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The Era of CAVs

 CV Market:

« $65 billion in 2021, $225 billion by 2027 with a CAGR of 17%

« Every new vehicle will be connected by 2025 (400 million)

*  50% of national vehicles with connected features
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CAV: An Overview
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Perception Area of CAVs
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Infrastructure Management
Cloud . e Edge Infrastructure Health Monitoring
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The Emergence of Vehicle Computing

The 4-Tier
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Data Generated by CAVs

ICV Represents Over 17% of Global Data Generated by 2025

Incremental Global Data Generated, Processed & Stored per Year by ICV

Global ICV Data Generated by ICV Vehicles (ZB)
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Autonomous Vehicles
THE COMING IN AUTONOMOUS VEHICLES

SONAR
RADAR GPS

PER SECOND
PER SECOND

./ AUTONOMOUSVEHICLES .
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L ,
PER SECOND J\\ ) PER SECOND

~ " PERDAY...EACH DAY — =~
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CAR

= (nteD =4 35TB, 2000W

Credit: Intel
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Challenge #1: Computation Latency

—— .. : fmmm—m—mm e _ B~~~ == === === === = =
Time-sensitive services Vehicle Applications

Non-Time-Critical

Vehicle data & model size

— Single CAV in urban: 40 TB data / eight hours of driving
— CAV fleets on highway: 280 PB data

— Increased model complexity

Computation-constrained vehicles
— Traditional non-luxury vehicle: $30K
— CAV: $250K

— Sensors and computing platform: two-thirds of the total price

Goal: accelerate the inference speed of time-sensitive vehicle applications

I
. I
— Response Time <90 ms (40 km/h)  Hard real-time Soft real-time
, R Fe————- Fe=====r=——==-
— Computing Latency <164ms :: Object 1 Coliision | | Trajectory !
(avoid an obstacle at 5m away) :Ldetection ' Lavo_iéi-anc: I planning | 1generationj I
l o o o o o o o i e e o o

Connected and Autonomous Research Laboratory

10



Challenge #2: Transmission Costs

Transmission Europe: 419 millon
. North America: 350 million ..m
~ Uplink: data L B N
« 8GB data per vehicle, per day (on average) #umrpsou @& e cast 9 miion — Fars
— Downlink: software/firmware update 75 L O )

Africa: 26 million &
« 500MB per vehicle, per update (on average) “"m“m“s“:"'"“'”" [ vk 7

» Update frequency: once per quarter
How many cars are there in the world?

1.4 billion vehicles globally in 2022
Transmission costs (21% vehicles are in U.S.)

— Cost per usage: 1 GB of mobile data worldwide: $8.53 ($12.37 in U.S.)
— Unlimited prepaid data plan: $20 per month (AT&T, Chevy)

The cost of data transmission for a 10-million vehicle fleet can
reach over 20 PB of data and cost over $1 billion, every year! = 30% reduction in costs from
using Edge Computing.

Enterprises can expect a 10 to

Credit: https://hedgescompany.com/blog/2021/06/how-many-cars-are-
there-in-the-world/

9/20/22 Connected and Autonomous Research Laboratory

11



The Evolution of Automotive
Computing System

Cloud
* % é 1 ‘@ @ ! é t ’W D « Shortcomings of traditional
! ! Google Cloud architecture:
T ~Ed (== aws == X'Z'ﬁrr%”ﬁ — Difficult to deploy diverse
—~E *@-L. L computation-intensive
e ! f EdgeServer \ applications.
S - A o
i Cellular
Roadgld é\
Fm - I e Unit Tower | Advantages of software-
Wl g ECU |mg ECU o ' GPU Cluster CPUIJS't:eF:GA defined architecture:
& & _ Simplifies vehicles'
TPU Cluster FPGA Cluster system interconnection
% S — Makes the deployment
\ ' of software to both ZCs
, Electronic Control Unit and DCs possible
J ZC_ Zone Controller
v - Domain Controller

Traditional Architecture Software-Defined Architecture
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Software Defined Vehicles

Self Fuel
_ arking €fficiency Map
Lr:re]{foelctlon P op’lti:rlnization generation
Path  JiL =%~ |0 Air quality
planning _II' — monitoring
'

Collision o oo & In-vehicle
avoidance Mobility Information entertainment

2 .
Pothole and Fa Service — Service In-vehicle

black ice A SE delivery

detection e 51 In-vehicle
Auto.emergency 6:'} (((. -E— meeting
braking

Safety Services Computation Service

Vehicles serve as both a sensor and a service producer and consumer.
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Benchmarking and workload
V2X communication

— E.g., C-V2X, 5G/6G, WIFI
Programmability (decomposition)

— E.g., Novel programming model
Runtime support and scheduling

— E.g., automatically partition and deployment
Energy consumption

— E.g., computing, communication, sensing
Security and privacy

— E.g., trusted edge servers, Privacy-preserving
End-to-end optimization

— E.g., Communication/Computation/Control/Cost
Business model

— Automotive/Physical Infrastructure/Telecom/Cloud?
— Deployment/Incentives
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Challenges in Vehicle Computing
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Research Platforms

Nvidia Computing
g AFX Platform

Batteries

DC Motors @2 * ° ¢ Mecanum
w/Encoder Eo Wheels

HydraOne

ZebraT

Connected and Autonomous Research Laboratory

Lidar USB Hub

Camera

WiFi |~

NVIDIA Jetson

AGX Xavier
Ummanned e
Ground
Chassis

Computation Layer

i
1
H .Intel Fog Referencex4
Ei (CPU + FPGA Cluster)

@iy NVIDIA DRIVE AGX

(GPU)

1
Q Edge TPUx4
{ ; (TPU Cluster)
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OpenVDAP for SDV (ICDCS’18)

* Open Vehicular Data Analytics Platform

OpenVDAP
User Third-Party
7)) N w . .
Space ! A& @ 5 22 Applications
Cloud Server 5 < 2 g £% Is A \
7)) S = =+ £ = @
< > 8 ;:5 g .85 =
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S (AEl (MRl EZE 1e"
Ess %E L
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Optical Fiber S T | N \
! Commbon model library | pPBEAM i
I}" """""""""""""""" T - "=
XEd ! VCU system resources library l Data sharing library !
ge ~ = - ===
(Base Station) () XEdee libvdap
e 8% [EdgeOs,
=] RSU)  |m2ommotomoeooe e e
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Vehicle Programming Interfaces ‘=

« Why VPIs?

— No need the knowledge of
vehicles, sensors, and
communications

Only focus on application

logic

— Programming with /ess code

 Key VPIs design

Data

Control

Algorithm

9/20/22

VPl examples
vpi.data.getCameraData (front)
vpi.data.getSpatData()
vpi.control.setTwist(msg)
vpi.control.setWiper(front, params)

vpi.algorithm(camera_front,
e2e_lane_keeping_model)

vpi.algorithm([[camera_front_left,cam
era_front_right],lidar_top],
[e2e_lane_keeping_model,
collision_avoidance_model], test_case)

get front camera data
get SPaT data from infrastructure
Set Twist command to CANbus
Set wiper with params

Run end-to-end lane keeping model
using front camera data

Run multi algorithms on test case

. The big picture

Sensor Algorithm Status

OpenVDAP
running on CAVs

— i )
L Server container

¢ — = T "ROS2 container Y~ ROSI container )

I

I

I

| |

I | Algorithm nodes + Control nodes I
I C ) I
I

I

I

I

I

-

EE—— e — ]\, eeme—
—————— oo = ===
Database container I Sensor Config | i | control config | I

______ = == T ——

- =

Fiovelo -' sensor : C models control -I“
by developer | confighite | 5 | configfite | Config file |||

* An example
Lane keeping demo with 3 lines of code

import vj
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DNN Inference Time Variations in AVs (;ﬁ@
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Timeline Analysis:

Models / Algorithms

Pré-process model  post-process .
= inference | Tme_  Potential variabilities:
\ i ; g * Read: data, /0O methods
ierance() ' | ! * Pre-process: data, hardware
imread() E i imread()

\

resize(), cvtColor(), ...

load(graph, weights) \
\Session

run()

/

Model inference: model type,
runtime, hardware

vis_util.box()
resize(), cvtColor (), ...

\

run()

Six insights are derived in understanding the time variations for DNN inference.
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Prophet: A Predictable Real-time CAR

Perception Pipeline for AVs (RTSS'22)

Two Insights from empirical study:

1. In silo mode, DNN'’s structure and the runtime configurations impacts the inference time variations.
2. In multi-tenant mode, proper task coordination is the key to addressing the time variations issue.
Prophet component AV component . . .
) 0 Inference time prediction:
multi-task | Model | Real (ms) | Predicted (ms) | MAE (ms) | Accuracy (%) |
single-task Sensor Data fos Faster R-CNN 32.18 32.17 0.33 98.99
r \ ; LaneNet 15.27 15.24 0.99 94.03
~  Profiler B T, | T, | Ty [ PINet 25.32 2372 231 91.68
\_ J
proposals|& runtime Fusion
Time | - ) )
| Predictor Planning Perception system fusion delay:
P = Baseline @ Prophet
Timeline 600
_ Analyzer CPU GPU _
p l delay rriap processor *f;
Coordinator o - :
L ) stream yield §
w h R ol "‘ | » "
NI AR (R 1 1Y AR a )il l
| IR TR T ] il | i
Key ideas Timeline (s)
!Dredlct mference t|:ne based orll the Deadline miss rate:
|ntlermed|ate results (proposals, raw 5.4% (baseline) > 0.087% (Prophet)
points);
- Early-exit inference if the inference time is
predicted to miss the deadline
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Vehicle-Edge-Cloud Framework (SEC’20) CAR

EdgeServer Reconstructed Video | _=Compressed Video (At),

Detection Results( At) Detection Results (At)>

Reconstructed Video

N Reconstruction Trigger
': v Compressed Video :
_______________ Detection Results '—" X E
N :++**fObject Detectionf > VerificE—‘ ! Vehicle

Compressed : v floo
Video :
Notification :
Feedback §

Vehicle = Update YOLOvV3-Tiny Model &
A ..’

1) Vehicle
* Energy-efficient network: make timely computation on compressed
data
2) EdgeServer
* Reconstruct high-speed data with a triggered event
* \Verify the detection results of the vehicle and send notifications

3) Cloud

* Aggregates all useful information

* Big data analysis: traffic control and path planning
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Collaborators and Partners
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Summary

* Vehicle computing era is coming

* A lot of opportunities

— Applications
* CAV applications
— Architecture/storage

— Machine learning

— Security/privacy

— Systems/networking/communication
— Tools

— 4C Optimization

9/20/22 Connected and Autonomous Research Laboratory
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CAR

Additional Information

Weisong Shi
Liangkai Liu

http://thecarlab.org Computing

Systems

for Autonomous
Driving

weisong@wayne.edu

Liangkai Liu, Sidi Lu, Ren Zhong, Baofu Wu, Yongtao Yao, Qingyang Zhang, Weisong Shi, Computing Systems for
Autonomous Driving: State-of-the-Art and Challenges, IEEE Internet of Things Journal, Vol. 8, No. 8, April 2021.

Sidi Lu and Weisong Shi, The Emergence of Vehicle Computing, IEEE Internet Computing Magazine, May/June
2021.
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