

Vehicle Computing: Vision and Challenges

Weisong Shi

Wayne State University & University of Delaware

> weisong@udel.edu http://thecarlab.org

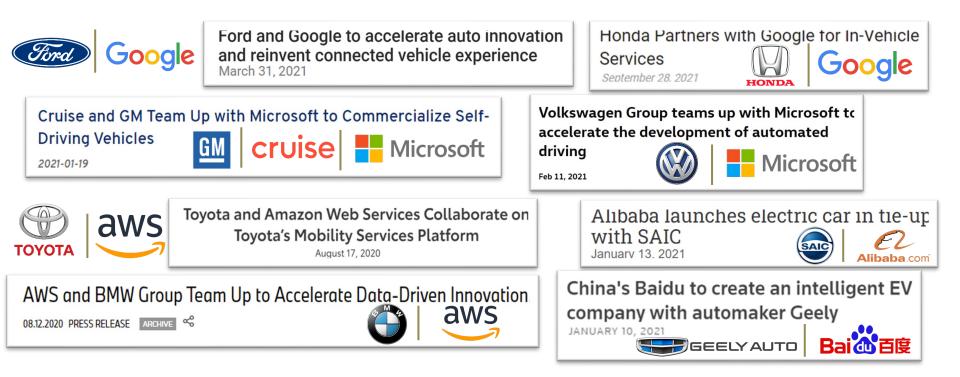
Roadmap

Why Vehicle Computing?

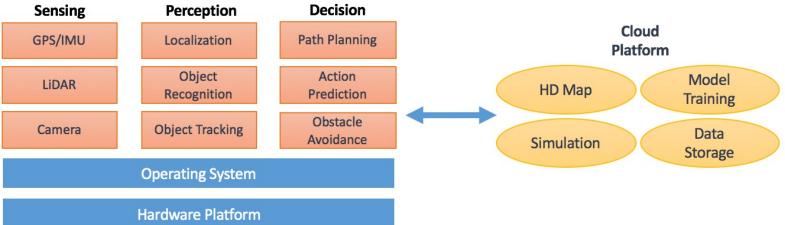
• Research activities @CAR Lab

The Era of CAVs

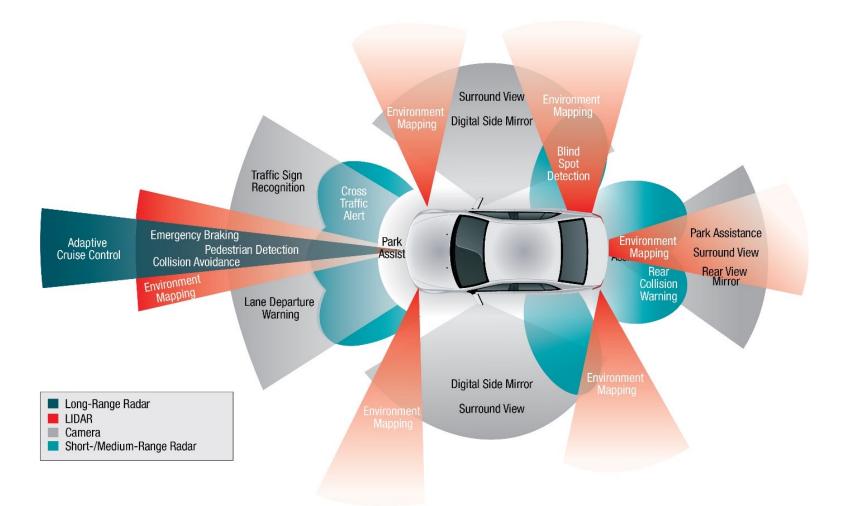
- CV Market:
 - **\$65 billion** in 2021, **\$225 billion** by 2027 with a CAGR of **17%**
 - Every new vehicle will be connected by 2025 (400 million)
 - 50% of national vehicles with connected features



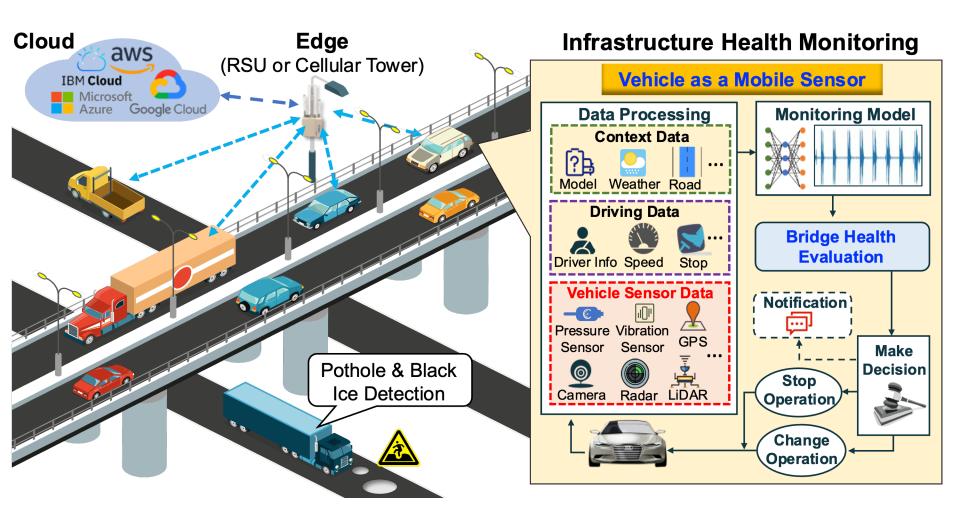
CAV: An Overview



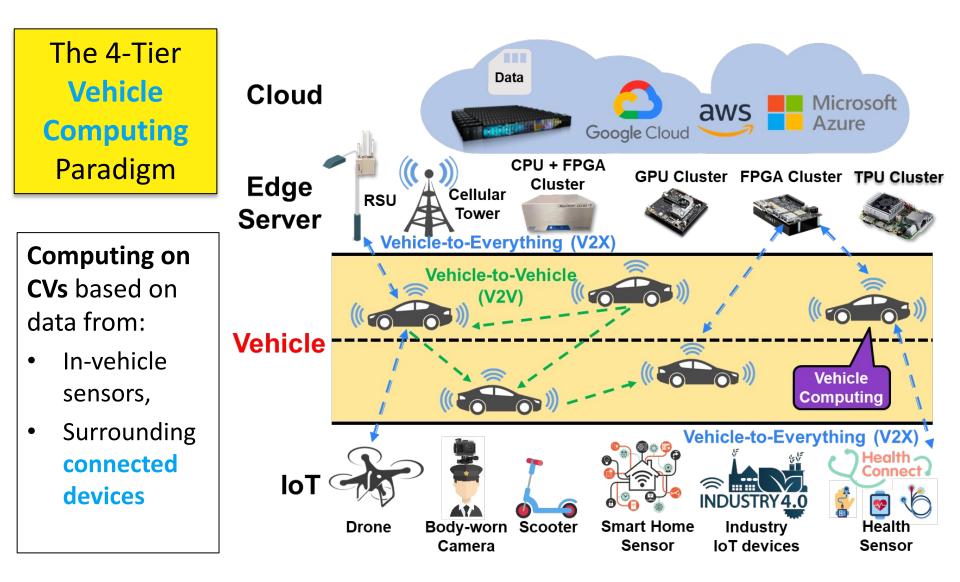
Perception Area of CAVs



Infrastructure Management

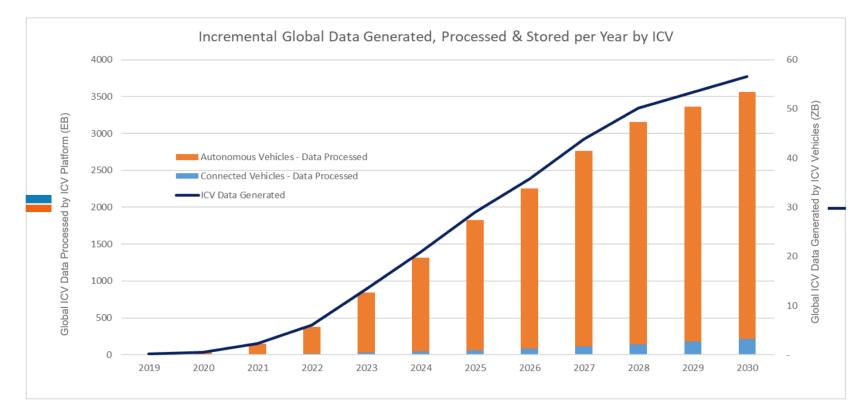


The Emergence of Vehicle Computing



Data Generated by CAVs

ICV Represents Over 17% of Global Data Generated by 2025



Autonomous Vehicles

THE COMING FLOOD OF DATA IN AUTONOMOUS VEHICLES

Credit: Intel

In-vehicle

gaming

Non-Time-Critical

Social

media

Challenge #1: Computation Latency

Hard real-time

Obiect

detection

Collision

avoidanc

Vehicle Applications

Trajectory

Soft real-time

planning generation

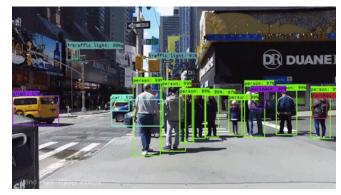
Map

- **Time-sensitive** services
 - Response Time < 90 ms (40 km/h)
 - Computing Latency <164ms
 (avoid an obstacle at 5m away)

Vehicle data & model size

- Single CAV in urban: 40 TB data / eight hours of driving
- CAV fleets on highway: 280 PB data
- Increased model complexity
- Computation-constrained vehicles
 - Traditional non-luxury vehicle: \$30K
 - CAV: \$250K
 - Sensors and computing platform: two-thirds of the total price^{driving-cars-see-13054aee2503}

Goal: accelerate the inference speed of time-sensitive vehicle applications



Reference: https://towardsdatascience.com/how-do-self-

Challenge #2: Transmission Costs

- Transmission
 - Uplink: data
 - 8GB data per vehicle, per day (on average)
 - Downlink: software/firmware update
 - 500MB per vehicle, per update (on average)
 - Update frequency: once per quarter

Transmission costs

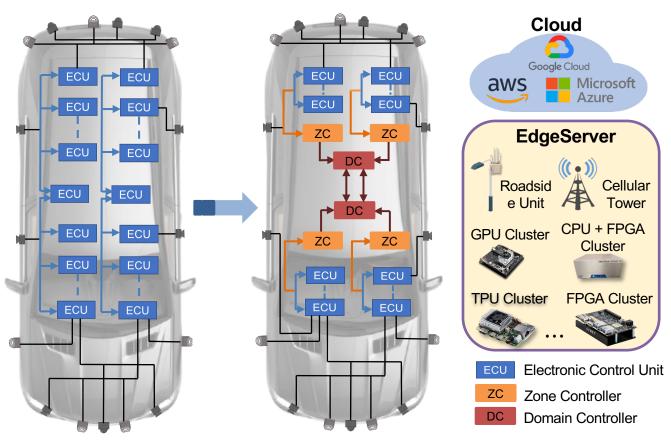
- Cost per usage: 1 GB of mobile data worldwide: \$8.53 (\$12.37 in U.S.)
- Unlimited prepaid data plan: **\$20** per month (AT&T, Chevy)

The cost of data transmission for a **10-million vehicle** fleet can reach over **20 PB** of data and cost over **\$1 billion**, every year!

Enterprises can expect a **10 to 30% reduction** in costs from using Edge Computing.

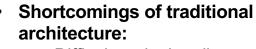
Credit: https://hedgescompany.com/blog/2021/06/how-many-cars-are-there-in-the-world/

The Evolution of Automotive Computing System



Traditional Architecture

Software-Defined Architecture

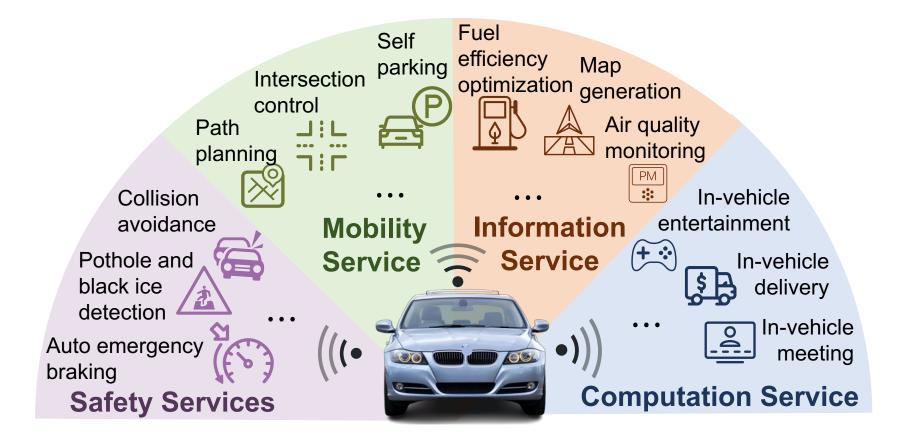


 Difficult to deploy diverse computation-intensive applications.

Advantages of softwaredefined architecture:

- Simplifies vehicles' system interconnection
- Makes the deployment of software to both ZCs and DCs possible

Software Defined Vehicles



Vehicles serve as both a sensor and a service producer and consumer.

Challenges in Vehicle Computing

- Benchmarking and workload
- V2X communication
 - E.g., C-V2X, 5G/6G, WIFI
- Programmability (decomposition)
 - E.g., Novel programming model
- Runtime support and scheduling
 - E.g., automatically partition and deployment
- Energy consumption
 - E.g., computing, communication, sensing
- Security and privacy
 - E.g., trusted edge servers, Privacy-preserving
- End-to-end optimization
 - E.g., Communication/Computation/Control/Cost
- Business model
 - Automotive/Physical Infrastructure/Telecom/Cloud?
 - Deployment/Incentives

Roadmap

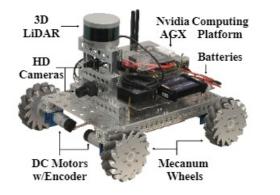
Why Vehicle Computing?

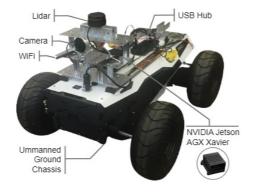
Research activities @CAR Lab

Research Platforms

DSRC

Data Layer





Zebra

Camera NAS Computation Layer Intel Fog Reference×4 (CPU + FPGA Cluster) NVIDIA DRIVE AGX (GPU) Edge TPU×4 (TPU Cluster) Communication Layer LTE. WiFi

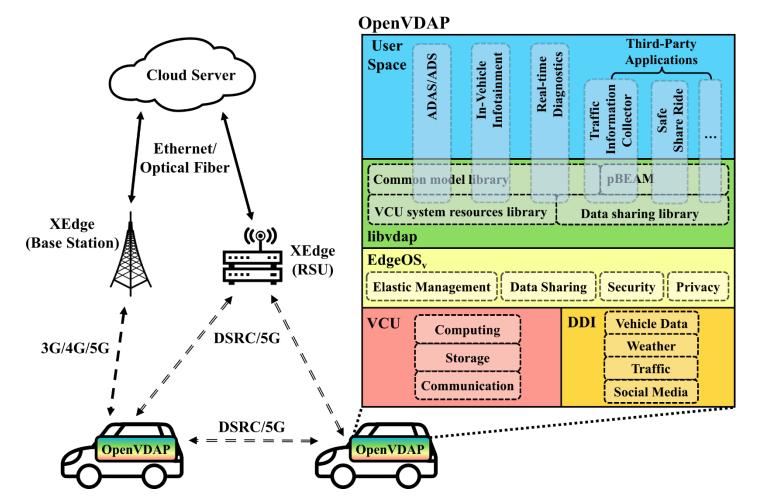
HydraOne

Equinox

ZebraT

Hydra

Open Vehicular Data Analytics Platform



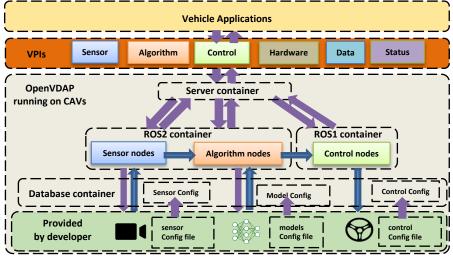
9/20/22

Vehicle Programming Interfaces

- Why VPIs?
 - No need the knowledge of vehicles, sensors, and communications
 - Only focus on application logic
 - Programming with *less* code
- Key VPIs design

VPI Types	VPI examples	Operations	
Data	vpi.data.getCameraData (front)	get front camera data	
	vpi.data.getSpatData()	get SPaT data from infrastructure	
Control	vpi.control.setTwist(msg)	Set Twist command to CANbus	
	vpi.control.setWiper(front, params)	Set wiper with params	
Algorithm	vpi.algorithm(camera_front, e2e_lane_keeping_model)	Run end-to-end lane keeping model using front camera data	
	vpi.algorithm([[camera_front_left,cam era_front_right],lidar_top], [e2e_lane_keeping_model, collision_avoidance_model], test_case)	Run multi algorithms on test case	

• The big picture



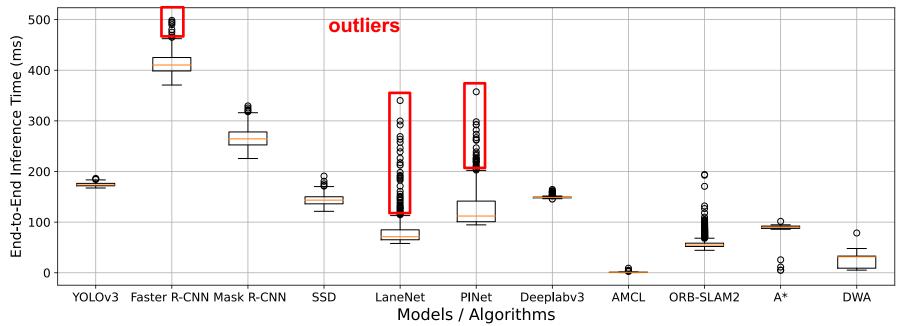
• An example

Lane keeping demo with 3 lines of code

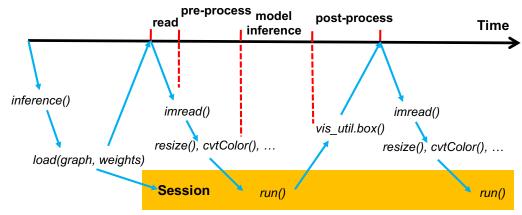
import vpi

control_msg = vpi.algorithm(camera_front, e2e_lane_keeping_model)
vpi.control.setTwist(control_msg)

DNN Inference Time Variations in AVs CA



Timeline Analysis:



Potential variabilities:

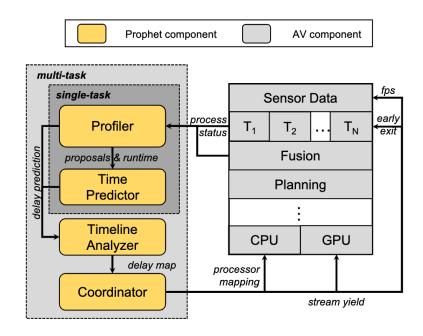
- Read: data, I/O methods
- **Pre-process:** data, hardware
- Model inference: model type, runtime, hardware
- Post-process: data, hardware

Six insights are derived in understanding the time variations for DNN inference.

Prophet: A Predictable Real-time Perception Pipeline for AVs (RTSS'22)

Two Insights from empirical study:

- 1. In silo mode, DNN's structure and the runtime configurations impacts the inference time variations.
- 2. In multi-tenant mode, proper task coordination is the key to addressing the time variations issue.



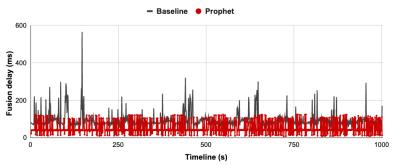
Key ideas:

- Predict inference time based on the intermediate results (proposals, raw points);
- Early-exit inference if the inference time is predicted to miss the deadline

Inference time prediction:

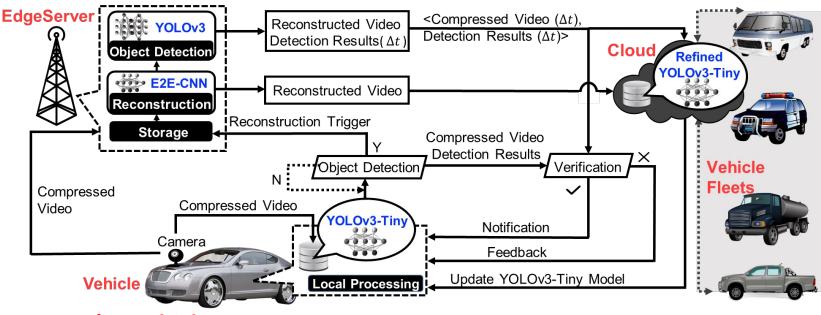
Model	Real (ms)	Predicted (ms)	MAE (ms)	Accuracy (%)
Faster R-CNN	32.18	32.17	0.33	98.99
LaneNet	15.27	15.24	0.99	94.03
PINet	25.32	23.72	2.31	91.68

Perception system fusion delay:



Deadline miss rate: 5.4% (baseline) → 0.087% (Prophet)

Vehicle-Edge-Cloud Framework (SEC'20)

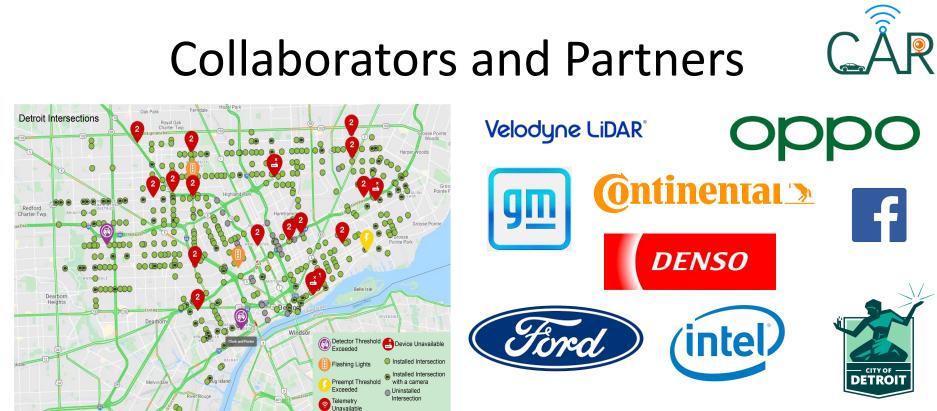


1) Vehicle

- *Energy-efficient network:* make timely computation on compressed data
- 2) EdgeServer
 - Reconstruct high-speed data with a triggered event
 - *Verify* the detection results of the vehicle and send notifications

3) Cloud

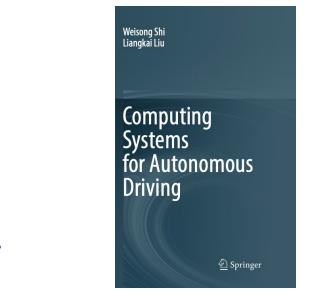
- Aggregates all useful information
- Big data analysis: traffic control and path planning Connected and Autonomous Research Laboratory



Summary

- Vehicle computing era is coming
- A lot of opportunities
 - Applications
 - CAV applications
 - Architecture/storage
 - Machine learning
 - Security/privacy
 - Systems/networking/communication
 - Tools
 - 4C Optimization

Additional Information



http://thecarlab.org

weisong@wayne.edu

Liangkai Liu, Sidi Lu, Ren Zhong, Baofu Wu, Yongtao Yao, Qingyang Zhang, Weisong Shi, <u>Computing Systems for</u> <u>Autonomous Driving: State-of-the-Art and Challenges</u>, IEEE Internet of Things Journal, Vol. 8, No. 8, April 2021.

Sidi Lu and Weisong Shi, <u>The Emergence of Vehicle Computing</u>, IEEE Internet Computing Magazine, May/June 2021.