubeEdge/1.75 | Layer | Layer

¹ Hidden Markov Model, Gaussian Mixed Model, ² Convolutional Neural Network

EdgeStream Data Flow

Per core data flow

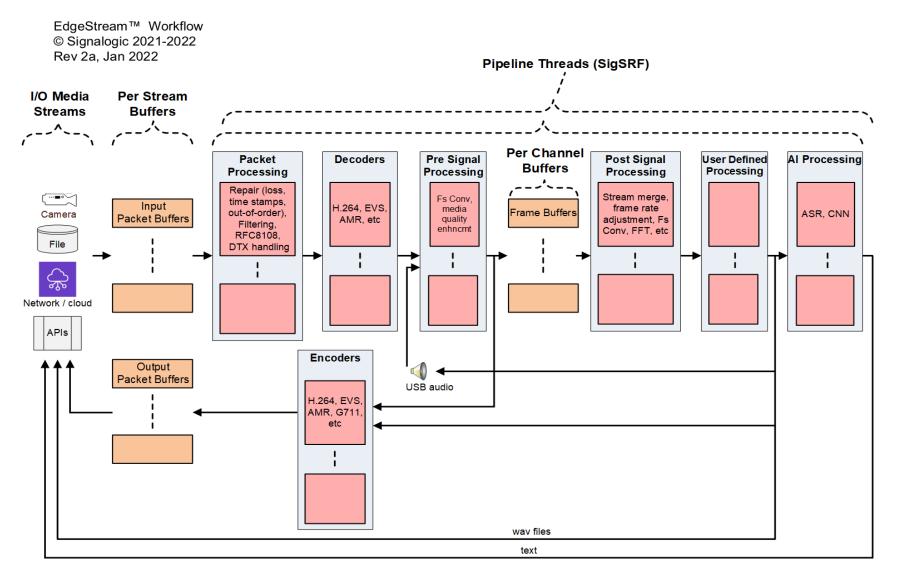

- one thread per core
- no spinlocks
- precise control over power consumption

Real-time workflow

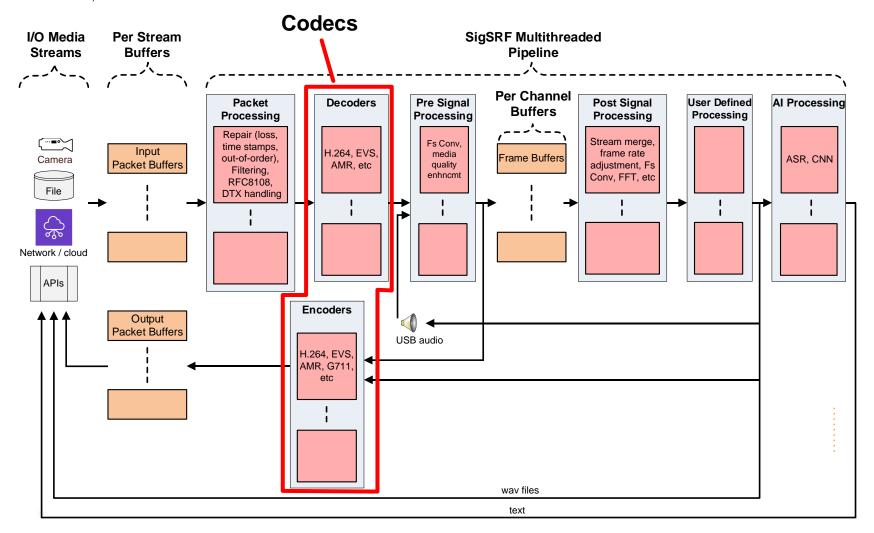
- packet handling
- media codecs
- signal processing
- user-defined processing
- inference

Hardware acceleration

- DirectCore® option
- x86 and Arm options supported


Overview – Per Thread Data Flow

EdgeStream Workflow

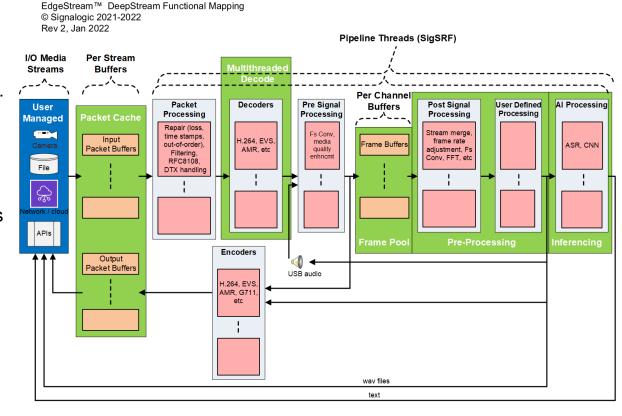


Overview – Pipeline Flow

EdgeStream™ Workflow © Signalogic 2021 Rev 1a, Dec 2021

Comparison with DeepStream

Packet Processing


- EdgeStream provides telecom grade packet processing, including...
- loss repair
- 500+ out-of-order handling
- support for encapsulated protocols
- multiple RFCs
- logging

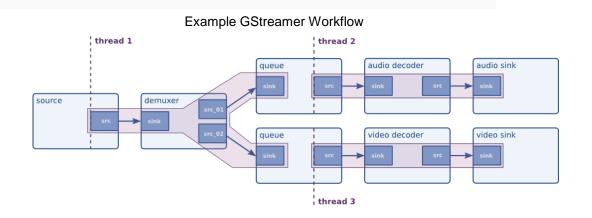
Media

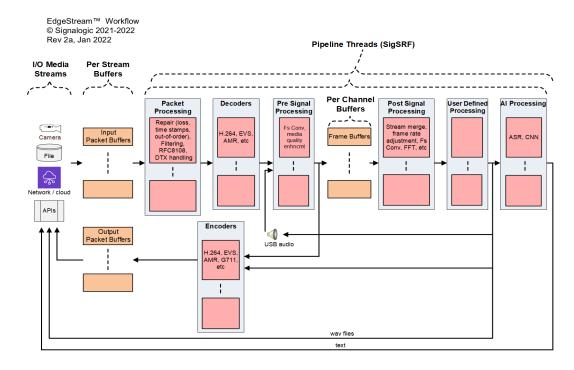
includes encoders in addition to decoders

Signal processing

 more user-defined insertion points

Comparison with GStreamer




Thread architecture

- EdgeStream allocates one workflow thread per core ("unified thread")
- GStreamer uses a thread slicing architecture – flexible but requires spinlocks

Packet Processing

- EdgeStream provides telecom grade packet processing, including ...
- loss repair
- 500+ out-of-order handling
- supports encapsulated protocols
- multiple RFCs
- logging

EdgeStream Deployments

Asia

- Japan
- India (ISRO)
- Australia
- New Zealand (OpenLI ¹ support)

Europe

- Germany
- Italy
- Czech Republic

North America

- AFRL
- Raytheon
- Boeing

¹ OpenLI is "Open Lawful Intercept" for CSPs. More info at https://openli.nz/

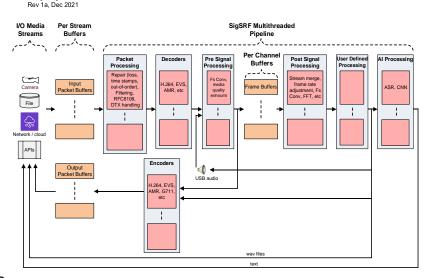
Software Overview

EdgeStream™ Workflow © Signalogic 2021

SigSRF libraries

- codecs
 - VoLTE (EVS, AMR-NB, AMR-WB)
 - legacy (G729, EVRC, GSM, etc)
 - mil/gov (MELPe)

packet procesing


- media/SID packet repair (out-of-order, packet loss, RTP timestamps)
- timing reconstruction of missing/damaged arrival timestamps
- child streams (RFC8108)

frame processing

- "stream groups" can be defined for related streams
- · per-stream correction for overrun, underrun, gaps, bursts
- · accurate time-aligned merging / mixing of multiple endpoints
- high capacity multiple concurrent streams

EdgeStream[™] applications

- reference apps for customer-defined development
- also used as-is by many of our customers. Most common: telecom, LI, and ASR.
- key features
 - · dynamic session creation
 - packet push/pull API interface with SigSRF libs
 - · multiple streams from multiple sources
 - flexible command line similar to ffmpeg or sox

Functionality – Packet Processing

Media quality – packet level

- media/SID packet repair
 - out-of-order (ooo)
 - packet loss
 - RTP timestamps
- child streams (RFC8108)
- timing reconstruction for missing/damaged packet arrival timestamps

Huge levels of ooo handled

 to support TCP encapsulated UDP/RTP, for example lawful interception apps implementing ETSI protocols

Packet logging / tracing

- per stream packet logging
- timestamp reconciliation
- individual packet tracing

```
Ingress Packet info for SSRC = 0xbad52e64, first seg num = 3, last
Seq num 4 ooo 3
                       timestamp = 1280, pkt len = 6 SID
Seq num 3 ooo 4
                       timestamp = 960, pkt len = 61
                       timestamp = 3840, pkt len = 6 SID
Seg num 5
Seq num 6
                       timestamp = 6400, pkt len = 6 SID
                       timestamp = 8960, pkt len = 6 SID
Seq num 8
                      timestamp = 11520, pkt len = 6 SID
Seg num 9
                      timestamp = 14080, pkt len = 6 SID
Seq num 10
                       timestamp = 16640, pkt len = 6 SID
                       timestamp = 18560, pkt len = 61
Seq num 12 000 11
Seq num 15 000 12
                       timestamp = 19520, pkt len = 61
                       timestamp = 18240, pkt len = 61
Seq num 11 000 13
Seg num 13 000 14
                       timestamp = 18880, pkt len = 61
Seq num 14 000 15
                       timestamp = 19200, pkt len = 61
Seq num 18 000 16
                       timestamp = 20480, pkt len = 61
Seq num 19 000 17
                       timestamp = 20800, pkt len = 61
Seg num 16 000 18
                       timestamp = 19840, pkt len = 61
Seg num 21 000 19
                       timestamp = 21440, pkt len = 6 SID
Seg num 23 000 20
                        timestamp = 23680, pkt len = 61
Seq num 24 000 21
                        timestamp = 24000, pkt len = 61
Seq num 25 000 22
                       timestamp = 24320, pkt len = 61
                        timestamp = 24960, pkt len = 61
Seq num 27 000 23
Seq num 28 000 24
                        timestamp = 25280, pkt len = 61
Seq num 31 000 25
                       timestamp = 26240, pkt len = 61
Seq num 32 000 26
                        timestamp = 26560, pkt len = 61
Seq num 34 000 27
                        timestamp = 27200, pkt len = 61
Seq num 17 000 28
                        timestamp = 20160, pkt len = 61
Seg num 20 000 29
                       timestamp = 21120, pkt len = 61
Seg num 22 000 30
                       timestamp = 23360, pkt len = 61
Seg num 26 000 31
                        timestamp = 24640, pkt len = 61
Seq num 29 000 32
                        timestamp = 25600, pkt len = 61
Seq num 30 000 33
                       timestamp = 25920, pkt len = 61
Seq num 33 000 34
                        timestamp = 26880, pkt len = 61
Seq num 35
                        timestamp = 27520, pkt len = 61
Seq num 37 000 36
                       timestamp = 28160, pkt len = 61
Seg num 38 000 37
                        timestamp = 28480, pkt len = 61
                       timestamp = 29120, pkt len = 61
Seq num 40 000 38
Seq num 42 000 39
                       timestamp = 29760, pkt len = 61
Seq num 44 000 40
                       timestamp = 30400, pkt len = 61
Seq num 46 000 41
                       timestamp = 31040, pkt len = 61
Seg num 36 000 42
                        timestamp = 27840, pkt len = 61
Seg num 48 000 43
                        timestamp = 31680, pkt len = 61
Seg num 39 000 44
                        timestamp = 28800, pkt len = 61
Seq num 41 000 45
                        timestamp = 29440, pkt len = 61
Seq num 50 000 46
                       timestamp = 32320, pkt len = 61
Seg num 53 000 47
                       timestamp = 33280, pkt len = 61
Seq num 55 000 48
                        timestamp = 33920, pkt len = 61
                       timestamp = 30080, pkt len = 61
Seq num 43 000 49
Seq num 57 000 50
                       timestamp = 34560, pkt len = 61
```

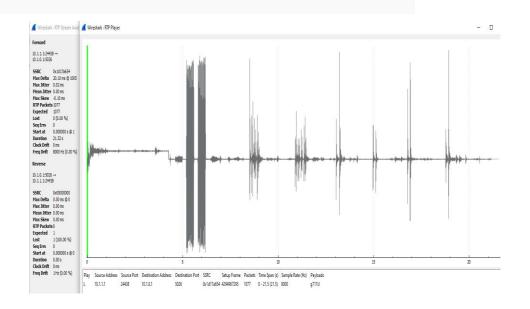
Packet Log Excerpt


```
Ingress Packet info for SSRC = 0xbad52e64, first seg num = 3, last
seq num = 651 \dots
Seg num 4 000 3
                       timestamp = 1280, pkt len = 6 SID
Seg num 3 000 4
                       timestamp = 960, pkt len = 61
Seg num 5
                       timestamp = 3840, pkt len = 6 SID
Seq num 6
                       timestamp = 6400, pkt len = 6 SID
Seg num 7
                       timestamp = 8960, pkt len = 6 SID
Seq num 8
                       timestamp = 11520, pkt len = 6 SID
                       timestamp = 14080, pkt len = 6 SID
ea num 10
                        timestamp = 16640, pkt len = 6 SID
                                                                 High amount of ooo (out-of-order) example
                        timestamp = 18560, pkt len = 61
Seq num 12 000 11
Seq num 15 000 12
                        timestamp = 19520. plane = 19520.
Seg num 11 000 13
                        timestamp = 61
Seg num 13 000 14
                       _____stamp = 18880, pkt len = 61
Seg num 14 000 15
                        timestamp = 19200, pkt len = 61
Seg num 18 000 16
                        timestamp = 20480, pkt len = 61
Seg num 19 000 17
                        timestamp = 20800, pkt len = 61
Seg num 16 000 18
                        timestamp = 19840, pkt len = 61
Seg num 21 000 19
                        timestamp = 21440, pkt len = 6 SID
Seg num 23 000 20
                        timestamp = 23680, pkt len = 61
Seg num 24 000 21
                        timestamp = 24000, pkt len = 61
Seq num 25 000 22
                        timestamp = 24320, pkt len = 61
Seq num 27 000 23
                        timestamp = 24960, pkt len = 61
Seq num 28 000 24
                        timestamp = 25280, pkt len = 61
Seq num 31 000 25
                        timestamp = 26240, pkt len = 61
Seq num 32 000 26
                        timestamp = 26560, pkt len = 61
Seq num 34 000 27
                        timestamp = 27200, pkt len = 61
Seg num 17 000 28
                        timestamp = 20160, pkt len = 61
Seg num 20 000 29
                        timestamp = 21120, pkt len = 61
Seq num 22 000 30
                        timestamp = 23360, pkt len = 61
                        timestamp = 24640, pkt len = 61
Seq num 26 000 31
Seq num 29 000 32
                        timestamp = 25600, pkt len = 61
Seg num 30 000 33
                        timestamp = 25920, pkt len = 61
Seq num 33 000 34
                        timestamp = 26880, pkt len = 61
Seq num 35
                        timestamp = 27520, pkt len = 61
Seq num 37 000 36
                        timestamp = 28160, pkt len = 61
Seq num 38 000 37
                        timestamp = 28480, pkt len = 61
Seq num 40 000 38
                        timestamp = 29120, pkt len = 61
Seg num 42 000 39
                        timestamp = 29760, pkt len = 61
Seg num 44 000 40
                        timestamp = 30400, pkt len = 61
Seq num 46 000 41
                        timestamp = 31040, pkt len = 61
Seq num 36 000 42
                        timestamp = 27840, pkt len = 61
Seq num 48 000 43
                        timestamp = 31680, pkt len = 61
Seq num 39 000 44
                        timestamp = 28800, pkt len = 61
Seq num 41 000 45
                        timestamp = 29440, pkt len = 61
Seq num 50 000 46
                        timestamp = 32320, pkt len = 61
Seg num 53 000 47
                        timestamp = 33280, pkt len = 61
                        timestamp = 33920, pkt len = 61
Seq num 43 000 49
                        timestamp = 30080, pkt len = 61
Seg num 57 000 50
                        timestamp = 34560, pkt len = 61
```

Functionality – Frame Processing

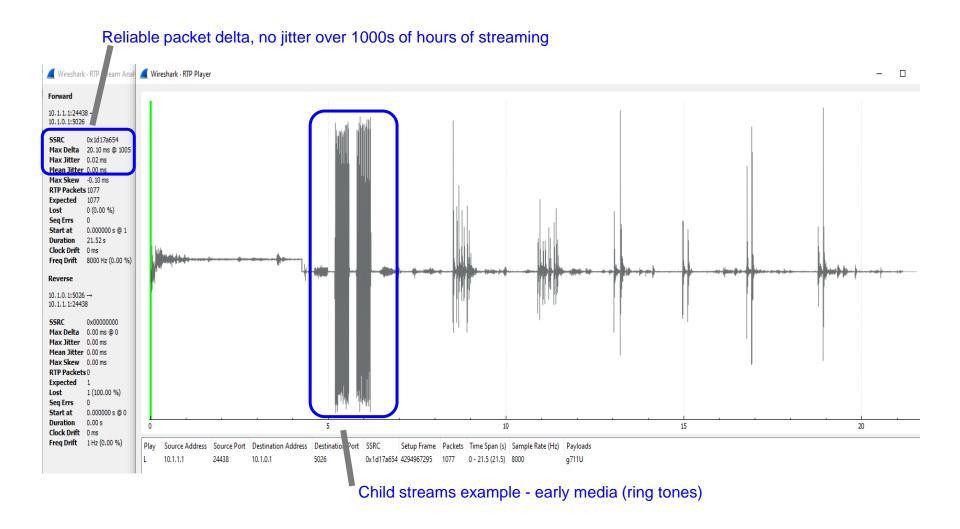
Decoded packet audio data

- buffered as frames (see Overview diagrams)
- signal processing


Media quality – frame level

- "stream groups" can be defined for streams related in some way
- per-stream correction for overrun, underrun, gaps, bursts
- accurate time-aligned merging / mixing of multiple endpoints

Real-time output streaming


- some applications require real-time output, either per-stream or merged between related streams, typically in G711 format
- high intelligibility required all streams fully merged (non-overlapped) and non-duplicated as if all endpoints are in the same room

High capacity – multiple concurrent streams

Real-Time Streaming Output Example

Functionality – Applications

Dynamic and static session creation

- sessions created and codecs detected on-the-fly using (i) RTP only (ii) SIP invite packets (iii) .sdp files, or pre-set using static session config files
- RTP only uses heuristic codec type detection

Packet push/pull interface to SigSRF libs

- reference application examples
- Packet pull includes transcoded output, real-time streaming output

Event logging

- critical, major, minor, info, debug levels
- includes alerts for thread pre-emption, queue starvation, and other performance / data related conditions
- per-stream stats (i) on-demand, (ii) when streams close

Arrival timestamp reconstruction

- if needed due to missing / damaged arrival timestamps
- algorithms based on queue balancing, decoded frame rate estimation

Event Log Example


```
00:00:00.000.011 INFO: DSConfigPktlib() uflags = 0x7
  P/M thread capacity max sessions = 51, max groups = 17
                       path = openli-voip-example event log am.txt, uLogLevel = 8, uEventLogMode = 0x32, flush size = 1024, max size not set
  Event log
                       uDebugMode = 0x0, uPktStatsLogging = 0xd, uEnableDataObjectStats = 0x1
  Debug
                      uPrintfLevel = 5, uPrintfControl = 0
  Screen output
  Energy saver
                       p/m thread energy saver inactivity time = 30000 msec, sleep time = 1000 usec
                       DSPushPackets packet cutoff alarm elapsed time not set, p/m thread preemption alarm elapsed time = 40 (msec)
  Alarms
00:00:00.000.721 INFO: DSConfigVoplib() voplib and codecs initialized, flags = 0x1d
00:00:00.000.749 INFO: DSConfigStreamlib() stream groups initialized
00:00:00.000.834 INFO: DSAssignPlatform() system CPU architecture supports rdtscp instruction, TSC integrity monitoring enabled
00:00:00.000.953 INFO: DSOpenPcap() opened pcap input file: ../pcaps/openli-voip-example.pcap
00:00:00.008.396 INFO: DSConfigMediaService() says setpriority() set Niceness to -15 for pkt/media thread 0
00:00:00.008.418 INFO: initializing packet/media thread 0, uFlags = 0x1180101, threadid = 0x7f320f34a700, total num pkt/med threads = 1
00:00:00.058.474 mediaMin INFO: SIP invite found, dst port = 43333, pyld len = 1994, len = 717, rem = 1979, start = 8, index = 0
o=02825591554 0 0 IN IP4 192.168.1.73
c=IN IP4 192.168.1.73
m=audio 5000 RTP/AVP 9 0 8 101
a=rtpmap:9 G722/8000
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:101 telephone-event/8000
a=extmap:1 urn:ietf:params:rtp-hdrext:csrc-audio-level
a=zrtp-hash:1.10 1c812535e276bf518418c4146a20fd56e715704da9c591ae32d58ee6fed6d40f
m=video 5002 RTP/AVP 96 99
a=recvonly
a=rtpmap:96 H264/90000
a=fmtp:96 profile-level-id=4DE01f;packetization-mode=1
a=imageattr:96 send * recv [x=[0-1920], y=[0-1080]]
a=rtpmap:99 H264/90000
                                                                                                                   Dynamic session creation
a=fmtp:99 profile-level-id=4DE01f
a=imageattr:99 send * recv [x=[0-1920], y=[0-1080]]
a=zrtp-hash:1.10 c1a98e15f12937b9cad2488c6091468f7610efeefa59863c77d827669b913f38
00:00:00:00.058.644 INFO: DSFindDerStream() found HI interception point ID 10g-dev1, tag = 0x86, len = 8, dest port = 43332, pvld len = 1448, pvld ofs = 52
00:00:00.058.727 mediaMin INFO: Creating dynamic session 1, input #1, SDP specified codec type G711a, auto-detected bitrate 64000, stream group openli
voip-example. Creation packet info: IP ver 4, ssrc = 0x14a50012, seq num = 32584, payload type 8, pkt len 200, RTP payload size 160, cat 0
00:00:00.058.781 INFO: DSCreateSession() created stream group "openli-voip-example", idx = 0, owner session = 0, status = 1
```

Functionality – Codecs

Multithreaded

- original 3GPP source modifications
 - instance create, delete, modify implemented using XDAIS standard
 - · global data moved into per-instance "state structs"

API interface

- voplib shared object (.so) library, C/C++ applications include voplib.h
- DSCodecCreate returns a codec handle, usable with DSCodecEncode and DSCodecDecode
- also with various codec-related APIs. Some examples:
 - DSGetCodecSampleRate, DSGetCodecBitRate, DSGetCodecRawFrameSize, DSGetCodecCodedFrameSize, DSGetCodecInfo, DSGetSampleRateValue, DSGetPayloadSize, etc

Optimization

- compiler optimizations
- pragmas
- XDAIS standard requires all memory allocation done up-front, so no real-time mallocs or spin-locks

Testing

- unit / functional testing mediaTest app, with audio I/O (wav and other audio format files, USB audio)
- capacity / stress testing mediaMin app, with application packet push/pull APIs, pcap files, UDP port I/O)
- system testing using mediaMin app, highlighted in "Overview" slides
- bit-exactness testing comparison of floating-point reference vectors

Functionality – Codec API


```
/* codec instance definitions and APIs */
  HCODEC DSCodecCreate(void* pCodecInfo, unsigned int uFlags); /* if DS CC USE TERMINFO flag is given, pCodecInfo is interpreted as TERMINATION INFO* (shared include/session.h), otherwise as
CODEC PARAMS* (above) */
  void DSCodecDelete(HCODEC hCodec);
  int DSCodecEncode(HCODEC
                                   hCodec.
                   unsigned int
                                   uFlags,

    voplib.h

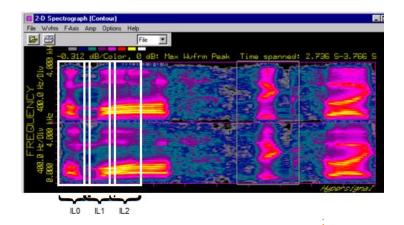
                   uint8 t*
                                   inData.
                   uint8 t*
                                   outData,
                   uint32 t
                                   in frameSize,

    excerpt shown here

                   CODEC OUTARGS*
                                   pOutArgs);
  int DSCodecDecode(HCODEC
                                   hCodec.

    available on Github page

                   unsigned int
                                   uFlags,
                   uint8 t*
                                   inData,
                   uint8 t*
                                   outData,


    C/C++ compatible

                   uint32 t
                                   in frameSize, /* in bytes */
                   CODEC OUTARGS*
                                   pOutArgs);
  typedef struct { /* CODEC_ENC_PARAMS */
/* generic items */
  int bitRate;
  int samplingRate;
                            /* most codecs are based on a fixed sampling rate so this is used only for advanced codecs such as EVS and Opus */
  float frameSize:
                            /* amount of data (in msec) processed by the codec per frame, for example 20 msec for AMR or EVS, 22.5 msec for MELPe, etc */
/* EVS, Opus, other advanced codec items */
  int sid_update_interval;    /* interval between SID frames when DTX is enabled */
  int rf enable;
                           /* channel-aware mode (for EVS only supported at 13.2 kbps) */
  int fec indicator;
                           /* for EVS, LO = 0, HI = 1 */
  int fec offset;
                           /* for EVS, 2, 3, 5, or 7 in number of frames */
  int bandwidth limit;
                           /* for EVS, typically set to SWB or FB */
  } CODEC ENC PARAMS;
  typedef struct { /* CODEC DEC PARAMS */
/* generic items */
  int bitRate;
                            /* bitrate may not be used for codecs that can derive it from payload contents */
  int samplingRate;
                            /* not used for most codecs */
  float frameSize;
                            /* amount of data (in msec) processed by the codec per frame, for example 20 msec for AMR or EVS, 22.5 msec for MELPe, etc */
  } CODEC DEC PARAMS;
```

Functionality - Customer-Specific

- Customers often ask us to incorporate / develop specific signal processing. Some examples:
 - "deduplication" due to multiple copies of the same endpoint (with different latencies)
 - removing room echo / reverb
 - reducing background noise
- Typically a substantial impact on performance
- Speech recognition (ASR)
 - training is ultra sensitive to small changes in audio characteristics
 - production systems are trained with wide variety of "augmentations", including background noise and babble, loud and quiet speech, frequency warping, etc.
 - preprocessing to normalize speech input decreases reliance on augmentation training and increases accuracy

 major impact on performance; for real-time applications, concurrent streams may be reduced 10x

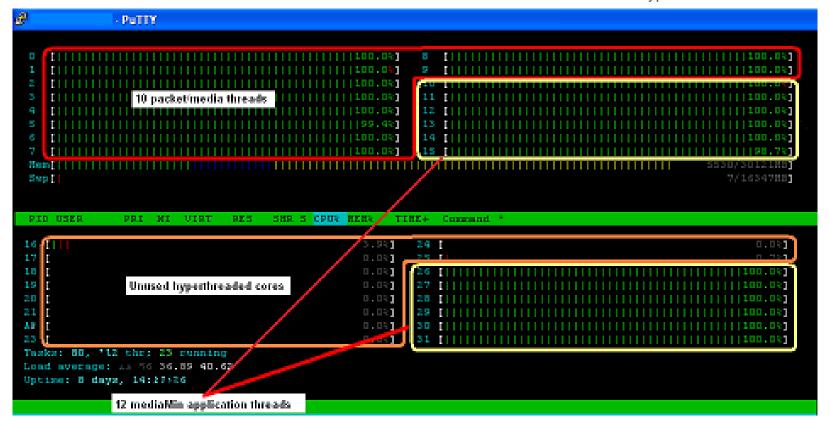
Capacity

Performance optimized per box / VM / container

- for specified core type and clock rate, we spec a max number of concurrent streams per core. For codecs sample rate and bitrate also specified
- extensive use of htop to analyze and verify
- we observe telecom norms Signalogic has a long history of applications coded for high capacity, real-time performance

Codecs

- in addition to core type and clock rate, sample rate and bitrate must also be specified
- <u>https://www.signalogic.com/evs_codec</u> has a Capacity Figure table for EVS on x86


Capacity, cont.

Extensive use of htop and to analyze / debug core usage

- hyperthreading must be disabled
- stream groups must not cross core boundaries
- look for memory leaks

htop screen capture showing
packet/media threads
application threads
disabled hyperthread cores

Capacity, cont.

Optimized for Linux

- Linux poses performance challenges not deterministic, not an RTOS
- carriers and LEAs understand "software defined solutions" are not deterministic, but still expect high capacity / reliability
- software detects and alarms "thread preemption" possible performance impairment due to Linux housekeeping and other user applications

GPUs and DPDK ¹ may or may not be helpful

- GPUs
 - · don't help with packet processing
 - only "matrix expressible" operations can be easily accelerated
 - · can help with some codecs, but accelerating an entire codec is labor-intensive and requires hand-coding

DPDK

- useful when combined with high-rate packet I/O hardware
- for PCIe accelerator cards, each x86 core needs a dedicated lane to avoid thread locks

¹ Data Plane Development Kit – refers to non-Linux x86 cores dedicated to packet processing

Reliability and Testing

Carriers and LEAs obsess about reliability

- very long calls are common. All possible packet and audio data buffers and wrap conditions that could occur must be tested
- as with capacity, we pay attention to telecom requirements. "5 9s" up time is a minimum

Customers run stress tests for weeks at a time

- we run stress tests continuously for 6+ months
- tests include pcaps with artificial wraps, 10x packet push rates, deliberate thread preemptions, more
- tests run at max capacity ratings
- currently we run tests on Ubuntu 12.04 gcc++ 4.6.4 thru 20.04 gcc++ 9.3.0. Testing can be provided on CentOS systems as needed

Extensive use of htop and valgrind

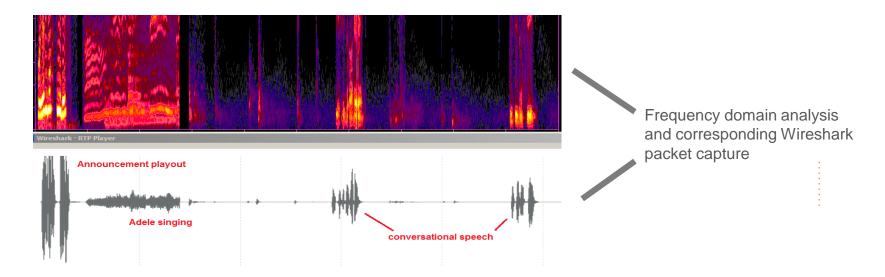
thorough and painstaking search for memory leaks

Software is designed for high reliability

- profiling and performance monitoring
- alarms include data flow anomalies, thread preemption
- event and packet logging
- telemetry

Audio Quality

Certain customers obsess over audio quality


 we have observed customers using metronomes and whale sounds to verify timing and frequency integrity when testing endpoints

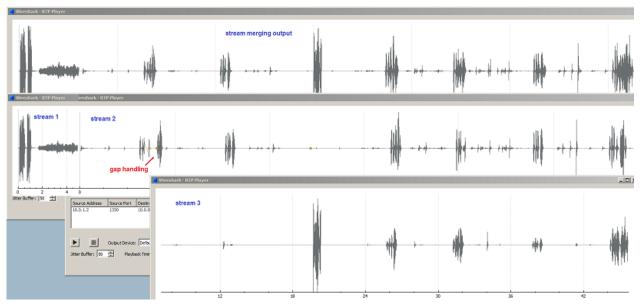
"No sound left behind"

- we enhance audio quality by detecting and repairing:
 - · packet problems (lost packets, out-of-order, gaps, bursts)
 - stream timing (overrun, underrun, child streams)

Debug capability to identify root cause (CSP, cloud, or vendor)

audio quality is complex and subjective; ability to identify root cause is crucial

Audio Quality Challenges

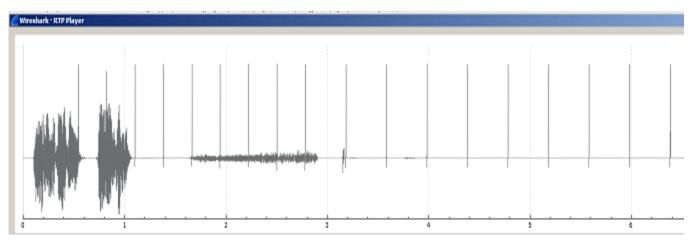


Encapsulation artifacts

- encapsulation packet rate may be very different than original audio RTP packet rate - slow, fast, variable. We've seen up to ±15%
- extreme bursts of ooo (out-of-order) packets, 20-50 packets not uncommon

Streams not time-aligned

- artifacts and child streams distributed unevenly between streams
- media playout servers are particularly bad offenders


Multiple Wireshark captures showing stream merging of 3 endpoints

Audio Quality Verification and Debug

Test case verification

- analysis and debug tools can pinpoint whether it's CSP, cloud,or handset issue
- visual audio markers can be enabled to verify timing, frame repair, etc. Different types of markers are supported

Wireshark screen capture showing audio markers inserted by software

Media Content Processing

Content analysis and signal processing

- artifact detection
- background noise reduction
- detecting and avoiding conversation overlap (correcting time alignment between streams in a stream group)
- stream deduplication

Content recognition

- speech recognition
- speaker identification
- we use Kaldi open source
- requires tradeoff between capacity and real-time processing

RTP malware detection

- malware payloads can hide in codec packets
- no way to differentiate "ordinary bad voice" from "deliberate bad voice" without extensive analysis of fully decoded packets

Current R&D

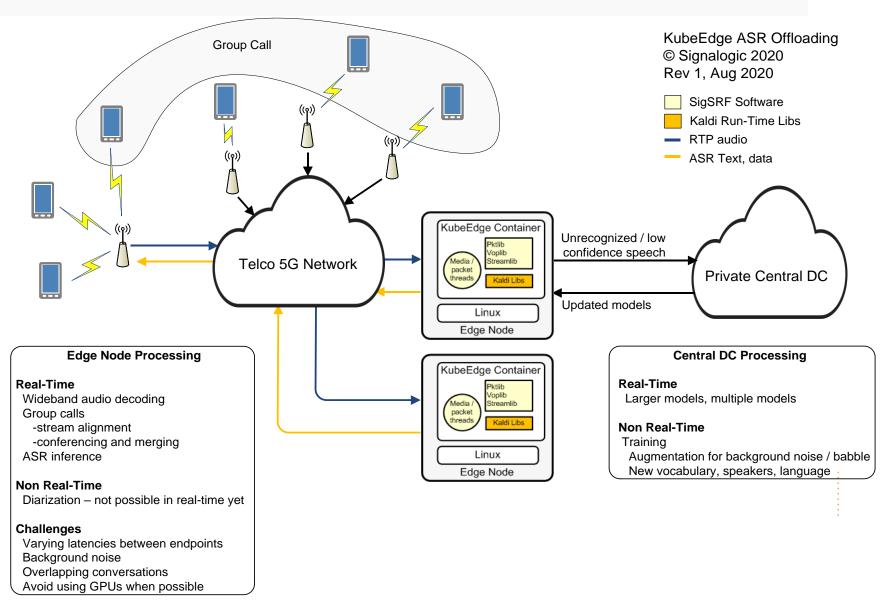
Edge Computing

- ongoing PoCs and LF Edge blueprints demonstrating hybrid cloud, enhanced privacy / security
- many telecom carriers do not trust security in public clouds

ASR (Automatic Speech Recognition)

- can be done in real-time, but substantially less capacity
- not yet in real-time: individual speaker identification and transcription, known as "diarization"
- potential to reduce workloads, accurately alert on "conversations of interest"
- open source accuracy only a few % WER² more than proprietary code bases

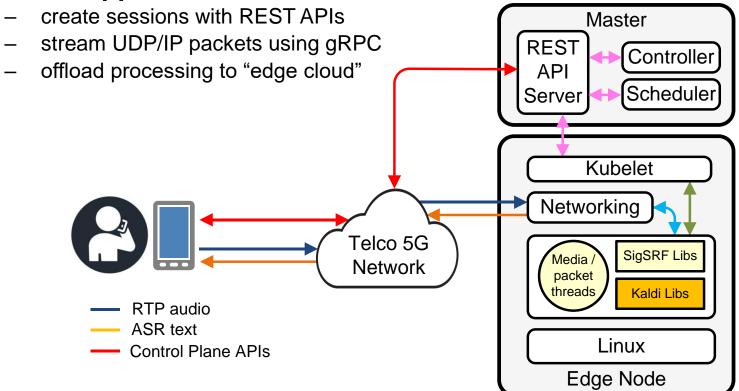
Telecom migration to public cloud


- containerized solutions needed
- LI is a particular problem due to encryption requirements
- allow CICD¹, for example improving ASR accuracy with "on the fly" training based on collected data

¹ Continuous Integration, Continuous Deployment

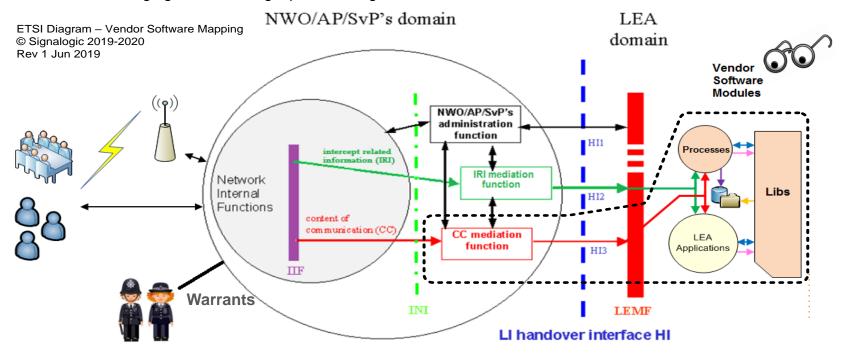
² WER = Word Error Rate

Edge Computing + Containerization


Containers and Kubernetes

Packet + media + ASR inside container

- minimum 2 x86 cores, 32 GB mem, 1 TB HDD can handle 32 sessions
- a session is wideband decode (e.g. EVS), jitter buffer, stream merging up to 8 stream groups, G711 pcap output, wideband wav file output
- scales up linearly with more cores


Field apps

LI Perspective

- ETSI LI Terminology: CC mediation (communication content), HI2 and HI3 (Handover Interfaces)
- Packet Handling
 - Jitter buffer, packet repair, rate adjustment
- Media
 - Decoding (AMR, AMR-WB, EVS, more), stream alignment
- Signal Processing
 - Stream merging, conferencing, speech recognition

IIF: internal interception function INI: internal network interface

HI1: administrative information
HI2: intercept related information
HI3: content of communication