
REC Architecture Document

Licensing
Introduction and Purpose of the REC Architecture
High level architectural view:
Objectives
Components of Radio Edge Cloud

Components Used in Creation of the ISO Image
Components Which Provide Additional REC Functionality
Most Notable Upstream Components That Are Packaged Into REC with Configuration and Tuning:

Additional Component Details

Licensing
Radio Edge Cloud is Apache 2.0 licensed. The goal of the project is the packaging and installation of upstream Open Source projects. Each of those
upstream projects is separately licensed. For a full list of packages included in REC you can refer to https://logs.akraino.org/production/vex-yul-akraino-

 (the 313 in this URL is the Akraino REC/TA build number, see jenkins-prod-1/ta-ci-build-amd64/313/work/results/rpmlists/rpmlist https://logs.akraino.org
 for the latest build.) All of the upstream projects that are packaged into the REC/TA build /production/vex-yul-akraino-jenkins-prod-1/ta-ci-build-amd64/

image are Open Source.

Introduction and Purpose of the REC Architecture
Akraino Radio Edge Cloud (REC) provides an appliance tuned to support the and 's O-RAN Alliance O-RAN Software Community Radio Access Network

 (RIC) and is the first example of the Telco Appliance blueprint family which provides a reusable set of modules that will be used to Intelligent Controller
create sibling blueprints for other purpose tuned appliances.

The goal of the REC blueprint is to eventually perform fully automated bare metal deployment of the RIC. Currently The RIC must be installed on top of the
REC after the REC's automated installation completes. In order to be useful, the RIC requires a 4G and/or 5G RAN that supports the O-RAN specified
interfaces that are used by the RIC. The REC is intended to be deployed into a radio operator's management network with connectivity to the operator's
eNodeB/gNodeB radios. The RIC provides a platform as a service environment for running "xApps" which interact with the radios to control them in useful
and intelligent ways. For more details about the RIC and xApps refer to O-RAN and the O-RAN Software Community documentation.

RIC on Kubernetes on “bare metal” tuned for low latency round trip messaging between RIC and eNodeB/gNodeB,
Support for telco networking requirements such as SRIOV, dual POD interfaces, IPVLAN
Built from reusable components of the “Telco Appliance” blueprint family

https://logs.akraino.org/production/vex-yul-akraino-jenkins-prod-1/ta-ci-build-amd64/313/work/results/rpmlists/rpmlist
https://logs.akraino.org/production/vex-yul-akraino-jenkins-prod-1/ta-ci-build-amd64/313/work/results/rpmlists/rpmlist
https://logs.akraino.org/production/vex-yul-akraino-jenkins-prod-1/ta-ci-build-amd64/
https://logs.akraino.org/production/vex-yul-akraino-jenkins-prod-1/ta-ci-build-amd64/
https://www.o-ran.org/
https://o-ran-sc.org/
https://gerrit.o-ran-sc.org/r/#/admin/projects/
https://gerrit.o-ran-sc.org/r/#/admin/projects/

Automated Continuous Deployment pipeline testing the full software stack (bottom to top, from firmware up to and including application)
simultaneously on chassis based extended environmental range servers and commodity datacenter servers
Integrated with Regional Controller (Akraino Feature Project) for “zero touch” deployment of REC to edge sites
Deployable to multiple hardware models

High level architectural view:

Objectives
Fully automated simultaneous deployment and testing on multiple hardware platforms

Blueprint defines exact hardware configurations
Each hardware variant is deployed into a Continuous Deployment system that runs the full test suite

Appliance model automates the installation, configuration and testing of:
Firmware and/or BIOS/UEFI
Base Operating System
Components for management of containers, performance, fault, logging, networking, CPU

Application:
RIC is the application running on the REC appliance
Other appliances will be created by combining other applications with the same underlying components to create additional blueprints
Fully automated testing includes running full application test suite

Components of Radio Edge Cloud
A detailed listing of the git code repositories hosted on the Akraino Gerrit server is available at .Gerrit Code Repository Overview

Components Used in Creation of the ISO Image

https://wiki.akraino.org/display/AK/Gerrit+Code+Repository+Overview

Build-tools: Based on OpenStack Disk Image Builder
Dracut: Tool for building ISO images for CentOS
RPM Builder: Common code for creating RPM packages
Specs: the build specification for each RPM package
Dockerfiles: the build specifications for each Docker container
Unit files: the systemd configuration for starting/stopping services
Ansible playbooks: Configuration of all the various components
Test automation framework

Components Which Provide Additional REC Functionality

L3 Deployer: an OpenStack Ironic-based hardware manager framework
Hardware Detector: Used to adapt L3 deployer to specific hardware
Virtual installer: tooling to deploy REC on a VM (for testing only)
North-bound REST API framework: For creating/extending REC APIs
CLI interface
AAA server to manage cloud infrastructure users and their roles
Configuration management
Container image registry
Security hardening configuration
Remote Installer: Docker image used by Regional Controller to launch deployer

Most Notable Upstream Components That Are Packaged Into REC with Configuration and
Tuning:

Kubernetes
Docker
CPU-Pooler: for enhanced CPU management in K8s
DANM: for TelCo grade network management in K8s
CNI: to provision specific network interfaces for containers
SR-IOV CNI and Device Plugin: to provision SR-IOV Virtual Functions for containers
Flannel: a CNI backend, implementing an overlay management network for containers
Helm: K8s package manager
etcd: a distributed key-value store
kubedns: K8s in-built service discovery
Fluentd: Log aggregation and forwarding service
Elasticsearch: Log collection, store, and analysis service
Prometheus: Performance measurement service
OpenStack Swift: Used for container image storage
Ceph: Distributed block storage
NTP: Network Time Protocol
MariaDB, Galera: Database for OpenStack components
RabbitMQ: Message Queue for Openstack components
Python Peewee: A Python ORM
Redis: high-available configuration data store
The static local provisioner is included as a beta/preview feature https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner
The dynamic local provisioner is included as a beta/preview feature https://github.com/nokia/dynamic-local-pv-provisioner

Additional Component Details
Some of the components of particular interest are documented in the following child pages:

CM-Plugins
CPU Pooler
DANM - TelCo grade K8s network manager
Gerrit Code Repository Overview
How to Build a REC or Telco Appliance ISO
Workload performance management and elasticity

https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner
https://github.com/nokia/dynamic-local-pv-provisioner
https://wiki.akraino.org/display/AK/CM-Plugins
https://wiki.akraino.org/display/AK/CPU+Pooler
https://wiki.akraino.org/display/AK/DANM+-+TelCo+grade+K8s+network+manager
https://wiki.akraino.org/display/AK/Gerrit+Code+Repository+Overview
https://wiki.akraino.org/display/AK/How+to+Build+a+REC+or+Telco+Appliance+ISO
https://wiki.akraino.org/display/AK/Workload+performance+management+and+elasticity

	REC Architecture Document

