
1.
2.

3.

1.
2.
3.

1.
2.
3.

Gerrit Guide

Gerrit is an opensource web-based collaborative code review tool that integrates with Git. Gerrit provides a framework for reviewing code commits before it
merges into the code base. The changes are not made a part of the project until a code review completes. Gerrit is also a good collaboration tool for
storing the conversations that occur around the code commits.

Note

Here is more information on Gerrit

Prerequisites

Before you get started, you should have:

an LFID account (sign up) here
git installed (see:) http://www.git-scm.com/downloads
git configured with your name, e-mail address and editor

git config --global user.name "Firstname Lastname"
git config --global user.email "email@address.com"
git config --global core.editor "text-editor-name"

Note

Your name and e-mail address (including capitalization) must match what you entered when creating your LFID account.
an ssh public/private key pair (see the good) GitHub docs on generating ssh keys
register in the Gerrit server. See below for detailed instructions. Register your SSH key with Gerrit
git-review installed (see:) https://www.mediawiki.org/wiki/Gerrit/git-review#Installation

Clone the code

Cloning the code into a local workspace can happen via HTTP or SSH.

Make sure your Gerrit settings are up to date with correct SSH and GPG keys.
In the project’s Gerrit instance, we can see the HTTP and SSH commands. From the left side menu, select Projects->List->Select any project-
>General.
Copy the desired clone command and paste it in your terminal.

SSH Clone

This option provides a more secure connection. We should always use SSH for pushing code unless the user is under a network that prevents SSH usage.
In such case, use HTTPS.

Note

For more information on how to generate the public/private key pair see and Generating SSH keys for your system Register your SSH key with Gerrit

Note

The SSH clone option will not appear if the settings are not updated with the correct SSH keys.

Browse for the project’s General information.
Click on the ssh tab.
Clone desired repo. For example:

git clone ssh://USERNAME@gerrit.linuxfoundation.org:29418/releng/docs

Note

Since we are constantly working on uploading new code into the repositories, we recommend to use SSH clones since the remotes for pushing
code get configured appropriately.

Anonymous HTTP Clone

Recommended if the intention is to view code and not make any contributions:

Browse the project and click General
Click tab. anonymous http
Clone desired repo. For example:

git clone https://gerrit.linuxfoundation.org/releng/docs

https://code.google.com/p/gerrit/
https://identity.linuxfoundation.org/
http://www.git-scm.com/downloads
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://docs.releng.linuxfoundation.org/en/latest/gerrit.html#register-key-gerrit
https://www.mediawiki.org/wiki/Gerrit/git-review#Installation
https://docs.releng.linuxfoundation.org/en/latest/gerrit.html#generating-ssh-keys-for-your-system
https://docs.releng.linuxfoundation.org/en/latest/gerrit.html#register-your-ssh-key-with-gerrit

1.
2.
3.
4.

5.

1.
2.

3.

1.
2.

3.
4.

5.
6.

7.

a.
b.

1.

Authenticated HTTP Clone

This works everywhere, even behind a proxy or a firewall.

Get the password by clicking on the username on the top right->Settings-> HTTP Password->Generate Password
Browse for the project and click . General
Click tab. http
Clone desired repo. For example:

git clone https://USERNAME@gerrit.linuxfoundation.org/infra/a/releng/docs

Follow the user/password prompts.

Note

For Gerrit < 2.14 the HTTP password is not the same as the Linux Foundation ID password.

Note

For Gerrit with HTTP configuration, the HTTP Password is in the User Name (Top right corner) -> Settings -> HTTP Password -> Generate Password.

Clone with commit-msg hook

Both SSH and HTTP clone options have a clone with commit-msg hook which adds a hook to handle the field in the footer of the commit Change-Id
message.

Browse for the project and click . General
Click . For example: Clone with commit-msg hook

 git clone ssh://USERNAME@gerrit.linuxfoundation.org:29418/releng/docs
 scp -p -P USERNAME@gerrit.linuxfoundation.org:hooks/commit-msg docs/.git/hooks/29418

OR

 curl -Lo .git/hooks/commit-msg https://gerrit.linuxfoundation.org/infra/tools/hooks/commit-msg

Note

The hook implementation is intelligent at inserting the line before any Signed-off-by or Acked-by lines placed at the end of the commit Change-Id
message by the author, but if no lines are present then it will insert a blank line, and add the at the bottom of the message. Change-Id

If a line is already present in the message footer, the script will do nothing, leaving the existing unmodified. This permits Change-Id Change-Id
amending an existing commit, or allows the user to insert the manually after copying it from an existing change viewed on the web. Change-Id
(Optional). To prevent the addition, set gerrit.createChangeId to false in the git config. Change-Id

Push patches to Gerrit

Open a shell to the directory containing the project repo
Create a local working branch, based on the branch you would like to make changes to.

git fetch origin
git checkout -b new_feature_branch origin/master

Replace with whichever remote/branch you need to contribute to. Typically master is the latest development branch. origin/master
Make the modifications you would like to change in the project
Stage the modified files for commit. (Repeat for all files modified)

git add /path/to/file

Verify the staged files by running git status
Commit the staged files by amending the patch

git commit -s

Note

The ‘-s’ argument signs the commit message with your name and email and is a statement that you agree to the . Developer’s Certificate of Origin
Push the patch to Gerrit using one of the 2 methods documented:

Push using git review
Push using git push

Push using git review

We recommend using if possible as it makes working with Gerrit much easier. git-review

Install via your local package management system git-review

https://gerrit.linuxfoundation.org/infra/Documentation/user-changeid.html
https://gerrit.linuxfoundation.org/infra/Documentation/user-changeid.html
https://gerrit.linuxfoundation.org/infra/Documentation/user-changeid.html
https://gerrit.linuxfoundation.org/infra/Documentation/user-changeid.html
https://gerrit.linuxfoundation.org/infra/Documentation/user-changeid.html
https://gerrit.linuxfoundation.org/infra/Documentation/user-changeid.html
https://gerrit.linuxfoundation.org/infra/Documentation/user-changeid.html
https://docs.releng.linuxfoundation.org/en/latest/gerrit.html#dco
https://docs.releng.linuxfoundation.org/en/latest/gerrit.html#gerrit-push-git-review
https://docs.releng.linuxfoundation.org/en/latest/gerrit.html#gerrit-push-git-push
https://docs.openstack.org/infra/git-review/

1.

2.

1.

1.
2.

3.

4.
5.
6.

If your distro does not package git-review or you need a newer version.

Install it via PyPi in a environment: virtualenv

virtualenv ~/.virtualenvs/git-review
pip install git-review

Push the patch to Gerrit

git review

We can optionally pass the parameter to set a in Gerrit. Useful when we have related patches to organize in one . -t my_topic topic topic

Once pushed we should see some output in the terminal as described in . Gerrit Push Output

Push using git push

This method is a useful fallback in situations where we cannot use . git-review

Use the following command:

git push <remote> HEAD:refs/for/master

Where <remote> is the Gerrit location to push the patch to. Typically ‘origin’ but can also be ‘gerrit’ depending on how we have our local repo
setup.

Note

Notice the word “for” is explicitly intending to perform the push into Gerrit. Using “heads” instead, will attempt to make the a push into the repository
bypassing Gerrit which can come in handy for some isolated cases (when having force push rights). Another variable commonly used is “refs/changes
/<gerrit-number>” which is an explicit way of making an update to an existing gerrit. In such case, is best to let gerrit handle this via in the Change-Id
commit text.

More options for this command: . git-push

Once pushed we should see some output in the terminal as described in . Gerrit Push Output

Push output

After pushing a commit to Gerrit we should see the following output:

 releng cjac@probook0:/usr/src/git/lf/gerrit.linuxfoundation.org/releng/docs$ git review()
 remote: Processing changes: updated: , refs: , 1 1 done
 remote:
 remote: Updated Changes:
 remote: https://gerrit.linuxfoundation.org/infra/7404 documentation on the topic of git-review
 remote:
 To ssh://gerrit.linuxfoundation.org:29418/releng/docs.git
 * new branch HEAD -> refs/publish/master/git-review-docs[]

This output includes a URL to the patch. The number at the end is the patch’s change number.

Update an existing patch

In a healthy Open Source project code reviews will happen and we will need to amend the patches until reviewers are happy with the change. This section
will walk through the process of updating a patch that is already in Gerrit Code Review.

Open a shell to the directory containing the project repo
Pull the latest version of the patch from Gerrit

git review -d ${change_number}

The change number is in the URL of the Gerrit patch. For example if the URL is then run https://git.opendaylight.org/gerrit/75307 git review -d
to pull the corresponding changes.75307

(Optional) View information on the latest changes made to that patch.

To view the edited files, run . git show
To view a listing of the edited files and the number of lines in those files, run . git show --stat

Rebase the patch before you start working on it

git pull --rebase

This is to ensure that the patch incorporates the latest version of the repo and is not out of date.
Make the necessary changes to the patch with your favorite editor
Check the state of the repo by running git status
Stage the modified files for commit. (Repeat for all files modified)

https://virtualenv.pypa.io/en/stable/
https://docs.releng.linuxfoundation.org/en/latest/gerrit.html#gerrit-topics
https://docs.releng.linuxfoundation.org/en/latest/gerrit.html#gerrit-topics
https://docs.releng.linuxfoundation.org/en/latest/gerrit.html#gerrit-push-output
https://docs.releng.linuxfoundation.org/en/latest/gerrit.html#gerrit-push-git-review
https://gerrit.linuxfoundation.org/infra/Documentation/user-changeid.html
https://git-scm.com/docs/git-push
https://docs.releng.linuxfoundation.org/en/latest/gerrit.html#gerrit-push-output
https://git.opendaylight.org/gerrit/75307

6.

7.
8.

9.

10.

11.

1.

2.

3.

git add /path/to/file

Verify the staged files by running git status
Commit the staged files by amending the patch

git commit --amend

Update the current patch description and then save the commit request.

If you feel as though you added enough work on the patch, add your name in the footer with a line Co-Authored-By:Firstname Lastname <
.email>

Rebase the patch one last time

git pull --rebase

This is to ensure that the patch incorporates the latest version of the repo and is not out of date.
Submit your files for review:

git review

You will receive 2 emails from Gerrit Code Review: the first indicating that a build to incorporate your changes has started; and the second indicating the
whether the build passed or failed. Refer to the console logs if the build has failed and amend the patch as necessary.

Update a patch with dependent changes

In the case where a patch depends on another in review Gerrit patch, we will need to rebase the commit against the latest patchset of the dependent
change in Gerrit. The best way to do this is to retrieve the latest version of the dependent change and then cherry-pick our patch on top of the change.

Fetch latest parent patch set

git review -d <parent-gerrit-id>

Cherry-pick out patch on top

git review -x <patch-gerrit-id>

Push patch back up to Gerrit

git review -R

Code Review

All contributions to Git repositories use Gerrit for code review.

The code review process provides constructive feedback about a proposed change. Committers and interested contributors will review the change, give
their feedback, propose revisions and work with the change author through iterations of the patch until it’s ready for merging.

Managing and providing feedback for the change happens via Gerrit web UI.

blocked URL

Gerrit wide view.

Pre-review

Change authors will want to push changes to Gerrit before they are actually ready for review. This is an encouraged good practice. It has been the
experience of experienced community members that pushing often tends to reduce the amount of work and ensures speedy code reviews.

Note

This is not required and in some projects, not encouraged, but the general idea of making sure patches are ready for review when submitted is a good one.

Note

While in draft state, Gerrit triggers, e.g., verify Jenkins jobs, won’t run by default. You can trigger them despite it being a draft by adding “Jenkins CI” (or
the corresponding Jenkins automation account) as a reviewer. You may need to do a recheck by replying with a comment containing to trigger recheck
the jobs after adding the reviewer.

To mark an uploaded change as not ready for attention by committers and interested contributors (in order of preference), either mark the Gerrit a draft (by
adding a to your command), vote -1 on it yourself or edit the commit message with “WIP” (“Work in Progress”). -D git review

Do not add committers to the Reviewers list for a change while in the pre-review state, as it adds noise to their review queue.

Review

Once an author wants a change reviewed, they need to take some actions to put it on the radar of the committers.

https://docs.releng.linuxfoundation.org/en/latest/_images/gerrit-wide-view.png

1.

If the change it’s a draft, you’ll need to publish it. Do this from the Gerrit web UI.

blocked URL

Gerrit Web UI button to publish a draft change.

Remove your -1 vote if you’ve marked it with one. If you think the patch is ready for merge, vote +1. If there is not an automated job to test your change
and vote +1/-1 for Verified, you will need to do as much testing yourself as possible and then manually vote +1 to Verified. You can also vote +1 for
Verified if you have done testing in addition to any automated tests. Describing the testing you did or did not do is typically helpful.

blocked URL

Gerrit voting interface, exposed by the Reply button.

Once the change gets published and you have voted for merging, add the people who need to review/merge the change to the Gerrit Reviewers list. The
auto-complete for this Gerrit UI field is somewhat flaky, but typing the full name from the start typically works.

blocked URL

Gerrit Reviewers list with Int/Pack committers added

Reviewers will give feedback via Gerrit comments or inline against the diff.

blocked URL

Gerrit inline feedback about a typo

Updated versions of the proposed change get pushed as new patchsets to the same Gerrit, either by the original submitter or other contributors. Amending
proposed changes owned by others while reviewing may be more efficient than documenting the problem, -1ing, waiting for the original submitter to make
the changes, re-reviewing and merging.

Download changes for local manipulation and re-uploaded updates via git-review.

See above. Once you have re-uploaded the patch the Gerrit web UI for the proposed change will reflect the new patchset. Update an existing patch

blocked URL

Gerrit history showing a patch update

Reviewers will use the diff between the last time they gave review and the current patchset to understand updates, speeding the code review process.

blocked URL

Gerrit diff menu

Iterative feedback continues until reaching consensus (typically: all active reviewers +1/+2 and no -1s nor -2s), at least one committer +2s and a committer
merges the change.

blocked URL

Gerrit code review votes

Merge

Once a patch has gotten a +2 from a committer and they have clicked the submit button the project’s merge job should run and publish the project’s
artifacts to Nexus. Once completed, other projects will be able to see the results of that patch.

This is important when merging dependent patches across projects. You will need to wait for the merge job to run on one patch before any patches in
other projects depending on it will successful verify.

Set up Gerrit

Generating SSH keys for your system

You must have SSH keys for your system to register with your Gerrit account. The method for generating SSH keys is different for different types of
operating systems.

The key you register with Gerrit must be identical to the one you will use later to pull or edit the code. For example, if you have a development VM which
has a different UID login and keygen than that of your laptop, the SSH key you generate for the VM is different from the laptop. If you register the SSH key
generated on your VM with Gerrit and do not reuse it on your laptop when using Git on the laptop, the pull fails.

Note

Here is more information on and more on SSH keys for Ubuntu generating SSH keys

For a system running Ubuntu operating system, follow the steps below:

https://docs.releng.linuxfoundation.org/en/latest/_images/gerrit-publish-button.png
https://docs.releng.linuxfoundation.org/en/latest/_images/gerrit-voting-interface.png
https://docs.releng.linuxfoundation.org/en/latest/_images/gerrit-reviewers-interface.png
https://docs.releng.linuxfoundation.org/en/latest/_images/gerrit-inline-feedback.png
https://docs.releng.linuxfoundation.org/en/latest/gerrit.html#update-an-existing-patch
https://docs.releng.linuxfoundation.org/en/latest/_images/gerrit-patch-update-history.png
https://docs.releng.linuxfoundation.org/en/latest/_images/gerrit-diff-menu.png
https://docs.releng.linuxfoundation.org/en/latest/_images/gerrit-code-review-votes.png
https://help.ubuntu.com/community/SSH/OpenSSH/Keys
https://help.github.com/articles/generating-ssh-keys/

1.

2.

1.
2.

3.

4.
5.
6.

1.

2.

3.

Run the following command:

mkdir ~/.ssh
 chmod 700 ~/.ssh

 ssh-keygen -t rsa

Save the keys, and add a passphrase for the keys.

This passphrase protects your private key stored in the hard drive. You must use the passphrase to use the keys every time you need to login to
a key-based system:

Generating public/private rsa key pair.
 Enter file in which to save the key (/home/b/.ssh/id_rsa):
 Enter passphrase (empty for no passphrase):
 Enter same passphrase again:

Your public key is now available as in your home folder. .ssh/id_rsa.pub

Register your SSH key with Gerrit

Using a Google Chrome or Mozilla Firefox browser, go to gerrit.<project>.org
Click to access the repositories. Sign In

blocked URL

Sign into Gerrit
Click your name in the top right corner of the window and then click . Settings

The page. Settings

blocked URL

Settings page for your Gerrit account
Click under . SSH Public Keys Settings
Click . Add Key
In the text box, paste the contents of your file and then click . Add SSH Public Key id_rsa.pub Add

blocked URL

Adding your SSH key

To verify your SSH key, try using an SSH client to connect to Gerrit’s SSHD port:

$ ssh -p 29418 <sshusername>@gerrit.<project>.org
Enter passphrase for key '/home/cisco/.ssh/id_rsa':
**** Welcome to Gerrit Code Review ****

Submit a patch over HTTPS

While we recommend you submit patchsets over SSH some users may need to submit patchsets over HTTPS due to corporate network policies such as
the blocking of high range ports or outgoing SSH.

To submit code to Gerrit over HTTPS follow these steps.

Note

This guide uses the Linux Foundation Gerrit server and the releng/docs project as an example. Differences may vary with other Gerrit servers.

Configure your Machine

Generate a HTTPS password

Note

Required when uploading patches to Gerrit servers <= 2.13. In Gerrit 2.14 and newer use your Linux Foundation ID password.

Navigate to and click . Write this to the file in your https://gerrit.linuxfoundation.org/infra/#/settings/http-password Generate Password .netrc
home directory excluding the angle brackets:

machine gerrit.linuxfoundation.org user <username> password <http-password>

Clone the repository over HTTPS using your Linux Foundation ID

git clone https://bramwelt@gerrit.linuxfoundation.org/infra/releng/docs

Download the commit-msg git hook

https://docs.releng.linuxfoundation.org/en/latest/_images/gerrit-sign-in.png
https://docs.releng.linuxfoundation.org/en/latest/_images/gerrit-settings.png
https://docs.releng.linuxfoundation.org/en/latest/_images/gerrit-ssh-keys.png
https://gerrit.linuxfoundation.org/infra/#/settings/http-password

3.

1.

2.

1.

2.

3.

curl -Lo .git/hooks/commit-msg \
 https://gerrit.linuxfoundation.org/infra/tools/hooks/commit-msg && \
 chmod +x .git/hooks/commit-msg

Due to a bug in git-review, you need to download the commit-msg hook manually to the .git/hooks/ directory or will fail. git-review -s

Configure the Repository

Because attempts to use SSH by default, you need configure the git-review scheme and port through git-config in the repository. git-review

Note

The Gerrit context path on the Linux Foundation Gerrit server is . Others Gerrit servers may use or . infra/ gerrit/ r/

Perform the following commands

cd docs/
git config gitreview.scheme https
git config gitreview.port 443
git config gitreview.project infra/releng/docs

Verify the configuration by running the following command:

git review -s

If successful, the command will not print anything to the console, and you will be able to submit code with:

git review

Otherwise will still request your Gerrit username, indicating a configuration issue. git-review

You can check the configuration using verbose output:

git review -v -s

Sign Gerrit Commits

Generate your GPG key.

The following instructions work on a Mac, but the general approach should be the same on other OSes.

brew install gpg2 # If you don't have homebrew, get that here: http://brew.sh/
gpg2 --gen-key
pick 1 for "RSA and RSA"
enter 4096 to creat a 4096-bit key
enter an expiration time, I picked 2y for 2 years
enter y to accept the expiration time
pick O or Q to accept your name/email/comment
enter a pass phrase twice. it seems like backspace doesn't work, so type carefully
gpg2 --fingerprint
you'll get something like this:
spectre:~ ckd$ gpg2 --fingerprint
/Users/ckd/.gnupg/pubring.gpg

pub 4096R/F566C9B1 2015-04-06 [expires: 2017-04-05]
Key fingerprint = 7C37 02AC D651 1FA7 9209 48D3 5DD5 0C4B F566 C9B1
uid [ultimate] Colin Dixon <colin at colindixon.com>
sub 4096R/DC1497E1 2015-04-06 [expires: 2017-04-05]
you're looking for the part after 4096R, which is your key ID
gpg2 --send-keys $KEY_ID
in the above example, the $KEY_ID would be F566C9B1
you should see output like this:
gpg: sending key F566C9B1 to hkp server keys.gnupg.net

If you are collaborating in keysigning, then send the output of to your coworkers. gpg2 --fingerprint $KEY_ID

gpg2 --fingerprint $KEY_ID
in the above example, the $KEY_ID would be F566C9B1
in my case, the output was:
pub 4096R/F566C9B1 2015-04-06 [expires: 2017-04-05]
Key fingerprint = 7C37 02AC D651 1FA7 9209 48D3 5DD5 0C4B F566 C9B1
uid [ultimate] Colin Dixon <colin at colindixon.com>
sub 4096R/DC1497E1 2015-04-06 [expires: 2017-04-05]

Install gpg, instead of or addition to gpg2.

Note

you can tell Git to use gpg by doing: but that then will seem to struggle asking for your git config --global gpg.program gpg2
passphrase unless you have your gpg-agent set up right.

3.

a.

b.
c.
d.

4.

5.

a.
b.

6.

1.

Add your GPG to Gerrit

Run the following at the CLI:

gpg --export -a $FINGER_PRINT
e.g., gpg --export -a F566C9B1
in my case the output looked like:
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v2
#
mQINBFUisGABEAC/DkcjNUhxQkRLdfbfdlq9NlfDusWri0cXLVz4YN1cTUTF5HiW
...
gJT+FwDvCGgaE+JGlmXgjv0WSd4f9cNXkgYqfb6mpji0F3TF2HXXiVPqbwJ1V3I2
NA+l+/koCW0aMReK
=A/ql
-----END PGP PUBLIC KEY BLOCK-----

Browse to https://git.opendaylight.org/gerrit/#/settings/gpg-keys
Click Add Key…
Copy the output from the above command, paste it into the box, and click Add

Set up your Git to sign commits and push signatures

git config commit.gpgsign true
git config push.gpgsign true
git config user.signingkey $FINGER_PRINT
e.g., git config user.signingkey F566C9B1

Note

We can create a signed commit with and a signed push with on the CLI instead of configuring it in git commit -S git push --signed
config if we want to manually control which commits use the signature.
Create a signed commit

Change a file
Create a signed commit with git commit -asm "test commit"

This will result in Git asking you for your passphrase. Enter it to proceed.
Push to Gerrit with a signed-push with git review

This will result in Git asking you for your passphrase. Enter it to proceed.

Note

The signing a commit or pushing again with a signed push is not recognized as a “change” by Gerrit, so if you forget to do either, you need to
change something about the commit to get Gerrit to accept the patch again. Slightly tweaking the commit message is a good way.

Note

This assumes you have git review set up and push.gpgsign set to true. Otherwise:

git push --signed gerrit HEAD:refs/for/master

This assumes the gerrit remote is available, if not, configure something like: wher ssh://ckd@git.opendaylight.org:29418/<repo>.git
e repo is something like docs or controller

Verify the signature

To do this, navigate to Gerrit and check for a green check next to your name in the patch.

blocked URL

Example signed push to Gerrit.

Appendix

Developer’s Certificate of Origin (DCO)

Code contributions to Linux Foundation projects must have a sign-off by the author of the code which indicates that they have read and agree to the DCO.
Developer’s Certificate of Origin

https://git.opendaylight.org/gerrit/#/settings/gpg-keys
https://docs.releng.linuxfoundation.org/en/latest/_images/gerrit-signed-push.png

1.
2.

3.

Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
1 Letterman Drive
Suite D4700
San Francisco, CA, 94129

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
 have the right to submit it under the open source license
 indicated in the file; or

(b) The contribution is based upon previous work that, to the best
 of my knowledge, is covered under an appropriate open source
 license and I have the right under that license to submit that
 work with modifications, whether created in whole or in part
 by me, under the same open source license (unless I am
 permitted to submit under a different license), as indicated
 in the file; or

(c) The contribution was provided directly to me by some other
 person who certified (a), (b) or (c) and I have not modified
 it.

(d) I understand and agree that this project and the contribution
 are public and that a record of the contribution (including all
 personal information I submit with it, including my sign-off) is
 maintained indefinitely and may be redistributed consistent with
 this project or the open source license(s) involved.

Refer to for original text. https://developercertificate.org/

Gerrit Topics

Topics are useful as a search criteria in Gerrit. By entering as a search criteria we can track related commits. Use one of the following topic:foo
methods to configure topics:

Directly in the Gerrit UI via the Edit Topic button
Via using the parameter git review -t topic

Note

git-review defaults to the local branch name as the topic if it does not match the upstream branch.
Via using one of the following methods: git push

git push origin HEAD:refs/for/master%topic some-topic=
git push origin HEAD:refs/for/master -o some-topictopic=

Both methods achieve the same result so is up to preference. Further documentation available at . Gerrit Topics

https://developercertificate.org/
https://gerrit-review.googlesource.com/Documentation/intro-user.html#topics

	Gerrit Guide

