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Introduction 
 
In our solution we use Akraino Public Cloud Edge Interface (PCEI) blueprint to demonstrate orchestration of 
federated MEC infrastructure and services, including 5G Control and User Plane Functions, MEC and Public Cloud 
IaaS/SaaS, across two operators/providers (a 5G operator and a MEC provider), as well as deployment and operation 
of end-to-end cloud native IoT application making use of 5G access and distributed both across geographic locations 
and across hybrid MEC (edge cloud) and Public Cloud (SaaS) infrastructure. 
 
We first demonstrate a solution to critical issues of deployment and interconnection of MEC Federation, such as 
activation of physical bare metal servers, deployment of operating systems and virtualization layers (Docker/K8s) on 
the servers, interconnection of participants of MEC Federation using a production global network fabric and virtual 
networking functions as well as activation of public cloud SaaS and MEC-to-Cloud interconnection for extending 
MEC Federation to cloud resources.  
 
We then show deployment of to-be-federated (or to-be-shared) services in the respective domains of the two 
operators by deploying a cloud native implementation of ETSI MEC Location API server (MEC013) in the 5G 
operator’s domain, and a cloud native IoT Edge Gateway (based on Azure IoT Edge) in the MEC provider’s 
domain.  
 
Finally, at the IoT application layer, we provide a reference IoT client emulating several sensors and capable of 
communicating with a cloud native IoT Edge Gateway across the federated infrastructure using low power encoding 
for IoT messages (temperature, humidity, and pressure), as well as the interaction between the distributed IoT Edge 
Gateway and the Location API service to enable insertion of obtained UE location data into IoT sensor data showing 
location-aware IoT across federated MEC infrastructure. 
 
By orchestrating, bare metal servers and their software stack, 5G control plane and user plane functions, 
interconnection between the 5G provider and MEC provider, connectivity to a public cloud as well as the IoT 
application and the MEC Location API service, we show how it is possible for providers to enable sharing of their 
services in a MEC Federation environment. 

Summary of contributions and innovations 
 
In this solution we provide the following contributions and innovations: 
• A practical use case showing a realization of ETSI MEC Federation architecture 
• An introduction and a functioning demonstration of MEC Federation Data Plane 
• Implementation of the GSMA OPG Edge Node sharing scenario using MEC Federation 
• Implementation of ETSI MEC Location API Service and its integration with a MEC application  
• Implementation of a combined MEC Federation Broker and MEC Orchestrator with unique capabilities for 

infrastructure orchestration in multiple domains such as public cloud, edge/MEC cloud, network operator, 5G 
control plane and user plane cloud native function deployment as well as cloud native service and application 
deployment 

• Implementation of integrated Terraform Infrastructure-as-Code module into the orchestrator enabling DevOps 
infrastructure orchestration 

• Implementation of integrated Ansible Infrastructure Configuration and Installation module into the orchestrator 
• Cloud native 5G Control Plane and Distributed UPF deployment design and the correspondent Helm Charts 
• Use of production services (by Equinix) such as bare metal cloud, virtual network functions, public cloud access 

and a global interconnection fabric as dynamically orchestratable infrastructure components for the realization 
of the MEC Federation use case 

• Implementation of a reference IoT client 
• Implementation of a custom software module for Azure IoT Edge that enables its integration with ETSI MEC 

Location API service 
• An end-to-end demonstration of the infrastructure orchestration, 5G control plane and user plane functions 

deployment, ETSI MEC Location API service deployment and the location aware, distributed IoT application 
operation 
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Use case description 
 
Our use case involves a 5G operator offering 5G access in the Silicon Valley, CA area and a MEC operator offering 
an edge cloud service for edge applications as well as connectivity to public clouds in the Dallas, TX area.  
 
Both operators/providers use services of a MEC Federation Interconnection Provider (MFIP) to enable several 
critical functions such as interconnection between the 5G operator domain and the MEC provider domain using a 
global private interconnection fabric (also referred to as MEC Federation Data Plane), colocation services to host 
bare metal compute resources as well as private connectivity to public clouds using a virtual network function 
(VNF) service integrated with the private interconnection fabric.  
 
In our scenario, the MFIP also runs an orchestration service enabling the 5G operator and the MEC provider to 
activate their respective infrastructure and interconnection components and a subsequent deployment of functions, 
services, and applications. The scenario is shown below. 
 

  
 
Our use case then proceeds in stages as shown and described below. 
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The infrastructure and interconnection orchestration stage: 

1. The 5G operator accesses the orchestration service offered by the MFIP to deploy a 5G network slice for 
their IoT customer in the Silicon Valley, CA area (the left side of the above diagram): 

a. Deploy bare metal servers, using a bare metal cloud offered by a colocation provider (we use a 
production Equinix Metal service in our demonstration). This includes a server for 5G Control 
Plane Functions (based on Free5GC) and a server for the User Plane Function. Note that the local 
IP/Network connectivity is orchestrated as part of the bare metal orchestration service. 

b. Install Kubernetes on the bare metal servers and register their Kubernetes clusters with the MEC 
Federation orchestration service. 

2. The MEC provider accesses the orchestration service offered by the MFIP to deploy the edge cloud and the 
private connectivity to the public cloud in the Dallas, TX area (the right-hand side of the picture): 

a. Deploy bare metal servers, using a bare metal cloud offered by a colocation provider (we use a 
production Equinix Metal service in our demonstration). This includes a server for the edge 
cloud/MEC. Note that the local IP/Network connectivity is orchestrated as part of the bare metal 
orchestration service. 

b. Install Kubernetes on the bare metal server and register their Kubernetes clusters with the MEC 
Federation orchestration service. 

c. Deploy a Virtual Network Function (VNF) to enable access to multiple public clouds from the 
edge cloud/MEC server. Note that in our demonstration we use a production Network Edge 
service offered by Equinix to deploy a Cisco CSR1000v virtual router VNF) and Azure public 
cloud. Also note that we use private connectivity between the VNF and the Azure cloud using 
Azure ExpressRoute with BGP routing across Equinix Fabric. 

3. The 5G operator accesses the orchestration service offered by the MFIP to create a private MEC Federation 
Data Plane connection to the MEC provider: 

a. The connection is orchestrated using a production Equinix Fabric service between data centers in 
Silicon Valley, CA and Dallas, TX. Note that BGP routing between the 5G provider’s network 
and the MEC operator’s network is also orchestrated as part of the connection creation. 

 
The 5G network functions and MEC services/applications deployment stage: 

1. The 5G operator deploys a network slice for their IoT customer: 
a. Deploy a 5G network slice for the IoT customer by deploying cloud native 5G Control Plane and 

User Plane Functions (based on Free5GC) on respective Kubernetes clusters/servers activated in 
the Silicon Valley data center.  

b. Enable access for 5G UEs provisioned with low power IoT clients to the customer’s network slice. 
Note that in our demonstration we use a simulated gNB, a simulated UE and a simulated 5G New 
Radio network (based on Free5GC). 

2. The 5G operator deploys MEC Location API server as part of the customer’s network slice: 
a. The cloud native implementation of the MEC013 Location API server is deployed by accessing 

the MEC Federation orchestrator and placed on the same cluster/server that is hosting the 
customer’s 5G UPF. 

3. The MEC provider deploys a hybrid MEC application on the edge cloud and public cloud for the use by the 
5G operator’s IoT customer: 

a. Deploy Azure IoT Edge cloud native IoT Gateway on the edge cloud/server. 
b. Activate IaaS and IoT SaaS components in Azure Cloud: 

i. IaaS components: Azure ExpressRoute, Azure Private Peering/BGP, Azure VNET and 
VNET Gateway, a test VM. 

ii.  IoT SaaS components: Azure IoT Hub, IoT Edge with private connectivity, Private 
Endpoint for IoT Edge. 

 
The end-to-end application operation stage: 

1. The customer’s UE in the Silicon Valley, CA area, connects to the 5G network, registers with the 5G 
control plane, receives an IPv4 address and establishes a Packet Data Network (PDN) session with the 5G 
UPF. 5G UPF forwards data to the MEC Federation data plane connection towards the MEC provider’s 
edge cloud. 
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2. The customer’s IoT client running on the 5G UE collects Temperature, Humidity and Pressure 
measurements, encodes them into the low power IoT message format and sends encoded messages to the 
IoT Edge Gateway running on the MEC provider’s edge cloud in the Dallas, TX data center.  

3. The IoT Edge Gateway receives the encoded sensor data, decodes the data to convert the format from low 
power encoding to the JSON representation. 

4. The IoT Edge Gateway in Dallas, TX sends an API call to the Location API server running in the 5G 
operator data center in Dallas, TX and obtains Latitude, Longitude and Altitude location data for the UE 
from the 5G operator’s MEC Location API server. 

5. The IoT Edge Gateway adds location data to the IoT sensor data and publishes the combined message to 
the IoT Hub running in the Azure Cloud. Note that this data is forwarded from the edge cloud server in the 
Dallas, TX data center to the virtual router VNF (Cisco CSR1000v) and then routed over the private 
peering on the Azure ExpressRoute virtual circuit to the customer’s VNET and the IoT Hub SaaS. The 
combined data is stored and posted for processing/viewing.  

 
The data path and the application interactions are shown below: 
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Solution components 
 
MEC Federation Orchestrator 
 
The orchestrator is based on Akraino Public Cloud Edge Interface (PCEI) blueprint. The PCEI blueprint provides 
the multi-domain orchestrator to enable infrastructure orchestration and cloud native application deployment across 
public clouds (core and edge), edge clouds, interconnection providers and network operators. The notable 
innovations in PCEI are the integration of Terraform as a microservice to enable DevOps driven Infrastructure-as-
Code provisioning, integration of Ansible as a microservice to enable automation of configuration of infrastructure 
resources (e.g., servers) and deployment of Kubernetes and its critical components (e.g., CNIs) on the edge cloud, 
and introduction of a workflow engine to manage the stages and parameter exchange for infrastructure orchestration 
and application deployment as part of a composable workflow. PCEI R6 can help simplify the process of multi-
domain orchestration by enabling uniform representation of diverse services, features, attributes, and APIs used in 
individual domains as resources and data in the code that can be written by developers and executed by the 
orchestrator, effectively making the infrastructure orchestration across multiple domains DevOps-driven.  
 
The structure of the orchestrator is shown below (in orange): 
 

 
 
The orchestrator consists of three major parts: 

• The infrastructure deployment part. It is based on the Controller Design Studio (CDS) open source 
software and enables the orchestrator to use Infrastructure-as-Code (Terraform) for orchestrating cloud 
IaaS/SaaS, bare metal, and interconnection/networking, as well as Ansible for installing Kubernetes and 
configuring network functions. 

• The application deployment part. It is based on the Edge Multi-Cluster Orchestrator (EMCO) open-
source LFN project and enables to deploy distributed cloud native applications and functions on 
Kubernetes clusters. 

• The workflow engine part. It is based on the Camunda open-source BPMN project and allows to create 
sequences of workflows that in turn use the infrastructure and application deployment parts to implement 
desired deployments. 

 
The orchestration workflow and action sequencing used in our implementation is shown below. 
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The end to end infra orchestration Camunda workflow steps to demonstrate Public Cloud Azure, Equinix 
Network Edge and Metal IoT k8s cluster Infrastructure orchestration: 
 
• DEPLOY NE VNF 

o Deploys NE Cisco CSR 1000v VNF (We will reuse pre-deployed VNF as it takes more time to 
come up) 

• DEPLOY AZURE EXP ROUTE 
o Deploys Azure Express Route Circuit 

• CONNECT NE VNF INTERFACE TO EXP ROUTE 
o Connect Network Edge Cisco CSR Interface 5 connection with the Azure Express Route Circuit 

• CONFIG NE VNF INTERFACE & BGP 
o Configure Cisco CSR 1000v interfaces and BGP configurations 

• DEPLOY METAL & K8S 
o Deploys Equinix Metal for the IoT Edge application deployment 

• CONNECT NE VNF TO METAL PORT 
o Creates a connection between Equinix Metal and to Cisco CSR Interface 7 connection 

• CONNECT METRO 2 METRO PORTS 
o Connects Equinix metro location ports 

• ONBOARD K8S CLUSTERS 
o Onboard k8s clusters across multiple edge locations 
o Create the below service models from the Helm3 charts  

§ PCEI-MEC-5G-CORE-CP-SVC 
§ PCEI-MEC-UPF-LOCAPI-SVC 
§ PCEI-MEC-UE-RAN-SIM-SVC 
§ PCEI-MEC-METAL-IOT-EDGE-SVC 
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5G Control Plane, User Plane and UE/gNB 
 
We used Free5GC to implement and deploy a network slice that consists of the Control Plane Functions and a 
distributed User Plane Function. Note that we used a simulated UE/gNB package from Free5GC to run UE and the 
IoT client within the UE container. The following diagram shows details of our 5G deployment and configuration. 
Note that all 5G functions were deployed using the orchestrator. 
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Bare Metal Cloud 
 
We used Equinix Metal production bare metal orchestration platform to activate bare metal servers in Silicon 
Valley, CA and Dallas, TX. The servers were orchestrated using workflow driven Terraform component of the PCEI 
orchestrator. After the deployment the bare metal server with the installed Ubuntu OS can be viewed from the 
Equinix Metal portal and connected to via SSH. 
 

 
 
MEC Federation Data Plane 
 
We use a production Equinix Fabric private interconnection service to implement the MEC Federation Data Plane 
connectivity between the 5G operator domain in Silicon Valley, CA and the MEC provider domain in Dallas, TX. 
The connectivity was orchestrated using Terraform component of the PCEI orchestrator. After the deployment the 
MEC Federation Data Plane connection can be viewed from the Equinix Fabric portal. 
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Virtual Network Function and Public Cloud access 
 
We use a production Equinix Network Edge VNF service to implement the virtual router (Cisco CSR1000v) to 
enable multi-cloud connectivity between the MEC server in Dallas, TX to public clouds. The VNF was orchestrated 
using Terraform component of the PCEI orchestrator. After the deployment the VNF can be viewed from the 
Equinix Fabric portal. Note that we have also used the Ansible part of the PCEI orchestrator to configure the VNF 
with the appropriate interface, IP addressing and BGP parameters to correctly connect to the Azure Cloud with 
private peering. 
 
 

 
 
Below is the virtual router configuration to connect to Azure Cloud and to MEC server implemented via Ansible 
orchestration: 

 
 

For the public cloud access, we use Azure ExpressRoute service and create a connection using Equinix Fabric 
between the virtual router and Azure. This connection was implemented using the Terraform component of the PCEI 
orchestrator. After the deployment the ExpressRoute connection can be viewed from the Equinix Fabric portal. 
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Public Cloud 
 
Private Interconnect 
 
We use Microsoft Azure cloud to implement IaaS and IoT SaaS infrastructure. The access to Azure Cloud from the 
MEC provider is implemented using Azure ExpressRoute with Private BGP peering over Equinix Fabric. The 
ExpressRoute connection and the Private BGP peering were created using Terraform driven from the orchestrator 
and can be viewed in Azure portal. 
 

 
 
IoT SaaS 
 
For the IoT SaaS component in the Azure Cloud we used Azure IoT Hub. 
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We also created an Azure IoT Edge device shadow within the IoT Hub. 

 
 
Azure IoT Edge Gateway 
For the MEC application we used Azure IoT Edge software and deployed it on the Kubernetes cluster running on the 
edge cloud server in Dallas, TX in the MEC provider domain. The architecture of the cloud native Azure IoT Edge 
Gateway is shown below and can be found at this link https://microsoft.github.io/iotedge-k8s-doc/architecture.html. 
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Solution implementation 
 
MEC Federation Orchestrator 
 
Infrastructure orchestration 
 
In our implementation we used the AMCOP package provided by Aarna Networks to run the PCEI orchestrator. 
 

# Get the AMCOP workflow details 
amcop bpmn list | grep '^+\|key\|EQX_PROVISION_TOPOLOGY' 

 

 
 

# Review the AMCOP workflow input JSON payload template 
amcop bpmn payload -k EQX_PROVISION_TOPOLOGY | tee ~/lfn-mec-topology-template.json 

 
# Take some time to review the JSON payload to understand the topology provisioning 
# intent 

 
 

# Execute the AMCOP workflow to deploy pcei-lfn-mec-topology-001 
# This command will output the Camunda workflow process instance ID 
amcop bpmn start -k EQX_PROVISION_TOPOLOGY -j $HOME/lfn-mec-topology-template.json 

 

 
 

# We can use the above process instance to check the status 
# Running state = ACTIVE 
amcop bpmn status -p c40dfddb-3063-11ed-873c-0242ac120002 

 
 

# Completion state = COMPLETED 
amcop bpmn status -p c40dfddb-3063-11ed-873c-0242ac120002 
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Services, 5G functions and IoT application orchestration 
 
For the service, 5G functions and IoT application orchestration we used the GUI part of the orchestrator. 
 
First, we onboarded the Kubernetes clusters for 5G Control Plane, User Plane and IoT Edge: 
 

 
 
The we created Service and Service Instances based on the Helm Charts for the Free5GC, Location API, and IoT 
Edge deployments: 
 
5G Control Plane: 

 
 
5G User Plane and Location API: 
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The Service Instances were deployed to the respective Kubernetes clusters. 
 
Free5GC 
 
Control Plane cluster: 
 

 
 
User Plane and MEC Location API cluster: 
 

 
 
UE/gNB cluster: 
 

 
 
Inside the UE container we can see an established 5G interface/session with the assigned IPv4: 
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The Free5GC WebUI shows the connected UE: 
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Verification of IP traffic between UE in Silicon Valley and MEC Server in Dallas: 
 

 
 
Azure IoT Edge on the MEC Server 
 

 
 
MEC Location API cloud native implementation 
 
We have used the ETSI MEC013 Location API specification and implemented a cloud native deployment of a test 
Location API server using the below method. 
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Enabling Azure IoT Edge Custom Module 
Use this link for information on developing custom software modules for Azure IoT Edge: 
https://docs.microsoft.com/en-us/azure/iot-edge/tutorial-develop-for-linux?view=iotedge-2018-06#set-up-vs-code-
and-tools 
The example below is optional. It shows how to build a custom module for Azure IoT Edge to read and decode Low 
Power IoT messages from a simulated LPWA IoT device. Follow the above link to: 

1. Install Docker. 
2. Download and install Visual Studio Code (VSC). 
3. Setup VSC with Azure IoT Tools. 
4. Setup Azure Container Registry in Azure Cloud. 
5. Create Module Project. For this step, please refer to instructions below on downloading the 

LoRaEdgeSolution from PCEI repo. 
6. Build and push solution to Azure Container Registry. 

The steps below show how to build custom IoT module for Azure IoT Edge using "LoRaEdgeSolution" code from 
PCEI repo: 
Download PCEI repo to the machine that has VSC and Docker installed (per above instructions): 
 
git clone "https://gerrit.akraino.org/r/pcei" 
 
cd pcei 
ls -l 
total 0 
drwxr-xr-x  8 oberzin  staff  256 Dec 24 15:44 LoRaEdgeSolution 
drwxr-xr-x  3 oberzin  staff   96 Dec 24 15:44 iotclient 
drwxr-xr-x  5 oberzin  staff  160 Dec 24 15:44 locationAPI 

 
Using VSC open the LoRaEdgeSolution folder that was downloaded from PCEI repo. 

 
 



 20 

Add required credentials for Azure Container Registry (ACR) using .env file. 
Build and push the solution to ACR as shown below. Righ-click on "deployment.template.json": 

 
The docker image for the custom module should now be visible in Azure Cloud ACR: 
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End-to-end IoT application operation  
 
We first start the IoT client from within the 5G UE container: 
 

 
 
The image above shows the IoT client sending sensor data in low power encoding seen in the “pdu” field. 
 
Next, we verify that the IoT Edge MEC application in Dallas is: 

• receiving the messages,  
• decoding the values,  
• sending the location request to the 5G Location API server,  
• receiving location data for the UE, 
• adding location data to the IoT message, 
• posting the message with sensor and location data to Azure IoT Hub in Azure cloud over the ExpressRoute 

private connection 
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Note the Latitude, Longitude, Altitude, Temperature, Humidity and Pressure values in the decoded message. 
 
We can also see the IoT messages received by the IoT Hub service in the Azure IoT cloud from the IoT Edge 
Gateway running on the MEC server in Dallas: 
 
Below is the status of the Azure IoT Edge Gateway as seen from the Azure Cloud 

 
 
The IoT message count reception is shown below 
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Implementation details 
 

IoT Client script 
 
''' 
 
@author: oberzin 
''' 
import socket 
from time import sleep 
import json 
import os 
import random 
import datetime 
import struct 
import subprocess 
 
SERVER_ADDRESS = '10.121.7.149' 
SERVER_PORT = 30834 
BUFFER_SIZE = 500 
DEVICE_EUI = '0004A30B001BAAAA' 
COUNT = 0; 
INTERVAL = 10 
STM_PLOAD = '007327E7016700CB02683C' 
 
def client_send(SERVER, PORT, BUFFER): 
    TCP_IP = SERVER 
    TCP_PORT = PORT 
    BUFFER_SIZE = BUFFER  # Normally 1024, but we want fast response 
 
    cmd = 'ip a |grep uesim | grep \'10.1\' | cut -b 10-17' 
    SRC_IP = str(subprocess.check_output(cmd, shell=True)).strip() 
    #SRC_IP = "10.1.0.4" 
    SRC_PORT = 32000 
 
    print 'Source IP = %s' % SRC_IP 
 
    global DEVICE_EUI 
    global COUNT 
 
#"{"Count": 53227, "Temperature": 71.6, "Device EUI": "0004A30B001B5E47"}" 
 
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
    s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) 
    print "Start socket bind \n" 
    s.bind((SRC_IP, SRC_PORT)) 
    print "End socket bind \n" 
    s.connect((TCP_IP, TCP_PORT)) 
 
    COUNT = COUNT + 1 
    #s.connect((TCP_IP, TCP_PORT)) 
    now = datetime.datetime.now() 
    curr_ts = now.strftime('%Y-%m-%dT%H:%M:%S') + ('-%02d' % (now.microsecond / 10000)) 
    print curr_ts 
    tempDataDec = random.randint(21, 23) * 10 
    tempDataHex = hex(tempDataDec) 
    tempDataHexStr = str(bytearray([tempDataDec])).encode('hex') 
    print tempDataHexStr 
     
    humidDataDec = random.randint(49, 51) * 2 
    humidDataHex = hex(humidDataDec) 
    humidDataHexStr = str(bytearray([humidDataDec])).encode('hex') 
    print humidDataHexStr 
     
    pressDataDec = random.randint(30, 33) 
    pressDataHex = hex(pressDataDec) 
    pressDataHexStr = str(bytearray([pressDataDec])).encode('hex') 
    print pressDataHexStr 
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    raw_message = { 
                    "ack":"false","channel":6,"datarate":3,"devClass":"A", 
                    "devEui":DEVICE_EUI,"freq":903.5,"gwEui":"00250C00010003A9", 
                    "joinId":90, 
                    'pdu': "0073" + pressDataHexStr + "E7016700" + tempDataHexStr + "0268" + 
humidDataHexStr, 
                    "port":3,"rssi":-39,"seqno":60782,"snr":10.75, 
                    "txtime":curr_ts 
                    } 
         
    #print raw_message 
    print '######## COUNT: %s' % COUNT 
        #json.dumps(myDictObj, sort_keys=True, indent=3) 
    ser_message = json.dumps(raw_message, sort_keys=True, indent=3) 
    #print ser_message 
    message = json.loads(ser_message) 
    print message 
         
    s.send(str(ser_message)) 
#    result = s.recv(BUFFER_SIZE)     
    s.close() 
    print ("CLOSED")     
#    return result 
    return 
  
def main(): 
     
    #s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
    #s.connect((SERVER_ADDRESS, SERVER_PORT)) 
    SERVER_ADDRESS = input ("ENTER SERVER IPv4: ") 
    print (SERVER_ADDRESS) 
    SERVER_PORT = input ("ENTER SERVER PORT: ") 
    print (SERVER_PORT) 
    print 'SENDING...'  
    while True: 
        try: 
            res = client_send(SERVER_ADDRESS, SERVER_PORT, BUFFER_SIZE) 
            print 'SEND RESULT: %s' % res 
            #sleep(INTERVAL) 
        except Exception as ex: 
            print ex 
            pass 
        sleep(INTERVAL) 
        print ("NEXT INTERVAL") 
           
    #s.close()                           
                                    
if __name__ == '__main__': 
        main() 

IoT Edge Gateway custom module with Location API integration 
 
from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer 
import SocketServer 
import json 
 
import socket 
from time import sleep 
 
import requests 
 
import cgi 
import random 
import time 
import sys 
import iothub_client 
# pylint: disable=E0611 
from iothub_client import IoTHubModuleClient, IoTHubClientError, IoTHubTransportProvider 
from iothub_client import IoTHubMessage, IoTHubMessageDispositionResult, IoTHubError 
 
# messageTimeout - the maximum time in milliseconds until a message times out. 
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# The timeout period starts at IoTHubModuleClient.send_event_async. 
# By default, messages do not expire. 
MESSAGE_TIMEOUT = 10000 
 
# global counters 
RECEIVE_CALLBACKS = 0 
SEND_CALLBACKS = 0 
 
# Choose HTTP, AMQP or MQTT as transport protocol.  Currently only MQTT is supported. 
PROTOCOL = IoTHubTransportProvider.MQTT 
 
# Callback received when the message that we're forwarding is processed. 
def send_confirmation_callback(message, result, user_context): 
    global SEND_CALLBACKS 
    print ( "Confirmation[%d] received for message with result = %s" % (user_context, result) ) 
    map_properties = message.properties() 
    key_value_pair = map_properties.get_internals() 
    print ( "    Properties: %s" % key_value_pair ) 
    SEND_CALLBACKS += 1 
    print ( "    Total calls confirmed: %d" % SEND_CALLBACKS ) 
 
 
# receive_message_callback is invoked when an incoming message arrives on the specified  
# input queue (in the case of this sample, "input1").  Because this is a filter module,  
# we will forward this message onto the "output1" queue. 
def receive_message_callback(message, hubManager): 
    global RECEIVE_CALLBACKS 
    message_buffer = message.get_bytearray() 
    size = len(message_buffer) 
    print ( "    Data: <<<%s>>> & Size=%d" % (message_buffer[:size].decode('utf-8'), size) ) 
    map_properties = message.properties() 
    key_value_pair = map_properties.get_internals() 
    print ( "    Properties: %s" % key_value_pair ) 
    RECEIVE_CALLBACKS += 1 
    print ( "    Total calls received: %d" % RECEIVE_CALLBACKS ) 
    hubManager.forward_event_to_output("output1", message, 0) 
    return IoTHubMessageDispositionResult.ACCEPTED 
 
 
class HubManager(object): 
 
    def __init__( 
            self, 
            protocol=IoTHubTransportProvider.MQTT): 
        self.client_protocol = protocol 
        self.client = IoTHubModuleClient() 
        self.client.create_from_environment(protocol) 
 
        # set the time until a message times out 
        self.client.set_option("messageTimeout", MESSAGE_TIMEOUT) 
         
        # sets the callback when a message arrives on "input1" queue.  Messages sent to  
        # other inputs or to the default will be silently discarded. 
        self.client.set_message_callback("input1", receive_message_callback, self) 
 
    # Forwards the message received onto the next stage in the process. 
    def forward_event_to_output(self, outputQueueName, event, send_context): 
        self.client.send_event_async( 
            outputQueueName, event, send_confirmation_callback, send_context) 
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def get_location(LOC_SRV, LOC_SRV_PORT, device_name): 
 
    check_url = 'http://' + str(LOC_SRV) + ':' + str(LOC_SRV_PORT) + 
'/exampleAPI/location/v1/users/acr%3A' + str(device_name) 
 
    print check_url 
 
    response = requests.get(check_url) 
    # sleep(10) 
    if (response.status_code == 200): 
        print 'Retrieved location for %s\n' % device_name 
        location = json.loads(response.text) 
        # print alarms 
        return location 
    else: 
        print '### Location Request Timeout %s\n' % device_name 
        print 'Response code = %d ... Retrying ...\n' % response.status_code 
        location = [] 
 
 
 
# 
*************************************************************************************************
****** 
def run(): 
 
    hub_manager = HubManager() 
 
    TCP_IP = '0.0.0.0' 
    TCP_PORT = 50005 
    BUFFER_SIZE = 500  # Normally 1024, but we want fast response 
 
    LOC_SRV = "172.23.66.10" 
    LOC_SRV_PORT = 30808 
    device_name = "192.0.2.1" 
 
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
    sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) 
    sock.bind((TCP_IP, TCP_PORT)) 
 
    #sock.listen(1) 
    #conn, addr = sock.accept() 
 
    while 1: 
        sock.listen(1) 
        print ( "Listening" ) 
        conn, addr = sock.accept() 
        print ( 'Connection address:', addr ) 
        data = conn.recv(BUFFER_SIZE) 
        # if not data: return  
        print ( "received data:", data ) 
        jData = json.loads(data) 
        print ( jData ) 
        appData=jData["pdu"] 
        print ( appData ) 
        tempData = appData[12:16] 
        print ( tempData ) 
        tempDataDec = int(tempData, 16)/10 
        tempDataDecF = tempDataDec * 1.8 + 32 
     
        humidData = appData[20:22] 
        print ( humidData ) 
        humidDataDec = int(humidData, 16)/2 
     
        pressData = appData[4:8] 
        print ( pressData ) 
        pressDataDec = int(pressData, 16)/10 
        device_eui = jData["devEui"] 
        txtime = jData["txtime"] 
    # print "\nAppData: %s" % appData 
    # print "\nTemperature in Celsius: %s" % tempDataDec 
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    # print "\nTemperature in Fahrenheit: %s" % tempDataDecF 
    # print "\nHUMIDITY Percents: %s" % humidDataDec 
    # print "\nBAROMETRIC PRESSURE in Millibars: %s" % pressDataDec 
    # print "\nDevice EUI: %s" % device_eui 
        
    # payld = json.dumps({'Device EUI': device_eui, 'Temperature': tempDataDecF, \ 
    #                     'Humidity': humidDataDec, 'Pressure': pressDataDec, 'Count': 
LORA_READ_COUNT}) 
  
  
     location = get_location(LOC_SRV, LOC_SRV_PORT, device_name) 
 
     print location["userInfo"]["locationInfo"] 
 
        lat = location["userInfo"]["locationInfo"]["latitude"] 
        lon = location["userInfo"]["locationInfo"]["longitude"] 
        alt = location["userInfo"]["locationInfo"]["altitude"] 
 
        packet = json.dumps({'TIMESTAMP': txtime, 'Device EUI': device_eui, 'Temperature': 
tempDataDecF, \ 
                             'Humidity': humidDataDec, 'Pressure': pressDataDec, \ 
                             'Latitude': lat, 'Longitude': lon, 'Altitude': alt}) 
 
        #packet = json.dumps({'TIMESTAMP': txtime, 'Device EUI': device_eui, 'Temperature': 
tempDataDecF, \ 
        #               'Humidity': humidDataDec, 'Pressure': pressDataDec}) 
         
     print ( packet ) 
 
        iot_hub_message = IoTHubMessage(packet) 
        #iot_hub_message = IoTHubMessage(json.dumps(packet)) 
        hub_manager.forward_event_to_output("output1", iot_hub_message, 0) 
        print('sent!') 
 
        #conn.close() 
 
if __name__ == "__main__": 
    run() 
 

Terraform, Ansible, Camunda and Helm repositories 
 
You can find all artifacts hosted in the following public GIT repositories 
 
 

• https://gitlab.com/akraino-pcei-onap-cds/equinix-pcei-poc 
• https://gitlab.com/akraino-pcei-onap-cds/terraform-plans 
• https://gitlab.com/akraino-pcei-onap-cds/ansible-scripts 
• https://gitlab.com/akraino-pcei-onap-cds/camunda-bpmn-samples 

 
 


