# **Network Cloud Family Blueprints Installation Overview**

#### PLEASE REFER TO R1 NETWORK CLOUD RELEASE DOCUMENTATION

NC Family Documentation - Release 1

#### THIS DOCUMENTATION WILL BE ARCHIVED

### Contents

- Prerequisites
- Steps
- Deployment Components
- High Level Requirements
  - Compute Node Details
    - SR-IOV
    - BDF6 Addresses
  - Network
  - Storage
  - Redfish

## **Prerequisites**

1. Internal and external network connectivity on all target hardware.

## **Steps**

- 1. Ensure all High Level Requirements are met.
- 2. Clone and download repositories and packages for the appropriate Akraino release. (Linux Foundation credentials required.)
  - a. Akraino Gerrit: From the list of projects, clone all relevant repositories.
  - b. Akraino Nexus 3: Download all relevant packages.
- 3. Install the Regional Controller Node:
  - a. Bootstrap the bare metal regional server node from the central node.
  - b. Run installation scripts to launch the Portal, Camunda Workflow, and Database components.
- 4. Login to the Akraino Portal UI.
- 5. Install the Edge Node via the Portal UI:
  - a. Complete the appropriate YAML template according to site requirements:
    - i. Site name
    - ii. Username and ssh key(s) for node access
    - iii. Server names and hardware details
    - iv. PXE, Storage, Public, and IPMI/iDrac network details
    - v. SR-IOV interface details, including the number of virtual functions and BDF6 addresses
    - vi. Ceph storage configuration
  - b. Choose the site to build, choose the required Blueprint, and select Build.
  - c. Upon successful build, select Deploy. The following scripts will be run, with status conveyed to the UI:
    - i. 1promgen.sh
    - ii. 2genesis.sh (invokes genesis.sh)
    - iii. 3deploy.sh

## **Deployment Components**

The following components are deployed in automated sequential fashion:

- · Genesis Host
  - O This is the first control node. Genesis serves as the seed node for the control cluster deployed on Edge sites.
  - Genesis contains a standalone Kubernetes instance with undercloud components (e.g., Airship) deployed via Armada.
  - $^{\circ}\,\,$  Once the Undercloud is deployed, Ceph is deployed via Armada.
  - Remaining cluster control nodes are deployed next from bare metal, using MaaS. This requires an available PXE network. The Genesis
    host will provide a MaaS controller.
- Control Hosts
- Compute Hosts
- Airship
- Apache Traffic Server (VNF)
- Ceph
- Calico
- ONAP
- OpenStack
- SR-IOV

## **High Level Requirements**

Review requirements in the following order:

### Compute Node Details

Herewith are three methods to locate sufficient hardware details:

```
$ sudo dmidecode -s system-manufacturer
$ sudo dmidecode -s system-version
Not Specified
$ sudo dmidecode -s system-product-name
ProLiant DL380 Gen9
$ sudo dmidecode | grep -A3 '^System Information'
System Information
        Manufacturer: HP
       Product Name: ProLiant DL380 Gen9
       Version: Not Specified
$ sudo apt-get install -y inxi
[ ...]
$ sudo inxi -Fx
         Host: mtxnjrsv124 Kernel: 4.4.0-101-generic x86_64 (64 bit gcc: 5.4.0) Console: tty 10
System:
          Distro: Ubuntu 16.04 xenial
Machine: Mobo: HP model: ProLiant DL380 Gen9 serial: MXQ604036H Bios: HP v: P89 date: 07/18/2016
CPU(s): 2 Multi core Intel Xeon E5-2680 v3s (-HT-MCP-SMP-) cache: 61440 KB
           flags: (lm nx sse sse2 sse3 sse4_1 sse4_2 ssse3 vmx) bmips: 119857
           clock speeds: [ ... ]
Graphics: Card: Failed to Detect Video Card!
          Display Server: X.org 1.18.4 drivers: fbdev (unloaded: vesa)
           tty size: 103x37 Advanced Data: N/A for root out of X
Network: Card-1: Broadcom NetXtreme BCM5719 Gigabit Ethernet PCIe
           driver: tg3 v: 3.137 bus-ID: 02:00.0
           IF: eno1 state: down mac: 14:02:ec:36:52:c4
          HDD Total Size: 1320.2GB (16.2% used)
Drives:
          ID-1: /dev/sda model: LOGICAL_VOLUME size: 120.0GB temp: 0C
          ID-2: /dev/sdb model: LOGICAL_VOLUME size: 1200.2GB temp: 0C
Partition: ID-1: / size: 28G used: 17G (66%) fs: ext4 dev: /dev/dm-0
           ID-2: /boot size: 472M used: 155M (35%) fs: ext2 dev: /dev/sda1
           ID-3: /home size: 80G used: 21G (28%) fs: ext4 dev: /dev/dm-2
          No RAID devices: /proc/mdstat, md_mod kernel module present
Sensors: System Temperatures: cpu: 48.0C mobo: N/A
          Fan Speeds (in rpm): cpu: N/A
Info:
          Processes: 397 Uptime: 39 days Memory: 41943.1/257903.7MB
           Init: systemd runlevel: 5 Gcc sys: 5.4.0 Client: Shell (sudo) inxi: 2.2.35
```

#### **SR-IOV**

Configure and determine the SR-IOV NIC as follows:

```
$ # update /etc/default/grub with this line
$ export GRUB_CMDLINE_LINUX_DEFAULT="intel_iommu=on iommu=pt"
$ sudo -E update-grub
$ sudo reboot now
$ cat /proc/cmdline
$ sudo echo '32' > /sys/class/net/ens3f0/device/sriov_numvfs
$ sudo ip link show ens3f0 # to verify it worked
$ # add line to /etc/rc.local so it does this on reboot
$ sudo echo '32' > /sys/class/net/ens3f0/device/sriov_numvfs
```

#### **BDF6 Addresses**

Intel provides a script to locate BDF6 addresses from their NICs. Learn more about Bus:Device:Function (BDF) Notation.

### Network

This Network Cloud blueprint requires:

- A network that can be PXE booted with appropriate network topology and bonding settings (e.g., a dedicated PXE interface on an untagged /native VLAN)
- 2. A segmented VLAN with all nodes bearing routes to the following network types:
  - a. Management: Kubernetes (K8s) control channel
  - **b.** Calico
  - c. Storage
  - d. Overlay
  - e. Public

### Storage

This Network Cloud blueprint requires:

- 1. Control plane server disks:
  - a. Two disk RAID-1 mirror for the operating system.
  - b. Configure remaining disks as JBOD for Ceph, with Ceph journals preferentially deployed to SSDs where available.
- 2. Data plane server disks:
  - **a.** Two disk RAID-1 mirror for the operating system.
  - **b.** Configure remaining disks per the host profile target for each server (e.g., RAID-6; no Ceph).

### Redfish

This Network Cloud blueprint requires:

- 1. Configuring BIOS with HTTP boot as a primary device.
- 2. Adding MAC address of the card to Switch and DHCP server for traffic to flow.
- 3. Creating the configuration file for pre-seed on DHCP server.
- 4. Rebooting the server to boot on HTTP device.
- 5. Getting IP and the related package of OS to install Operating System.