
Aarna Networks, Inc. Confidential

Aarna Networks
Multi-Cluster Orchestration

Platform
(AMCOP)

Quick Start Guide

Product Version: 3.1.09232022

Copyright © Aarna Networks, Inc. 2022

1

Aarna Networks, Inc. Confidential

TABLE OF CONTENTS

INTRODUCTION 3

Server requirements 5
Prepare Deployment host 6
Package installation 7
Network Configuration 9

Installation of AMCOP 9
Ansible-based Installation 9
Operator based installation 13
Installation on RH Openshift Cluster 15

Installation on CRC (Cloud-ready Cluster) 15
Install Openshift CRC 15
Ansible based installation 17

Installation on OpenShift production cluster 18
Installing Monitoring Agent 18

Configure Backup and Restore of Cluster 20

AMCOP Deployment for PNF Management (Optional) 21

Verify AMCOP Deployment 23

AMCOP Deployment On High Availability (HA) Cluster 26
Creating a HA Kubernetes Cluster 26
Testing HA Functionality 29
Cleanup the setup 30
Troubleshooting 30

Production-grade deployment of AMCOP 31

Configuring Desktop/Laptop to access AMCOP portal 33

AMCOP Lifecycle functions 34
Upgrade/Downgrade 34
Cleanup 34

2

Aarna Networks, Inc. Confidential

INTRODUCTION

This document explains Aarna Networks’ Multi Cluster Orchestration Platform (AMCOP)
quick-start installation and administration operations. It does not cover operational aspects
of AMCOP, such as design and run-time CNF deployment, which are documented in the
AMCOP User Guide.

AMCOP deployment can be done on a single server (all in one), a single VM, on a cloud
(GKE, AKS etc.) or on multiple servers/VMs. This quick start guide covers installation on a
single server or multiple servers. See the AMCOP Cloud Quickstart Guide to install it in cloud
environments.

The installation can be done by either creating other KVM instances inside these servers
(using Ansible scripts) or on existing Kubernetes clusters (using AMCOP Operator). In the
case of using a single server/VM for installation, these servers/VMs need to support Nested
Virtualization, since the installation creates additional VMs inside the host. It is possible to
run these deployments without nested virtualization, but that requires customization of the
installation/deployment procedure.

AMCOP uses the Kubernetes Operator (with Aarna’s Ansible wrapper) for deployment,
using Ubuntu cloud images for creating the Kubernetes cluster. It also supports Operator,
which can be used to install AMCOP on any existing Kubernetes cluster.

3

Aarna Networks, Inc. Confidential

The configuration in case of a single server (all-in-one) installation looks as follows:

Figure 1: Single Server (or VM) deployment with KuD cluster

The amcop-vm-01 shown above is used to run AMCOP. The edge-k8s-vm is a VM that runs a
separate K8s cluster (“target cluster”) that can be used to instantiate various CNFs and
CNAs. The edge-k8s-vm K8s cluster uses a KuD installer from the Akraino ICN project. The
target cluster can be any other Kubernetes cluster (open source or commercial
distribution), such as RedHat Openshift.

This document uses the following color coding for the commands to be executed by the
user.

Install Jump host refers to the server from where the installation of an AMCOP cluster is
done.
The VM amcop-vm-XX is the virtual machine where AMCOP is deployed.

4

Aarna Networks, Inc. Confidential

Commands in blue font are for AMCOP Deployment server where installation is done, or
Install Jump host from where installation is initiated. .
Commands in green courier font are for any AMCOP VMs (amcop-vm-XX).

Server requirements
The server(s) where AMCOP is going to be deployed will need the following requirements.

● CentOS 7.x or Ubuntu 18.04/Ubuntu 20.04 on the server
● Install Virtualization packages (KVM/QEMU)
● Login account with sudo permissions
● Optionally if AMCOP is to be deployed as a nested VM, the platform needs to

support nested virtualization
○ This is the mode where AMCOP deployment scripts create a VM on the

deployment host (and deploy AMCOP inside the VM), so if the deployment
host itself is a VM, this will require nested virtualization.

○ Nested VM deployment is not recommended for production deployments.
You have to take care of the networking from the nested VM (where AMCOP
is deployed) to communicate to the external servers/VMs.

● Note: It is recommended to deploy AMCOP behind NAT for improved security.

Hardware requirements of the server:

Non-HA version:
● 16 vCPUs (logical cores)
● 32 GB RAM
● 150 GB Storage (preferably SSD)

HA version:
● 32 vCPU (logical cores)
● 64 GB RAM
● 500 GB Storage (preferably SSD)

Supported configurations

AMCOP installation is tested on the following configurations.

● Kubernetes version:
○ <= 1.21.0

● Kubernetes distributions:

5

Aarna Networks, Inc. Confidential

○ Kubeadm
○ Kubespray
○ KuD
○ Openshift 4.6.9

● Cloud distributions (described in a separate guide - Cloud Quick start guide):
○ GKE
○ AKS
○ EKS

● Helm:
○ Helm2 and Helm3 (for CNF orchestration)

Note:

Ubuntu version 18.04 and 20.04 are supported and CentOS 7 is supported.. The
Ubuntu/CentOS server should not have any pre-installed tools/software/packages.

Prepare Deployment host
Before starting deployment, one of the servers should be designated as the deployment
host. In the case of a single server deployment, the same server can act as the deployment
host.

The following steps need to be performed on the Deployment host.

● Install git tools

For Centos:
sudo yum install -y git deltarpm

For Ubuntu:
sudo apt-get install -y git

● Create a directory for downloading Aarna’s deployment package:

mkdir -p ~/amcop_deploy
cd ~/amcop_deploy

● Download the install package using the following link:
amcop_install_v3.1.zip

6

https://drive.google.com/file/d/1A4cyzILXESOAkke5VZ8TGHhlDAUbRN4q/view?usp=sharing

Aarna Networks, Inc. Confidential

● Extract the .zip package.

unzip amcop_install_v3.1.zip

Package installation

Note:

This is optional and you can skip this if you have already installed virtualization tools and
have nested VM capabilities enabled on all your target servers.

Note:

Nested Virtualization is not needed if AMCOP is directly deployed on a bare metal server
or a VM, by setting up a k8s cluster.

The following steps on the AMCOP deployment server will install all the required packages
for subsequent installation of AMCOP.

In case of multi-server deployment, below steps need to be performed on all the servers
that will be part of AMCOP deployment.

Note:

Please do not use root user for AMCOP deployment. Instead, create a user with sudo
privileges.

● [Optional] You need to enable nested KVM capabilities.

You should have the nested KVM capabilities enabled
cat /sys/module/kvm_intel/parameters/nested

Y

7

Aarna Networks, Inc. Confidential

● Note: You need to make sure there is no ansible pre-installed on the deployment
host before executing the next steps.

● Run the master install script as a normal user (to install all the required packages)
on CentOS.

cd ~/amcop_deploy/aarna-stream/util-scripts

nohup ./prep_baremetal_centos.sh &

Note:

You can monitor the file nohup.out to check if the required package installation is
complete. If the script fails to install the ansible tool with the error: “UnicodeEncodeError:
'ascii' codec can't encode character '\xe9' in position 112: ordinal not in range(128)”,

Ubuntu:
Please check the value of parameter “LC_CTYPE” using command “locale”.

If it is not set to value “en_US.UTF-8”, please set it accordingly using the command:
“export LC_CTYPE="en_US.UTF-8"” and rerun the script.

CentOS:
Please set the locale if it is not set

export LANG=en_US.UTF-8
export LANGUAGE=en_US.UTF-8
export LC_COLLATE=C
export LC_CTYPE=en_US.UTF-8
source /etc/bashrc

● Run the master install script as a normal user (to install all the required packages)
on Ubuntu.

nohup ./prep_baremetal_ubuntu.sh &

Monitor the file nohup.out to check if the required package installation is complete

8

Aarna Networks, Inc. Confidential

Network Configuration
Following are the network configuration requirements for the AMCOP installation:

● Make sure to update your firewall settings to allow internet traffic from the allocated
AMCOP VM IPs.

Installation of AMCOP
AMCOP supports the following options for installation:

1. Ansible-based installation: This deployment option can be used to install AMCOP on
a bare metal server or a Cloud VM, which does not have Kubernetes installed.

2. AMCOP Kubernetes Operator: This deployment option can be used to install AMCOP
on an existing Kubernetes deployment, and also for the life-cycle management of
AMCOP (eg., upgrades etc.).

Ansible-based Installation
AMCOP supports the Ansible-based installer which allows you to deploy using a single
command.

This command can be run either directly on any of the AMCOP servers (where it is to be
deployed), or via Install Jump host (eg., Linux laptop or desktop), where the servers are
accessible directly or through VPN connection. This single Ansible command performs all
the tasks mentioned below using Ansible playbooks.

Note:

You can start Ansible from one of the servers where AMCOP is going to be deployed,
instead of a separate Install Jump host. This is referred to as a Deployment Server.

● Download cloud images
● Set up the images to run as VM cluster
● Set up Kubernetes cluster on the node
● Deploy AMCOP

9

Aarna Networks, Inc. Confidential

The installer deploys AMCOP as a VM cluster on Deployment servers. This takes around
15-30 minutes to complete, depending on the bandwidth of the internet connection.

Figure 2: AMCOP Deployment configuration

Following are the steps to start the installation and deployment process. This will install
AMCOP on the server.

Note:

In case we use a separate install jump host (different from the deployment server), these
commands need to be run on the Install Jump host.

● Make sure you have public and private keys created and available under ~/.ssh/
folder. If not, create them using the command ssh-keygen program.

ssh-keygen

● Increase the SSH server timeout value to 120 seconds

echo "# Increase the server timeout value" >> ~/.ssh/config
echo "ServerAliveInterval 120" >> ~/.ssh/config
chmod 700 ~/.ssh/config

● Make sure you can ssh into AMCOP deployment host locally (without supplying
password). This requires that $HOME/.ssh should contain ssh credentials (id_rsa and

10

Aarna Networks, Inc. Confidential

id_rsa.pub), and the public key content (id_rsa.pub) is copied in the target server
($HOME/.ssh/authorized_keys).

ssh <user_name>@localhost

This should log you into the local server without a password prompt!
exit from ssh session
exit

● Verify if you can SSH into other physical servers from AMCOP deployment host

ssh <user_name>@<target_host_ip>
exit

● Run the ansible script that installs AMCOP. For non-HA deployment, it creates 1 VM
(amcop-vm-01), with the following resources:

a. vCPUs = 16
b. Memory = 32 GB
c. Disk = 80GB

cd ~/amcop_deploy/aarna-stream/amcop_deploy/ansible/deployment

Update inventory.ini with deployment host ip and user name
vi inventory.ini

[deployment_host]
10.11.16.11 ansible_user=aarna

● For default configuration, run the following command. This will create a VM with the
name amcop-vm-01 (with user name “ubuntu”), and deploy AMCOP on it.

Note: If you are running the ansible command on the deployment host directly, the
jump_host_user parameter is the same as ansible_user from the previous step.

Run the Ansible command to start deployment
nohup ansible-playbook -v ./main.yml -i inventory.ini -e deployment_env=on-prem -e
jump_host_user=<user_name_on_jump_host> &

● [Optional] For non-default configuration, you can pass the different environment
variables to Ansible, as shown in below examples.

Default config with different server (VM) name parameter

11

Aarna Networks, Inc. Confidential

ansible-playbook -v ./main.yml -i inventory.ini -e deployment_env=on-prem -e
jump_host_user=<user_name_of_deployment_host> -e server_name=<vm-name>

Default config with a different user name parameter
This will create a new user.

ansible-playbook -v ./main.yml -i inventory.ini -e deployment_env=on-prem -e
jump_host_user=<user_name_of_deployment_host> -e vm_user=<vm-user-name>

Default config with a different server (VM) name and user name

ansible-playbook -v ./main.yml -i inventory.ini -e deployment_env=on-prem -e
jump_host_user=<user_name_of_deployment_host> -e server_name=<vm-name> -e
vm_user=<vm-user-name>

● [Optional] For non-default configuration, you can also skip some of the playbooks of
Ansible. For example, if you want to deploy on an existing VM (running Ubuntu
18.04), you can skip the creation of VMs. When an existing VM is used, the VM name
should be passed as an argument to the playbook. If the VM IP cannot be obtained
through the virsh command, the IP should be updated in the configuration file. The
configuration file is placed in
<dir>/aarna-stream/amcop_deploy/ansible/deployment/config/deployment.json
“Ip-address” should be updated to reflect the IP of the VM.

Command to skip VM creation during AMCOP deployment:

ansible-playbook -v ./main.yml -i inventory.ini -e deployment_env=on-prem -e
jump_host_user=<user_name_of_deployment_host> -e server_name=<server_name> -e
vm_user=<vm-user-name> --skip-tags vm

● On success you should get the below success message from the ansible log file

tail -f nohup.out

PLAY RECAP

192.168.102.85 : ok=28 changed=8 unreachable=0 failed=0 skipped=9
rescued=0 ignored=0

● Execute the below commands on the AMCOP master node to verify if ONAP k8s
services are fully functional.

You can find out the IP address of the VM where AMCOP is setup
as follows, if the nested deployment ansible command is executed:

12

Aarna Networks, Inc. Confidential

sudo virsh list --all

Id Name State
--
7 amcop-vm-01 running

sudo virsh domifaddr <vm-name>

For example:
sudo virsh domifaddr amcop-vm-01

Name MAC address Protocol Address

vnet0 52:54:00:95:7e:54 ipv4 192.168.100.48/24

ssh ubuntu@<amcop-VM-ip>

kubectl get nodes

NAME STATUS ROLES AGE VERSION
node1 Ready control plane,master 7h38m v1.21.0

Operator based installation
AMCOP can also be installed using a Kubernetes Operator, instead of the above Ansible
approach, if you already have an existing Kubernetes cluster deployed on a server (with
required configuration), or for future upgrades of an existing AMCOP deployment.

Pre-requisites:
A Kubernetes cluster, which will host AMCOP deployment is a requirement. AMCOP is
validated to work with a minimum single node all-in-one cluster with the following
hardware configuration:

● 16 vCPUs, 32 GB RAM and 80 GB SSD

Deployment steps:

● AMCOP requires the usage of persistent volumes to manage stateful information.
These persistent volumes are required to be provided by a default storage class

13

Aarna Networks, Inc. Confidential

configured with a persistent volume provisioner. To create your own storage class
with a persistent volume provisioner, execute the following command:

kubectl apply -f
https://aarna-networks.gitlab.io/amcop-deployment/amcop-k8s-operator/storage.ya
ml

● Check for the deployed storage class:

kubectl get storageclass

● Once availability of storage class is ensured, you need to roll out AMCOP Operator
itself using the following command:

kubectl apply -f
https://aarna-networks.gitlab.io/amcop-deployment/amcop-k8s-operator/v3.1/opera
tor.yaml

● Now, create the Custom Resource using the below command. Upon creation of this
Custom Resource, AMCOP Operator starts deployment of various AMCOP
components in a staged manner.

kubectl apply -f
https://aarna-networks.gitlab.io/amcop-deployment/amcop-k8s-operator/v3.1/defaul
t.yaml

Note:

The above commands will also work if you have AMCOP 3.0.0 patch release (#07222022).
already deployed. In such a case AMCOP will be upgraded to version 3.1 while retaining
the state.

● Progress of deployment can be monitored by watching Kubernetes pods in the
amcop-system namespace or by watching the status of Custom Resource itself using
the below command:

kubectl get installer.amcop

14

Aarna Networks, Inc. Confidential

Note: When all the components of AMCOP are rolled out successfully, the status of
deployment (above command output) will change from “RollingOut '' to “Deployed” and you
can start using AMCOP.

Installation on RH Openshift Cluster
AMCOP can be deployed on the RH Openshift cluster, either on a CRC (Cloud-ready Cluster)
or production deployment of Openshift. The CRC-based deployment is typically used for
development/POC purposes.

For deploying on the RedHat Openshift cluster, you can use the Openshift Client CLI
command line tool to deploy AMCOP components. This command line is executed using
the ‘oc’ tool. Aarna’s Ansible-based installation command downloads and sets up CLI and
deploys AMCOP automatically on the Openshift cluster.

Installation on CRC (Cloud-ready Cluster)

Prerequisites for the CentOS 7 server to deploy AMCOP is to have the virtualization
capabilities like KVM installed on the bare metal server.

● Install KVM prerequisites on CentOS 7 server.
● Download CRC secret required for deploying Openshift cluster:

You can use the below script to install all the necessary tools on the deployment host.

cd <dir>/aarna-stream/util-scripts/

./prep_baremetal_centos.sh

Note:

RedHat Openshift was tested with Openshift Code Ready Container (CRC) 4.6.9 version. It
is supported on CentOS 7.x platform only

Install Openshift CRC
You can follow the below steps to bring up the Openshift CRC cluster. If you already have a
running Openshift CRC cluster, you can skip this step and go to the next subsection on
AMCOP installation.

15

Aarna Networks, Inc. Confidential

● Download the openshift crc tar package as below:
wget
https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-v4/clients
/crc/latest/crc-linux-amd64.tar.xz

● Untar the downloaded package:
tar -xvf crc-linux-amd64.tar.xz

● Run the crc setup command (input “y” when prompted):
./crc setup

● Set/configure the crc pull secret
./crc config set pull-secret-file <path to the crc pull secret file>

● Set/configure other crc config parameters:
./crc config set disable-update-check false
./crc config set cpus 32
./crc config set memory 134,217,728
./crc config set disk-size 500

● Check the crc configuration:
./crc config view

● Start the crc cluster deployment:
./crc start

● At the end of the successful CRC cluster deployment, oc login credentials are
displayed at the console for both “kubeadmin” and “developer” users”. If required,
use them to login to the crc cluster VM brought up by the crc deployment.

● Perform oc login:
○ eval $(./crc oc-env)
○ oc login -u kubeadmin -p <kubeadmin user password from crc start output>

api.crc.testing:6443

● Check the projects list:
oc projects

16

https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-v4/clients/crc/latest/crc-linux-amd64.tar.xz
https://developers.redhat.com/content-gateway/rest/mirror/pub/openshift-v4/clients/crc/latest/crc-linux-amd64.tar.xz

Aarna Networks, Inc. Confidential

Note:

To overcome the docker hub rate limiting for free accounts, you can use your personal or
organization’s docker hub credentials for AMCOP deployment on the openshift CRC
cluster using the command below.

Note: You need to ensure that the crc cluster is up and running.

oc create secret docker-registry docker --docker-server=docker.io
--docker-username=<user> --docker-password=<password> --docker-email=<email> -n
amcop-system

And link the secret created in the above command as below:

oc secrets link amcop docker --for=pull -n amcop-system

● ssh into the crc cluster VM:
ssh -i ~/.crc/machines/crc/id_ecdsa core@192.168.130.11

● Logout of the crc cluster VM:
Logout

Ansible based installation
Now you can deploy AMCOP on the Openshift CRC cluster using the following steps from
the bare metal CentOS server. This is the simplest way to get started with AMCOP on
Openshift.

● Copy the id_ecdsa key generated by the crc cluster to ~/.ssh directory on the CentOS
7 bare metal server.

cp ~/.crc/machines/crc/id_ecdsa ~/.ssh/id_ecdsa

● Update the inventory.ini file accordingly with deployment host details
Note: You should have downloaded and unzipped the amcop zip file on the bare
metal CentOS server.

cd ~/amcop_deploy/aarna-stream/amcop_deploy/ansible/deployment

Update inventory.ini with deployment host ip and user name
vi inventory.ini

17

Aarna Networks, Inc. Confidential

[deployment_host]
10.11.16.11 ansible_user=aarna

● Deploy AMCOP using ansible script:

ansible-playbook -v ./main.yml -i inventory.ini -e deployment_env=openshift -e
opshift_oc_user_name=kubeadmin -e opshift_oc_password=<kubeadmin user
password from crc start output> -e opshift_oc_url=https://api.crc.testing:6443 -e
opshift_oc_insecure_flag=true

Installation on OpenShift production cluster
The procedure to install AMCOP on the Openshift production cluster is to use the AMCOP
Operator-based installation.

Please refer to the section on Operator based installation.

Installing Monitoring Agent
AMCOP supports a monitoring agent. As part of AMCOP deployment, a default service
instance in the amcop-system tenant for the monitoring agent will be auto-created for
every cluster that is onboarded to AMCOP.

Once you initialize this service instance, the monitoring agent will be deployed in the target
cluster.

Example of how the monitoring agent will change the status update behaviour in AMCOP:

18

Aarna Networks, Inc. Confidential

1. Deploy a service instance mongo. The status of the K8s components will show as
NotReady while the pod is in an initialization state (as an example).

2. Refreshing the screen again (after few seconds) will show the resources as ready:

So with the monitoring agents deployed, the service instance page will show the real status
of the K8s resources which are orchestrated via AMCOP.

19

Aarna Networks, Inc. Confidential

Configure Backup and Restore of Cluster
As a part of the installation package, you will find a script to download and configure the
Velero tool. Velero is used for taking a backup of the entire cluster state of your AMCOP
deployment onto a AWS S3 bucket. The stored backup can be used to restore the state of
the cluster. This is primarily useful in case of Disaster Management.

The script is located at: (aarna-stream/amcop_deploy/scripts/velero-configure-aws.sh)

Before running the backup script, ensure the following.

1. Access to an AWS account capable of creating S3 buckets. These buckets are used
for storing the backup.

2. AWS cli installed and configured with access keys.
3. Access to the K8 cluster along with kubeconfig. This is the cluster that needs to be

backed up.

Run the above script from the location where the cluster is accessible. This script will
download the velero tool and install it on the cluster. In addition to that, it will configure
storage in AWS for storing the backup.

At any point, use the below command to create a backup of the current state of the cluster.

velero backup create <name of the backup>

At a future time, the backup can be restored using the following command.

velero restore create --from-backup <name of the backup>

Visit the Velero documentation (https://velero.io/docs/v1.8/) for more details about and
additional commands.

20

https://velero.io/docs/v1.8/

Aarna Networks, Inc. Confidential

AMCOP Deployment for PNF Management
(Optional)
AMCOP can be used for the management of PNF devices along with CNFs through the
deployment of the below optional components using the following steps.

Note:

The server resources need to be increased before deploying optional AMCOP PNF
management components. Total vCPUs and memory required for AMCOP deployment
including these optional components are vCPUs: 24 and Memory: 128 GB.

1. Install helm3:

Install helm version 3 in the VM where AMCOP is deployed.

curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3

chmod 700 get_helm.sh

./get_helm.sh --version v3.5.2

2. Deploy below optional components:

Download helm charts for the optional components from here into the $HOME in the
server where AMCOP is deployed.

Unzip the downloaded folder and copy the helm charts into the $HOME.

Install the PNF management components one by one as below.

3. Install commons module:
helm install -n amcop-system common common-0.1.0.tgz

Wait for ~2 min before proceeding with the next steps.

21

https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3
https://drive.google.com/file/d/1sFM8RPOSzvnnJXCwN5x3DAVKBm87NrDH/view?usp=sharing

Aarna Networks, Inc. Confidential

4. Install Cassandra DB module:

helm install -n amcop-system cassandara cassandra-8.0.0.tgz

Wait for the Cassandra DB pods to be up in the “running” state.

5. Install AAF module:
helm install -n amcop-system aaf aaf-8.0.0.tgz

Wait for the AAF pods to be up in “running” state.

6. Install A&AI module:
helm install -n amcop-system aai aai-8.0.0.tgz

Wait for the A&AI pods to be up in “running” state.

22

Aarna Networks, Inc. Confidential

Verify AMCOP Deployment

You will be able to start using AMCOP after verifying that the deployment is successful, by
running the following commands.

kubectl get pods --all-namespaces

NAMESPACE NAME READY STATUS RESTARTS AGE
amcop-operator amcop-operator-controller-manager-5985dcfd45-kfzfj 2/2 Running 0
26h
amcop-storage local-path-provisioner-6696f697ff-2gjrp 1/1 Running 0 26h
amcop-system camunda-camunda-6474bddd94-5qpfb 1/1 Running 0
26h
amcop-system cds-blueprints-processor-d4dbdc899-8gx6z 1/1 Running 0
26h
amcop-system cds-py-executor-5f74484868-jhvv6 1/1 Running 0 26h
amcop-system cds-ui-7d9f747d7b-wp6zk 1/1 Running 0 26h
amcop-system clm-5b77b7f669-twcjq 1/1 Running 0 26h
amcop-system configsvc-54df6bb478-zqtd2 1/1 Running 0 26h
amcop-system datafile-collector-7b4457f94c-kgh5z 1/1 Running 0 26h
amcop-system dcm-56df45fc76-gngzp 1/1 Running 0 26h
amcop-system dmaap-5755b8d44b-fz2z4 1/1 Running 0 26h
amcop-system dtc-85474c75b9-xjq4r 1/1 Running 0 26h
amcop-system emcoui-9b468f496-qv8z4 1/1 Running 0 26h
amcop-system etcd-0 1/1 Running 0 26h
amcop-system gac-6c4b85c8c8-lvc2l 1/1 Running 0 26h
amcop-system kafka1-5bb4bc7b9c-9z8gz 1/1 Running 0 26h
amcop-system mariadb-galera-0 1/1 Running 0 26h
amcop-system mariadb-galera-1 1/1 Running 0 26h
amcop-system mariadb-galera-2 1/1 Running 0 26h
amcop-system middleend-678bd464fd-q4765 1/1 Running 0 26h
amcop-system mongo-0 1/1 Running 0 26h
amcop-system ncm-7d9f5c6d56-q2zrk 1/1 Running 0 26h
amcop-system orchestrator-7cf69df56d-cz758 1/1 Running 0 26h
amcop-system ovnaction-75868df774-jpzm5 1/1 Running 0 26h
amcop-system rsync-7d87c464dd-sxdrs 1/1 Running 0 26h
amcop-system sbackend-556d4b7d4d-tp2rm 1/1 Running 0 26h
amcop-system sdnr-6f76d567f5-ljgvn 1/1 Running 0 26h
amcop-system sdnrdb-0 1/1 Running 0 26h
amcop-system vescollector-9cf8cc877-ssr5k 1/1 Running 0 26h
amcop-system zookeeper-54f97d94d8-q6lv8 1/1 Running 0 26h
kube-system calico-kube-controllers-867d8d6bd8-w65ks 1/1 Running 0
26h
kube-system calico-node-kxrmv 1/1 Running 0 26h

23

Aarna Networks, Inc. Confidential

kube-system coredns-558bd4d5db-lpjgg 1/1 Running 0 26h
kube-system coredns-558bd4d5db-vfgvg 1/1 Running 0 26h
kube-system etcd-ip-172-31-87-80 1/1 Running 0 26h
kube-system kube-apiserver-ip-172-31-87-80 1/1 Running 0 26h
kube-system kube-controller-manager-ip-172-31-87-80 1/1 Running 0 26h
kube-system kube-proxy-trjzz 1/1 Running 0 26h
kube-system kube-scheduler-ip-172-31-87-80 1/1 Running 0 26h

kubectl get svc -n amcop-system

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
camunda NodePort 10.104.64.247 <none> 8443:31661/TCP
26h
cds-blueprints-processor-cluster ClusterIP 10.111.205.95 <none> 5701/TCP
26h
cds-blueprints-processor-grpc ClusterIP 10.105.10.0 <none> 9111/TCP
26h
cds-blueprints-processor-http ClusterIP 10.102.70.114 <none> 8080/TCP
26h
cds-py-executor ClusterIP 10.108.19.65 <none> 50052/TCP,50053/TCP
26h
cds-sdc-listener ClusterIP 10.107.150.67 <none> 8080/TCP
26h
cds-ui NodePort 10.98.98.58 <none> 3000:30497/TCP
26h
clm NodePort 10.102.135.169 <none> 9061:30461/TCP
26h

configsvc NodePort 10.103.187.197 <none> 9082:30482/TCP
26h
datafile-collector NodePort 10.98.188.219 <none>
8443:30232/TCP,8100:30756/TCP
26h
dcm NodePort 10.97.169.238 <none>
9078:30478/TCP,9077:30477/TCP
26h
dmaap NodePort 10.102.144.141 <none>
3904:32392/TCP,3905:30768/TCP
26h
dtc NodePort 10.96.153.88 <none>
9048:30483/TCP,9018:30492/TCP
26h
emcoui ClusterIP 10.106.24.40 <none> 9080/TCP
26h

24

Aarna Networks, Inc. Confidential

etcd ClusterIP 10.109.201.179 <none> 2379/TCP,2380/TCP
26h
etcd-headless ClusterIP None <none> 2379/TCP,2380/TCP
26h
gac NodePort 10.100.207.30 <none>
9033:30493/TCP,9020:30491/TCP
26h
kafka1 ClusterIP 10.108.138.74 <none> 9092/TCP
26h
mariadb-galera ClusterIP 10.101.9.204 <none> 3306/TCP
26h
mariadb-galera-headless ClusterIP None <none>
4567/TCP,4568/TCP,4444/TCP
26h
middleend ClusterIP 10.110.218.59 <none> 9051/TCP
26h
mongo ClusterIP None <none> 27017/TCP
26h
mongo-read ClusterIP 10.108.57.1 <none> 27017/TCP
26h
ncm NodePort 10.102.56.144 <none>
9082:30489/TCP,9081:30431/TCP
26h
orchestrator NodePort 10.109.29.100 <none>
9016:30416/TCP,9015:30415/TCP
26h
ovnaction NodePort 10.96.209.117 <none>
9053:30473/TCP,9051:30471/TCP
26h
rsync NodePort 10.102.120.124 <none> 9031:30441/TCP
26h

sbackend NodePort 10.101.101.214 <none> 5000:30661/TCP
26h
sdnr NodePort 10.106.139.113 <none>
8101:30101/TCP,8181:30181/TCP,4334:30334/TCP 26h
sdnrdb ClusterIP 10.105.217.86 <none> 9200/TCP,9300/TCP
26h
vescollector NodePort 10.107.64.30 <none> 8080:31080/TCP
26h
zookeeper ClusterIP 10.105.119.28 <none> 2181/TCP
26h

25

Aarna Networks, Inc. Confidential

AMCOP Deployment On High Availability (HA)
Cluster

To ensure that AMCOP services are not impacted by failures at the infrastructure level, you
can deploy AMCOP in High Availability (HA) mode. Such a setup requires more resources as
there will be multiple replicas of each component.

For deployment, there are two options:
1. Use a HA Kubernetes cluster (already installed) and simply deploy a HA version of

AMCOP on it using the operator.
2. Build your own HA-enabled Kubernetes cluster and then deploy AMCOP on it.

The following subsection describes the mechanism to build your own HA cluster (Option 2
from above).

Creating a HA Kubernetes Cluster
To build and verify the HA properties of AMCOP we will require a server or VM with the
below configurations.

1. 32 logical cores (or more)
2. 64GB of RAM (or more)
3. 500 GB of Disk space (preferably SSD)
4. Internet access from the server (to download and deploy packages)
5. Ubuntu 20.04 is installed on the server.

26

Aarna Networks, Inc. Confidential

Figure 3: Multi-node Kubernetes Cluster with High-Availability

To build the cluster, you will need to create 7 VMs using QEMU, deploy Kubernetes cluster
software on these VMs and use kubeadm to build a Kubernetes cluster. Each VM acts as a
node of the Kubernetes cluster. The below script installs all the packages, builds the cluster
and installs all the tools for High Availability of master nodes.

nohup ansible-playbook -vv -i inventory.ini main.yml -e deployment_env=on-prem -e
jump_host_user=<user_name_of_deployment_host> -e server_name=<server_name> -e
vm_user=<vm-user-name> -e enable_ha=true --skip-tags vm &

Note: The script will take around 20 mins (or more depending on server speed)

Once the above script completes, the cluster is ready. You can use the following commands
to locate the IP address of the master node.

sudo virsh domifaddr NODE0

27

Aarna Networks, Inc. Confidential

Name MAC address Protocol Address

vnet0 52:54:00:d9:b1:bf ipv4 192.168.122.28/24

Next we log into the master node and deploy the operator.

Login to the Master node
ssh ubuntu@192.168.122.28

ssh ubuntu@<master node ip addr>

Run the following kubectl commands to deploy the Operator.

kubectl apply -f
https://aarna-networks.gitlab.io/amcop-deployment/amcop-k8s-operator/storage.yaml

namespace/amcop-storage created
serviceaccount/local-path-provisioner-service-account created
clusterrole.rbac.authorization.k8s.io/local-path-provisioner-role created
clusterrolebinding.rbac.authorization.k8s.io/local-path-provisioner-bind created
deployment.apps/local-path-provisioner created
storageclass.storage.k8s.io/amcop-local-path created
configmap/local-path-config created

kubectl apply -f
https://aarna-networks.gitlab.io/amcop-deployment/amcop-k8s-operator/v3.1/HAoperator.yaml

namespace/amcop-operator created
customresourcedefinition.apiextensions.k8s.io/installers.amcop.aarnanetworks.com created
role.rbac.authorization.k8s.io/amcop-operator-leader-election-role created
clusterrole.rbac.authorization.k8s.io/amcop-operator-manager-role created
clusterrole.rbac.authorization.k8s.io/amcop-operator-metrics-reader created
clusterrole.rbac.authorization.k8s.io/amcop-operator-proxy-role created
rolebinding.rbac.authorization.k8s.io/amcop-operator-leader-election-rolebinding created
clusterrolebinding.rbac.authorization.k8s.io/amcop-operator-manager-rolebinding created
clusterrolebinding.rbac.authorization.k8s.io/amcop-operator-proxy-rolebinding created
configmap/amcop-operator-manager-config created
service/amcop-operator-controller-manager-metrics-service created
deployment.apps/amcop-operator-controller-manager created

kubectl apply -f
https://aarna-networks.gitlab.io/amcop-deployment/amcop-k8s-operator/v3.1/defaultHA.yaml

installer.amcop.aarnanetworks.com/default created

28

https://aarna-networks.gitlab.io/amcop-deployment/amcop-k8s-operator/storage.yaml

Aarna Networks, Inc. Confidential

Note: The above steps are similar to installation of AMCOP using operator

Once the above deployment is complete, you will see multiple replicas of various pods.

kubectl get pod -n amcop-system | grep emcoui

emcoui-755f98bc7-d2z9s 1/1 Running 0 6h52m
emcoui-755f98bc7-d8ccp 1/1 Running 2 (6h13m ago) 6h52m

Testing HA Functionality
To test whether the high availability is working, you can shut down one of the nodes. On a
normal setup, this will cause the pods to be down for a significant duration. However, since
this is a HA setup, there will be no visible downtime in the availability of service.

Use the below command to bring down one of the nodes.

sudo virsh list --all

Id Name State

1 NODE0 running
2 NODE1 running
3 NODE2 running
4 NODE3 running
6 NODE5 running
7 NODE6 running
8 NODE4 running

Manually bring down one of the nodes (eg., NODE6)

sudo virsh destroy NODE6

Domain NODE6 destroyed

Now log into the master node and check the state of nodes. You will find that one of the
nodes is going into <NoReady> state.

kubectl get node

NAME STATUS ROLES AGE VERSION
k8s-master-0 Ready control-plane 18h v1.25.1

29

Aarna Networks, Inc. Confidential

k8s-master-1 Ready control-plane 18h v1.25.1
k8s-master-2 Ready control-plane 18h v1.25.1
k8s-worker-3 Ready <none> 18h v1.25.1
k8s-worker-5 Ready <none> 18h v1.25.1
k8s-worker-6 NotReady <none> 18h v1.25.1
k8s-worker-4 Ready <none> 54m v1.25.1

While the node is not ready, you can try to access the AMCOP GUI, and it should be
accessible and fully functional.

http://<master node ip>:30219/
e.g.
http://192.168.122.28:30219/

Note: AMCOP HA deployment can be used to connect and exercise the SMO functionality of
AMCOP using RU/DU/CU simulators only. Also, in the current release AMCOP upgrade in
HA deployment is not supported.

Cleanup the setup
You can use the following commands to destroy the setup by deleting all the VM’s.

sudo virsh destroy <VM NAME>
sudo virsh undefine <VM NAME>

Troubleshooting
If one or more VMs fail to boot up, you can look into the following log file to identify the
cause of failure.

./aarna-stream/amcop_deploy/logs/ha_deployment.log

30

http://192.168.122.28:30219/

Aarna Networks, Inc. Confidential

Production-grade deployment of AMCOP
AMCOP can be deployed in a single node (non-HA) configuration, or as a multi-node HA
configuration. The non-HA configuration is only suggested for development and POC
purposes, whereas the HA configuration is recommended for any production-grade
deployments.

Following are the requirements of a production-grade deployment of AMCOP. These
requirements may need to be customized for each deployment. Please contact the Aarna
Support team for planning the production deployment.

● Security
○ Work with lowest possible privileges, less chance of affecting other

applications
○ Security Certs and passwords need to be different in every deployment

● Data Backup
○ Backup stateful information, which can be reused to restore and recreate the

same state of application on redeployment
○ Use single instance of Database where ever possible to avoid managing

multiple database backups
● High Availability

○ Planned / unplanned unavailability of instances
○ Database should run as a HA cluster, ensuring seamless working with

relevant states
● Performance

○ Fine tune the performance based on the available constructs in production
environment

○ Using NFS backed storage should be avoided due to performance reasons
○ Avoid the usage of dockerdata-nfs

■ AMCOP Helm Charts provide the mechanism to override the storage
class available

○ AMCOP expects - dynamic persistent volume provisioner
■ PV creation is triggered based on the PVC

○ Support for multiple types of storage class
■ ReadWriteOnce - SSD backed for DataBase and other non-shared

persistent storage
■ ReadWriteMany - NFS/Ceph/Cinder backed PV for Sharing content

between Pods
● Scalability

○ Scale beyond the regular development process

31

Aarna Networks, Inc. Confidential

The HA configuration requirements are as follows:

● Handle Kubernetes node down
○ Microservices and Database needs to be spread across multiple kubernetes

worker nodes with more than 1 replicas (minimum recommended 3)
○ Replicas themselves should not cluster up on the same node

● Handle Site down

○ Replicas should not cluster up in single site
● Pod Anti-affinity

○ Ensure that you run only one instance of a microservice on one node
● Node selector and node labels

○ Run Pods only on nodes with specific labels, ensuring control over where
these pods can run

The sample deployment of AMCOP for meeting these requirements is as follows:

32

Aarna Networks, Inc. Confidential

Configuring Desktop/Laptop to access AMCOP
portal
Refer to “Configuring Desktop/Laptop to access AMCOP portal” section in AMCOP User
Guide for details on how to access AMCOP portal.

33

Aarna Networks, Inc. Confidential

AMCOP Lifecycle functions

Upgrade/Downgrade

Current version of AMCOP (3.1) supports automated upgrades from the 3.0.0 patch release
(#07222022) release. This is only supported if you are deploying using AMCOP Operator. To
upgrade to 3.1 (on your existing 3.0.0 patch release #07222022 installation), you can run
the following commands. This will automatically upgrade all the components of AMCOP to
3.1 release, and restart the pods. All the existing data from your previous deployment will
be retained.

kubectl apply -f
https://aarna-networks.gitlab.io/amcop-deployment/amcop-k8s-operator/v3.1/operator.yam
l

kubectl apply -f
https://aarna-networks.gitlab.io/amcop-deployment/amcop-k8s-operator/v3.1/default.yaml

Note:

Once the upgrade is done, downgrade/rollback to previous versions is not yet supported.
This will be added in future versions.

Upgrades from versions prior to one older version (eg., 3.0.0 or below) to the current
release (3.1) are also not supported currently. This will be added in future versions. For
now, if the upgrade needs to be done from older versions to 2.4.1, it needs to be done as
a new installation after uninstalling the previous version.

Please contact the Aarna Support team for any issues encountered during upgrade.

Cleanup
AMCOP deployment cleanup provides commands to clean up AMCOP deployment
completely or individual components. The supported tags are vm, cluster and emco
(AMCOP components).

● To undeploy AMCOP that is deployed with the default configuration (VM with name
amcop-vm-01 and user name “ubuntu”), run the following command. This will delete
the VM (including all AMCOP components).

34

https://aarna-networks.gitlab.io/amcop-deployment/amcop-k8s-operator/v2.2.0/operator.yaml
https://aarna-networks.gitlab.io/amcop-deployment/amcop-k8s-operator/v2.2.0/operator.yaml
https://aarna-networks.gitlab.io/amcop-deployment/amcop-k8s-operator/v2.3.0/default.yaml

Aarna Networks, Inc. Confidential

Run the Ansible command to undeploy AMCOP
ansible-playbook -v ./amcop_cleanup.yml -i inventory.ini -e
jump_host_user=<user_name_on_jump_host>

● To undeploy configuration components of AMCOP (which includes EMCO
components and CDS components from ONAP) with a default configuration (VM
with name amcop-vm-01 and user name “ubuntu”), run the following command.
This will undeploy AMCOP components only.

Run the Ansible command to undeploy AMCOP components only

ansible-playbook ./amcop_cleanup.yml -i inventory.ini -e
jump_host_user=<user_name_on_jump_host> --skip-tags vm,cluster

● To undeploy orchestration components of AMCOP (which includes EMCO
components and CDS components from ONAP) alone with a default configuration
(VM with name amcop-vm-01 and user name “ubuntu”), run the following command.
This will undeploy AMCOP components and cluster only.

Run the Ansible command to undeploy AMCOP components and cluster

ansible-playbook ./amcop_cleanup.yml -i inventory.ini -e
jump_host_user=<user_name_on_jump_host> --skip-tags vm

● To undeploy AMCOP that is deployed with a user defined VM name or a different
user name or both, run the following command as per the deployment
configuration. You need to change the --skip-tags parameters according to the
cleanup activity that you want to perform.

Run the Ansible command with user-defined VM name and different
username to undeploy AMCOP components only.

ansible-playbook ./amcop_cleanup.yml -i inventory.ini -e server_name=<VM_NAME> -e
vm_user=<USER_NAME> -e jump_host_user=<user_name_on_jump_host> --skip-tags
vm,cluster,

#Run the Ansible command with a user defined VM name to undeploy AMCOP components
along with the cluster.

ansible-playbook ./amcop_cleanup.yml -i inventory.ini -e server_name=<VM_NAME> -e
jump_host_user=<user_name_on_jump_host> --skip-tags vm

AMCOP can be redeployed by running the Ansible scripts from the previous steps.

35

