
 1

MEC Service Federation
for

Location-aware IoT
with

DevOps MEC Infra Orchestration

ETSI – LF Edge Hackathon
Team DOMINO

Solution Submission

Oleg Berzin, oberzin@equinix.com
Vivek Muthukrishnan, vmuthukrishnan@aarnanetworks.com

September 2022

 2

INTRODUCTION ..3
SUMMARY OF CONTRIBUTIONS AND INNOVATIONS ..3
USE CASE DESCRIPTION ..4
SOLUTION COMPONENTS ..7

MEC FEDERATION ORCHESTRATOR ...7
5G CONTROL PLANE, USER PLANE AND UE/GNB ..9
BARE METAL CLOUD ..10
MEC FEDERATION DATA PLANE ..10
VIRTUAL NETWORK FUNCTION AND PUBLIC CLOUD ACCESS ...11
PUBLIC CLOUD ..12

Private Interconnect ..12
IoT SaaS ..12
Azure IoT Edge Gateway ...13

SOLUTION IMPLEMENTATION ..14
MEC FEDERATION ORCHESTRATOR ...14

Infrastructure orchestration ..14
Services, 5G functions and IoT application orchestration ..15

FREE5GC ..16
MEC LOCATION API CLOUD NATIVE IMPLEMENTATION ..18
ENABLING AZURE IOT EDGE CUSTOM MODULE ..19
END-TO-END IOT APPLICATION OPERATION ..21
IMPLEMENTATION DETAILS ...24

IoT Client script ..24
IoT Edge Gateway custom module with Location API integration ...25
Terraform, Ansible, Camunda and Helm repositories ..28

 3

Introduction

In our solution we use Akraino Public Cloud Edge Interface (PCEI) blueprint to demonstrate orchestration of
federated MEC infrastructure and services, including 5G Control and User Plane Functions, MEC and Public Cloud
IaaS/SaaS, across two operators/providers (a 5G operator and a MEC provider), as well as deployment and operation
of end-to-end cloud native IoT application making use of 5G access and distributed both across geographic locations
and across hybrid MEC (edge cloud) and Public Cloud (SaaS) infrastructure.

We first demonstrate a solution to critical issues of deployment and interconnection of MEC Federation, such as
activation of physical bare metal servers, deployment of operating systems and virtualization layers (Docker/K8s) on
the servers, interconnection of participants of MEC Federation using a production global network fabric and virtual
networking functions as well as activation of public cloud SaaS and MEC-to-Cloud interconnection for extending
MEC Federation to cloud resources.

We then show deployment of to-be-federated (or to-be-shared) services in the respective domains of the two
operators by deploying a cloud native implementation of ETSI MEC Location API server (MEC013) in the 5G
operator’s domain, and a cloud native IoT Edge Gateway (based on Azure IoT Edge) in the MEC provider’s
domain.

Finally, at the IoT application layer, we provide a reference IoT client emulating several sensors and capable of
communicating with a cloud native IoT Edge Gateway across the federated infrastructure using low power encoding
for IoT messages (temperature, humidity, and pressure), as well as the interaction between the distributed IoT Edge
Gateway and the Location API service to enable insertion of obtained UE location data into IoT sensor data showing
location-aware IoT across federated MEC infrastructure.

By orchestrating, bare metal servers and their software stack, 5G control plane and user plane functions,
interconnection between the 5G provider and MEC provider, connectivity to a public cloud as well as the IoT
application and the MEC Location API service, we show how it is possible for providers to enable sharing of their
services in a MEC Federation environment.

Summary of contributions and innovations

In this solution we provide the following contributions and innovations:
• A practical use case showing a realization of ETSI MEC Federation architecture
• An introduction and a functioning demonstration of MEC Federation Data Plane
• Implementation of the GSMA OPG Edge Node sharing scenario using MEC Federation
• Implementation of ETSI MEC Location API Service and its integration with a MEC application
• Implementation of a combined MEC Federation Broker and MEC Orchestrator with unique capabilities for

infrastructure orchestration in multiple domains such as public cloud, edge/MEC cloud, network operator, 5G
control plane and user plane cloud native function deployment as well as cloud native service and application
deployment

• Implementation of integrated Terraform Infrastructure-as-Code module into the orchestrator enabling DevOps
infrastructure orchestration

• Implementation of integrated Ansible Infrastructure Configuration and Installation module into the orchestrator
• Cloud native 5G Control Plane and Distributed UPF deployment design and the correspondent Helm Charts
• Use of production services (by Equinix) such as bare metal cloud, virtual network functions, public cloud access

and a global interconnection fabric as dynamically orchestratable infrastructure components for the realization
of the MEC Federation use case

• Implementation of a reference IoT client
• Implementation of a custom software module for Azure IoT Edge that enables its integration with ETSI MEC

Location API service
• An end-to-end demonstration of the infrastructure orchestration, 5G control plane and user plane functions

deployment, ETSI MEC Location API service deployment and the location aware, distributed IoT application
operation

 4

Use case description

Our use case involves a 5G operator offering 5G access in the Silicon Valley, CA area and a MEC operator offering
an edge cloud service for edge applications as well as connectivity to public clouds in the Dallas, TX area.

Both operators/providers use services of a MEC Federation Interconnection Provider (MFIP) to enable several
critical functions such as interconnection between the 5G operator domain and the MEC provider domain using a
global private interconnection fabric (also referred to as MEC Federation Data Plane), colocation services to host
bare metal compute resources as well as private connectivity to public clouds using a virtual network function
(VNF) service integrated with the private interconnection fabric.

In our scenario, the MFIP also runs an orchestration service enabling the 5G operator and the MEC provider to
activate their respective infrastructure and interconnection components and a subsequent deployment of functions,
services, and applications. The scenario is shown below.

Our use case then proceeds in stages as shown and described below.

 5

The infrastructure and interconnection orchestration stage:

1. The 5G operator accesses the orchestration service offered by the MFIP to deploy a 5G network slice for
their IoT customer in the Silicon Valley, CA area (the left side of the above diagram):

a. Deploy bare metal servers, using a bare metal cloud offered by a colocation provider (we use a
production Equinix Metal service in our demonstration). This includes a server for 5G Control
Plane Functions (based on Free5GC) and a server for the User Plane Function. Note that the local
IP/Network connectivity is orchestrated as part of the bare metal orchestration service.

b. Install Kubernetes on the bare metal servers and register their Kubernetes clusters with the MEC
Federation orchestration service.

2. The MEC provider accesses the orchestration service offered by the MFIP to deploy the edge cloud and the
private connectivity to the public cloud in the Dallas, TX area (the right-hand side of the picture):

a. Deploy bare metal servers, using a bare metal cloud offered by a colocation provider (we use a
production Equinix Metal service in our demonstration). This includes a server for the edge
cloud/MEC. Note that the local IP/Network connectivity is orchestrated as part of the bare metal
orchestration service.

b. Install Kubernetes on the bare metal server and register their Kubernetes clusters with the MEC
Federation orchestration service.

c. Deploy a Virtual Network Function (VNF) to enable access to multiple public clouds from the
edge cloud/MEC server. Note that in our demonstration we use a production Network Edge
service offered by Equinix to deploy a Cisco CSR1000v virtual router VNF) and Azure public
cloud. Also note that we use private connectivity between the VNF and the Azure cloud using
Azure ExpressRoute with BGP routing across Equinix Fabric.

3. The 5G operator accesses the orchestration service offered by the MFIP to create a private MEC Federation
Data Plane connection to the MEC provider:

a. The connection is orchestrated using a production Equinix Fabric service between data centers in
Silicon Valley, CA and Dallas, TX. Note that BGP routing between the 5G provider’s network
and the MEC operator’s network is also orchestrated as part of the connection creation.

The 5G network functions and MEC services/applications deployment stage:

1. The 5G operator deploys a network slice for their IoT customer:
a. Deploy a 5G network slice for the IoT customer by deploying cloud native 5G Control Plane and

User Plane Functions (based on Free5GC) on respective Kubernetes clusters/servers activated in
the Silicon Valley data center.

b. Enable access for 5G UEs provisioned with low power IoT clients to the customer’s network slice.
Note that in our demonstration we use a simulated gNB, a simulated UE and a simulated 5G New
Radio network (based on Free5GC).

2. The 5G operator deploys MEC Location API server as part of the customer’s network slice:
a. The cloud native implementation of the MEC013 Location API server is deployed by accessing

the MEC Federation orchestrator and placed on the same cluster/server that is hosting the
customer’s 5G UPF.

3. The MEC provider deploys a hybrid MEC application on the edge cloud and public cloud for the use by the
5G operator’s IoT customer:

a. Deploy Azure IoT Edge cloud native IoT Gateway on the edge cloud/server.
b. Activate IaaS and IoT SaaS components in Azure Cloud:

i. IaaS components: Azure ExpressRoute, Azure Private Peering/BGP, Azure VNET and
VNET Gateway, a test VM.

ii. IoT SaaS components: Azure IoT Hub, IoT Edge with private connectivity, Private
Endpoint for IoT Edge.

The end-to-end application operation stage:

1. The customer’s UE in the Silicon Valley, CA area, connects to the 5G network, registers with the 5G
control plane, receives an IPv4 address and establishes a Packet Data Network (PDN) session with the 5G
UPF. 5G UPF forwards data to the MEC Federation data plane connection towards the MEC provider’s
edge cloud.

 6

2. The customer’s IoT client running on the 5G UE collects Temperature, Humidity and Pressure
measurements, encodes them into the low power IoT message format and sends encoded messages to the
IoT Edge Gateway running on the MEC provider’s edge cloud in the Dallas, TX data center.

3. The IoT Edge Gateway receives the encoded sensor data, decodes the data to convert the format from low
power encoding to the JSON representation.

4. The IoT Edge Gateway in Dallas, TX sends an API call to the Location API server running in the 5G
operator data center in Dallas, TX and obtains Latitude, Longitude and Altitude location data for the UE
from the 5G operator’s MEC Location API server.

5. The IoT Edge Gateway adds location data to the IoT sensor data and publishes the combined message to
the IoT Hub running in the Azure Cloud. Note that this data is forwarded from the edge cloud server in the
Dallas, TX data center to the virtual router VNF (Cisco CSR1000v) and then routed over the private
peering on the Azure ExpressRoute virtual circuit to the customer’s VNET and the IoT Hub SaaS. The
combined data is stored and posted for processing/viewing.

The data path and the application interactions are shown below:

 7

Solution components

MEC Federation Orchestrator

The orchestrator is based on Akraino Public Cloud Edge Interface (PCEI) blueprint. The PCEI blueprint provides
the multi-domain orchestrator to enable infrastructure orchestration and cloud native application deployment across
public clouds (core and edge), edge clouds, interconnection providers and network operators. The notable
innovations in PCEI are the integration of Terraform as a microservice to enable DevOps driven Infrastructure-as-
Code provisioning, integration of Ansible as a microservice to enable automation of configuration of infrastructure
resources (e.g., servers) and deployment of Kubernetes and its critical components (e.g., CNIs) on the edge cloud,
and introduction of a workflow engine to manage the stages and parameter exchange for infrastructure orchestration
and application deployment as part of a composable workflow. PCEI R6 can help simplify the process of multi-
domain orchestration by enabling uniform representation of diverse services, features, attributes, and APIs used in
individual domains as resources and data in the code that can be written by developers and executed by the
orchestrator, effectively making the infrastructure orchestration across multiple domains DevOps-driven.

The structure of the orchestrator is shown below (in orange):

The orchestrator consists of three major parts:

• The infrastructure deployment part. It is based on the Controller Design Studio (CDS) open source
software and enables the orchestrator to use Infrastructure-as-Code (Terraform) for orchestrating cloud
IaaS/SaaS, bare metal, and interconnection/networking, as well as Ansible for installing Kubernetes and
configuring network functions.

• The application deployment part. It is based on the Edge Multi-Cluster Orchestrator (EMCO) open-
source LFN project and enables to deploy distributed cloud native applications and functions on
Kubernetes clusters.

• The workflow engine part. It is based on the Camunda open-source BPMN project and allows to create
sequences of workflows that in turn use the infrastructure and application deployment parts to implement
desired deployments.

The orchestration workflow and action sequencing used in our implementation is shown below.

 8

The end to end infra orchestration Camunda workflow steps to demonstrate Public Cloud Azure, Equinix
Network Edge and Metal IoT k8s cluster Infrastructure orchestration:

• DEPLOY NE VNF

o Deploys NE Cisco CSR 1000v VNF (We will reuse pre-deployed VNF as it takes more time to
come up)

• DEPLOY AZURE EXP ROUTE
o Deploys Azure Express Route Circuit

• CONNECT NE VNF INTERFACE TO EXP ROUTE
o Connect Network Edge Cisco CSR Interface 5 connection with the Azure Express Route Circuit

• CONFIG NE VNF INTERFACE & BGP
o Configure Cisco CSR 1000v interfaces and BGP configurations

• DEPLOY METAL & K8S
o Deploys Equinix Metal for the IoT Edge application deployment

• CONNECT NE VNF TO METAL PORT
o Creates a connection between Equinix Metal and to Cisco CSR Interface 7 connection

• CONNECT METRO 2 METRO PORTS
o Connects Equinix metro location ports

• ONBOARD K8S CLUSTERS
o Onboard k8s clusters across multiple edge locations
o Create the below service models from the Helm3 charts

§ PCEI-MEC-5G-CORE-CP-SVC
§ PCEI-MEC-UPF-LOCAPI-SVC
§ PCEI-MEC-UE-RAN-SIM-SVC
§ PCEI-MEC-METAL-IOT-EDGE-SVC

 9

5G Control Plane, User Plane and UE/gNB

We used Free5GC to implement and deploy a network slice that consists of the Control Plane Functions and a
distributed User Plane Function. Note that we used a simulated UE/gNB package from Free5GC to run UE and the
IoT client within the UE container. The following diagram shows details of our 5G deployment and configuration.
Note that all 5G functions were deployed using the orchestrator.

 10

Bare Metal Cloud

We used Equinix Metal production bare metal orchestration platform to activate bare metal servers in Silicon
Valley, CA and Dallas, TX. The servers were orchestrated using workflow driven Terraform component of the PCEI
orchestrator. After the deployment the bare metal server with the installed Ubuntu OS can be viewed from the
Equinix Metal portal and connected to via SSH.

MEC Federation Data Plane

We use a production Equinix Fabric private interconnection service to implement the MEC Federation Data Plane
connectivity between the 5G operator domain in Silicon Valley, CA and the MEC provider domain in Dallas, TX.
The connectivity was orchestrated using Terraform component of the PCEI orchestrator. After the deployment the
MEC Federation Data Plane connection can be viewed from the Equinix Fabric portal.

 11

Virtual Network Function and Public Cloud access

We use a production Equinix Network Edge VNF service to implement the virtual router (Cisco CSR1000v) to
enable multi-cloud connectivity between the MEC server in Dallas, TX to public clouds. The VNF was orchestrated
using Terraform component of the PCEI orchestrator. After the deployment the VNF can be viewed from the
Equinix Fabric portal. Note that we have also used the Ansible part of the PCEI orchestrator to configure the VNF
with the appropriate interface, IP addressing and BGP parameters to correctly connect to the Azure Cloud with
private peering.

Below is the virtual router configuration to connect to Azure Cloud and to MEC server implemented via Ansible
orchestration:

For the public cloud access, we use Azure ExpressRoute service and create a connection using Equinix Fabric
between the virtual router and Azure. This connection was implemented using the Terraform component of the PCEI
orchestrator. After the deployment the ExpressRoute connection can be viewed from the Equinix Fabric portal.

 12

Public Cloud

Private Interconnect

We use Microsoft Azure cloud to implement IaaS and IoT SaaS infrastructure. The access to Azure Cloud from the
MEC provider is implemented using Azure ExpressRoute with Private BGP peering over Equinix Fabric. The
ExpressRoute connection and the Private BGP peering were created using Terraform driven from the orchestrator
and can be viewed in Azure portal.

IoT SaaS

For the IoT SaaS component in the Azure Cloud we used Azure IoT Hub.

 13

We also created an Azure IoT Edge device shadow within the IoT Hub.

Azure IoT Edge Gateway
For the MEC application we used Azure IoT Edge software and deployed it on the Kubernetes cluster running on the
edge cloud server in Dallas, TX in the MEC provider domain. The architecture of the cloud native Azure IoT Edge
Gateway is shown below and can be found at this link https://microsoft.github.io/iotedge-k8s-doc/architecture.html.

 14

Solution implementation

MEC Federation Orchestrator

Infrastructure orchestration

In our implementation we used the AMCOP package provided by Aarna Networks to run the PCEI orchestrator.

Get the AMCOP workflow details
amcop bpmn list | grep '^+\|key\|EQX_PROVISION_TOPOLOGY'

Review the AMCOP workflow input JSON payload template
amcop bpmn payload -k EQX_PROVISION_TOPOLOGY | tee ~/lfn-mec-topology-template.json

Take some time to review the JSON payload to understand the topology provisioning
intent

Execute the AMCOP workflow to deploy pcei-lfn-mec-topology-001
This command will output the Camunda workflow process instance ID
amcop bpmn start -k EQX_PROVISION_TOPOLOGY -j $HOME/lfn-mec-topology-template.json

We can use the above process instance to check the status
Running state = ACTIVE
amcop bpmn status -p c40dfddb-3063-11ed-873c-0242ac120002

Completion state = COMPLETED
amcop bpmn status -p c40dfddb-3063-11ed-873c-0242ac120002

 15

Services, 5G functions and IoT application orchestration

For the service, 5G functions and IoT application orchestration we used the GUI part of the orchestrator.

First, we onboarded the Kubernetes clusters for 5G Control Plane, User Plane and IoT Edge:

The we created Service and Service Instances based on the Helm Charts for the Free5GC, Location API, and IoT
Edge deployments:

5G Control Plane:

5G User Plane and Location API:

 16

The Service Instances were deployed to the respective Kubernetes clusters.

Free5GC

Control Plane cluster:

User Plane and MEC Location API cluster:

UE/gNB cluster:

Inside the UE container we can see an established 5G interface/session with the assigned IPv4:

 17

The Free5GC WebUI shows the connected UE:

 18

Verification of IP traffic between UE in Silicon Valley and MEC Server in Dallas:

Azure IoT Edge on the MEC Server

MEC Location API cloud native implementation

We have used the ETSI MEC013 Location API specification and implemented a cloud native deployment of a test
Location API server using the below method.

 19

Enabling Azure IoT Edge Custom Module
Use this link for information on developing custom software modules for Azure IoT Edge:
https://docs.microsoft.com/en-us/azure/iot-edge/tutorial-develop-for-linux?view=iotedge-2018-06#set-up-vs-code-
and-tools
The example below is optional. It shows how to build a custom module for Azure IoT Edge to read and decode Low
Power IoT messages from a simulated LPWA IoT device. Follow the above link to:

1. Install Docker.
2. Download and install Visual Studio Code (VSC).
3. Setup VSC with Azure IoT Tools.
4. Setup Azure Container Registry in Azure Cloud.
5. Create Module Project. For this step, please refer to instructions below on downloading the

LoRaEdgeSolution from PCEI repo.
6. Build and push solution to Azure Container Registry.

The steps below show how to build custom IoT module for Azure IoT Edge using "LoRaEdgeSolution" code from
PCEI repo:
Download PCEI repo to the machine that has VSC and Docker installed (per above instructions):

git clone "https://gerrit.akraino.org/r/pcei"

cd pcei
ls -l
total 0
drwxr-xr-x 8 oberzin staff 256 Dec 24 15:44 LoRaEdgeSolution
drwxr-xr-x 3 oberzin staff 96 Dec 24 15:44 iotclient
drwxr-xr-x 5 oberzin staff 160 Dec 24 15:44 locationAPI

Using VSC open the LoRaEdgeSolution folder that was downloaded from PCEI repo.

 20

Add required credentials for Azure Container Registry (ACR) using .env file.
Build and push the solution to ACR as shown below. Righ-click on "deployment.template.json":

The docker image for the custom module should now be visible in Azure Cloud ACR:

 21

End-to-end IoT application operation

We first start the IoT client from within the 5G UE container:

The image above shows the IoT client sending sensor data in low power encoding seen in the “pdu” field.

Next, we verify that the IoT Edge MEC application in Dallas is:

• receiving the messages,
• decoding the values,
• sending the location request to the 5G Location API server,
• receiving location data for the UE,
• adding location data to the IoT message,
• posting the message with sensor and location data to Azure IoT Hub in Azure cloud over the ExpressRoute

private connection

 22

Note the Latitude, Longitude, Altitude, Temperature, Humidity and Pressure values in the decoded message.

We can also see the IoT messages received by the IoT Hub service in the Azure IoT cloud from the IoT Edge
Gateway running on the MEC server in Dallas:

Below is the status of the Azure IoT Edge Gateway as seen from the Azure Cloud

The IoT message count reception is shown below

 23

 24

Implementation details

IoT Client script

'''

@author: oberzin
'''
import socket
from time import sleep
import json
import os
import random
import datetime
import struct
import subprocess

SERVER_ADDRESS = '10.121.7.149'
SERVER_PORT = 30834
BUFFER_SIZE = 500
DEVICE_EUI = '0004A30B001BAAAA'
COUNT = 0;
INTERVAL = 10
STM_PLOAD = '007327E7016700CB02683C'

def client_send(SERVER, PORT, BUFFER):
 TCP_IP = SERVER
 TCP_PORT = PORT
 BUFFER_SIZE = BUFFER # Normally 1024, but we want fast response

 cmd = 'ip a |grep uesim | grep \'10.1\' | cut -b 10-17'
 SRC_IP = str(subprocess.check_output(cmd, shell=True)).strip()
 #SRC_IP = "10.1.0.4"
 SRC_PORT = 32000

 print 'Source IP = %s' % SRC_IP

 global DEVICE_EUI
 global COUNT

#"{"Count": 53227, "Temperature": 71.6, "Device EUI": "0004A30B001B5E47"}"

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 print "Start socket bind \n"
 s.bind((SRC_IP, SRC_PORT))
 print "End socket bind \n"
 s.connect((TCP_IP, TCP_PORT))

 COUNT = COUNT + 1
 #s.connect((TCP_IP, TCP_PORT))
 now = datetime.datetime.now()
 curr_ts = now.strftime('%Y-%m-%dT%H:%M:%S') + ('-%02d' % (now.microsecond / 10000))
 print curr_ts
 tempDataDec = random.randint(21, 23) * 10
 tempDataHex = hex(tempDataDec)
 tempDataHexStr = str(bytearray([tempDataDec])).encode('hex')
 print tempDataHexStr

 humidDataDec = random.randint(49, 51) * 2
 humidDataHex = hex(humidDataDec)
 humidDataHexStr = str(bytearray([humidDataDec])).encode('hex')
 print humidDataHexStr

 pressDataDec = random.randint(30, 33)
 pressDataHex = hex(pressDataDec)
 pressDataHexStr = str(bytearray([pressDataDec])).encode('hex')
 print pressDataHexStr

 25

 raw_message = {
 "ack":"false","channel":6,"datarate":3,"devClass":"A",
 "devEui":DEVICE_EUI,"freq":903.5,"gwEui":"00250C00010003A9",
 "joinId":90,
 'pdu': "0073" + pressDataHexStr + "E7016700" + tempDataHexStr + "0268" +
humidDataHexStr,
 "port":3,"rssi":-39,"seqno":60782,"snr":10.75,
 "txtime":curr_ts
 }

 #print raw_message
 print '######## COUNT: %s' % COUNT
 #json.dumps(myDictObj, sort_keys=True, indent=3)
 ser_message = json.dumps(raw_message, sort_keys=True, indent=3)
 #print ser_message
 message = json.loads(ser_message)
 print message

 s.send(str(ser_message))
result = s.recv(BUFFER_SIZE)
 s.close()
 print ("CLOSED")
return result
 return

def main():

 #s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 #s.connect((SERVER_ADDRESS, SERVER_PORT))
 SERVER_ADDRESS = input ("ENTER SERVER IPv4: ")
 print (SERVER_ADDRESS)
 SERVER_PORT = input ("ENTER SERVER PORT: ")
 print (SERVER_PORT)
 print 'SENDING...'
 while True:
 try:
 res = client_send(SERVER_ADDRESS, SERVER_PORT, BUFFER_SIZE)
 print 'SEND RESULT: %s' % res
 #sleep(INTERVAL)
 except Exception as ex:
 print ex
 pass
 sleep(INTERVAL)
 print ("NEXT INTERVAL")

 #s.close()

if __name__ == '__main__':
 main()

IoT Edge Gateway custom module with Location API integration

from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer
import SocketServer
import json

import socket
from time import sleep

import requests

import cgi
import random
import time
import sys
import iothub_client
pylint: disable=E0611
from iothub_client import IoTHubModuleClient, IoTHubClientError, IoTHubTransportProvider
from iothub_client import IoTHubMessage, IoTHubMessageDispositionResult, IoTHubError

messageTimeout - the maximum time in milliseconds until a message times out.

 26

The timeout period starts at IoTHubModuleClient.send_event_async.
By default, messages do not expire.
MESSAGE_TIMEOUT = 10000

global counters
RECEIVE_CALLBACKS = 0
SEND_CALLBACKS = 0

Choose HTTP, AMQP or MQTT as transport protocol. Currently only MQTT is supported.
PROTOCOL = IoTHubTransportProvider.MQTT

Callback received when the message that we're forwarding is processed.
def send_confirmation_callback(message, result, user_context):
 global SEND_CALLBACKS
 print ("Confirmation[%d] received for message with result = %s" % (user_context, result))
 map_properties = message.properties()
 key_value_pair = map_properties.get_internals()
 print (" Properties: %s" % key_value_pair)
 SEND_CALLBACKS += 1
 print (" Total calls confirmed: %d" % SEND_CALLBACKS)

receive_message_callback is invoked when an incoming message arrives on the specified
input queue (in the case of this sample, "input1"). Because this is a filter module,
we will forward this message onto the "output1" queue.
def receive_message_callback(message, hubManager):
 global RECEIVE_CALLBACKS
 message_buffer = message.get_bytearray()
 size = len(message_buffer)
 print (" Data: <<<%s>>> & Size=%d" % (message_buffer[:size].decode('utf-8'), size))
 map_properties = message.properties()
 key_value_pair = map_properties.get_internals()
 print (" Properties: %s" % key_value_pair)
 RECEIVE_CALLBACKS += 1
 print (" Total calls received: %d" % RECEIVE_CALLBACKS)
 hubManager.forward_event_to_output("output1", message, 0)
 return IoTHubMessageDispositionResult.ACCEPTED

class HubManager(object):

 def __init__(
 self,
 protocol=IoTHubTransportProvider.MQTT):
 self.client_protocol = protocol
 self.client = IoTHubModuleClient()
 self.client.create_from_environment(protocol)

 # set the time until a message times out
 self.client.set_option("messageTimeout", MESSAGE_TIMEOUT)

 # sets the callback when a message arrives on "input1" queue. Messages sent to
 # other inputs or to the default will be silently discarded.
 self.client.set_message_callback("input1", receive_message_callback, self)

 # Forwards the message received onto the next stage in the process.
 def forward_event_to_output(self, outputQueueName, event, send_context):
 self.client.send_event_async(
 outputQueueName, event, send_confirmation_callback, send_context)

 27

def get_location(LOC_SRV, LOC_SRV_PORT, device_name):

 check_url = 'http://' + str(LOC_SRV) + ':' + str(LOC_SRV_PORT) +
'/exampleAPI/location/v1/users/acr%3A' + str(device_name)

 print check_url

 response = requests.get(check_url)
 # sleep(10)
 if (response.status_code == 200):
 print 'Retrieved location for %s\n' % device_name
 location = json.loads(response.text)
 # print alarms
 return location
 else:
 print '### Location Request Timeout %s\n' % device_name
 print 'Response code = %d ... Retrying ...\n' % response.status_code
 location = []

def run():

 hub_manager = HubManager()

 TCP_IP = '0.0.0.0'
 TCP_PORT = 50005
 BUFFER_SIZE = 500 # Normally 1024, but we want fast response

 LOC_SRV = "172.23.66.10"
 LOC_SRV_PORT = 30808
 device_name = "192.0.2.1"

 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 sock.bind((TCP_IP, TCP_PORT))

 #sock.listen(1)
 #conn, addr = sock.accept()

 while 1:
 sock.listen(1)
 print ("Listening")
 conn, addr = sock.accept()
 print ('Connection address:', addr)
 data = conn.recv(BUFFER_SIZE)
 # if not data: return
 print ("received data:", data)
 jData = json.loads(data)
 print (jData)
 appData=jData["pdu"]
 print (appData)
 tempData = appData[12:16]
 print (tempData)
 tempDataDec = int(tempData, 16)/10
 tempDataDecF = tempDataDec * 1.8 + 32

 humidData = appData[20:22]
 print (humidData)
 humidDataDec = int(humidData, 16)/2

 pressData = appData[4:8]
 print (pressData)
 pressDataDec = int(pressData, 16)/10
 device_eui = jData["devEui"]
 txtime = jData["txtime"]
 # print "\nAppData: %s" % appData
 # print "\nTemperature in Celsius: %s" % tempDataDec

 28

 # print "\nTemperature in Fahrenheit: %s" % tempDataDecF
 # print "\nHUMIDITY Percents: %s" % humidDataDec
 # print "\nBAROMETRIC PRESSURE in Millibars: %s" % pressDataDec
 # print "\nDevice EUI: %s" % device_eui

 # payld = json.dumps({'Device EUI': device_eui, 'Temperature': tempDataDecF, \
 # 'Humidity': humidDataDec, 'Pressure': pressDataDec, 'Count':
LORA_READ_COUNT})

 location = get_location(LOC_SRV, LOC_SRV_PORT, device_name)

 print location["userInfo"]["locationInfo"]

 lat = location["userInfo"]["locationInfo"]["latitude"]
 lon = location["userInfo"]["locationInfo"]["longitude"]
 alt = location["userInfo"]["locationInfo"]["altitude"]

 packet = json.dumps({'TIMESTAMP': txtime, 'Device EUI': device_eui, 'Temperature':
tempDataDecF, \
 'Humidity': humidDataDec, 'Pressure': pressDataDec, \
 'Latitude': lat, 'Longitude': lon, 'Altitude': alt})

 #packet = json.dumps({'TIMESTAMP': txtime, 'Device EUI': device_eui, 'Temperature':
tempDataDecF, \
 # 'Humidity': humidDataDec, 'Pressure': pressDataDec})

 print (packet)

 iot_hub_message = IoTHubMessage(packet)
 #iot_hub_message = IoTHubMessage(json.dumps(packet))
 hub_manager.forward_event_to_output("output1", iot_hub_message, 0)
 print('sent!')

 #conn.close()

if __name__ == "__main__":
 run()

Terraform, Ansible, Camunda and Helm repositories

You can find all artifacts hosted in the following public GIT repositories

• https://gitlab.com/akraino-pcei-onap-cds/equinix-pcei-poc
• https://gitlab.com/akraino-pcei-onap-cds/terraform-plans
• https://gitlab.com/akraino-pcei-onap-cds/ansible-scripts
• https://gitlab.com/akraino-pcei-onap-cds/camunda-bpmn-samples

