
Gerrit Code Repository Overview
The code for Radio Edge Cloud is primarily derived from the and is stored in Gerrit . As with most Telco Appliance Blueprint Family under the "ta" prefix
Linux Foundation projects TA and REC follow the typical usage patterns of the Gerrit code review tool for cloning repos and pushing changes with the "git
review" command. The information below provides a detailed overview of the structure of the repositories. The function of the Continuous Integration (CI)
system (the LF's Jenkins server) is to use the contents of these repos along with a large amount of upstream binaries (including CentOS, Kubernetes,
Docker, Ansible, Disk Image Builder, and others) to build an ISO image of Radio Edge Cloud which will be deployed by Continuous Deployment systems
to install and test on bare metal test systems. After successful testing, the exact same ISO can be used to deploy a fully tested and fully reproducible
image onto production servers. Much of the code in the repos relates to how to build and configure all the intermediate building blocks.

Overview
Generic repository structure
Repository content

SCM related repos
CaaS (Container as a Service) related repos
L3 Deployer related repos
Middleware services

AAA
CLI
Config Manager
REST framework

Installation

Overview
This document provides a high-level overview of the initial content of the Akraino REC repositories, at the time of their open sourcing.

The project initially contains around 50 repositories, each repository either holding a self-contained functional component, or a set of components
belonging to the same sub-system. Every component belongs to one of these higher-level blocks:

SCM: code in these repos is used to build a compact AKREC install media from the content of all the repositories
CaaS: content of these repositories form the Containers-as-a-Service layer, based on Docker and Kubernetes
L3 Deployer: an Ironic-based hardware manager framework, used to automatically deploy a whole AKREC cluster on a set of hardware
Middleware services: various value-added platform services to provide cloud infrastructure management services, such as:

North-bound REST API
CLI interface
AAA server to manage cloud infrastructure users, and their roles
Configuration manager: a pluggable configuration management framework to centrally manage the configuration of the infrastructure
both during initial deployment, and in run-time

Generic repository structure
Even though it can wildly vary what is stored inside the different repositories, there is convention most of the repositories follow inside the project.

 the output of every repository is one, or more RPM packages, which can be installed on the AKREC CentOS 7.6 operating system. If the SPECS:
repository is packaged into one RPM, its spec file is usually located in the root of the repo. In case of multiple spec files, they are located under SPECS

docker-build: in case a component is deployed as a Docker container, its Docker image is built as part of building the RPM. This directory holds the
Dockerfile describing the process of building the specific image

systemd: components deployed directly to the host are deployed as standard, systemd

(ansible/)playbooks, (ansible/)roles: most of the host configuration tasks executed during cloud infrastructure deployment are automated via Ansible
playbooks. These directories host the playbooks, and roles related to deploying the specific service inside the repository. Playbooks are invoked by the
Deployer component in their appropriate phase: setup, bootstrapping, provisioning, post-configuration, or cleanup.

 if the component is not 100% coming from another upstream project, but contains its own code; then it is stored under this directorysrc:

test(s): contain the unit test cases for the code of the component

Repository content

SCM related repos

 (): ta/build-tools tree view build-tools contain the code which is the backbone of the current SCM system. The description of the whole pipeline can be
found here, together with the configuration of the image builder tool (DIB:)https://github.com/openstack/diskimage-builder

 (): ta/cloudtaf tree view cloudtaf repo contains the ROBOT test case library used to verify the whole AKREC installation

 (): ta/manifest tree view manifest repo is the “super repo” of the AKREC project. It contains two major configuration files:

https://wiki.akraino.org/display/AK/Telco+Appliance+Blueprint+Family
https://gerrit.akraino.org/r/#/admin/projects/?filter=ta%252F
https://gerrit.akraino.org/r/#/admin/projects/ta/build-tools
https://gerrit.akraino.org/r/gitweb?p=ta/build-tools.git;a=tree
https://github.com/openstack/diskimage-builder
https://gerrit.akraino.org/r/admin/repos/ta/cloudtaf
https://gerrit.akraino.org/r/gitweb?p=ta%2Fcloudtaf.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/manifest
https://gerrit.akraino.org/r/gitweb?p=ta%2Fmanifest.git;a=summary

yaml denotes which exact upstream RPM packages need to be installed during disk image creation procedure
xml file collects the AKREC source repositories which need to be installed, and that from which branch, or exact revision of the repo the delivery
package needs to be built

: () ta/rpmbuilder tree view the tool used to build the delivery packages of every repository, that is, an RPM

CaaS (Container as a Service) related repos

 (): ta/caas-cpupooler tree view packages, configures, and integrates the components of the upstream CPU-Pooler project (https://github.com/nokia/CPU-
). This component is responsible for providing advanced CPU management policies to both containerized CaaS, and application componentsPooler

 (): ta/caas-danm tree view packages, configures, and integrates the components of all upstream projects related to the network management service.
Components are coming from DANM (), Flannel (), and SR-IOV Device Plugin (https://github.com/nokia/danm https://github.com/coreos/flannel https://githu

) repositories.b.com/intel/sriov-network-device-plugin

 (): ta/caas-etcd tree view packages, configures, and integrates the components of the upstream Etcd database project (). https://github.com/etcd-io/etcd
This is the data backend of the Kubernetes management plane.

 (): ta/caas-helm tree view packages, configures, and integrates the components of the upstream Helm project (), to provide https://github.com/helm/helm
package management capabilities for containerized applications. Also contains the source code of the AKREC Helm chart repository component.

 (): ta/caas-install tree view contains the generic deployment playbooks installing the whole CaaS sub-system during the post-configuration phase.
Contains AKREC utility scripts installed to the target operating system under “utils”, and the Helm Chart of the CaaS layer under “infra-charts”. Note: not
all CaaS components are installed via Helm.

 (): ta/caas-kubedns tree view packages, configures, and integrates the components of the upstream Kubernetes DNS project (https://github.com
). Kube-DNS backs-up the CaaS in-built service discovery feature./kubernetes/dns

 (): ta/caas-kubernetes tree view packages, configures, and integrates the major components of the Kubernetes management plane (https://github.com
). Includes the code related to deploying the API server, scheduler, controller-manager, kube-proxy, and kubelet components./kubernetes/kubernetes

 (): ta/caas-lcm tree view Contains the implementation of the higher-level life-cycle management workflows. The workflows are written in Ansible and are
not yet exposed on the AKREC remote API.

 (): ta/caas-logging tree view packages, configures, and integrates the major components making up the CaaS log management pipeline. Fluentd (https://gi
) is used to gather and forward the standard output channels of the infrastructure components, and Elasticsearch (thub.com/fluent/fluentd https://github.com

) is the central log store collocating them./elastic/elasticsearch

 (): ta/caas-metrics tree view packages, configures, and integrates the major components making up the CaaS performance management pipeline. Metrics
server () integrates the container’s core, while Prometheus () and https://github.com/kubernetes-incubator/metrics-server https://github.com/prometheus
custom metrics adapter () integrates their custom metrics to the Horizontal Pod https://github.com/kubernetes-incubator/custom-metrics-apiserver
Autoscaler API.

 (): ta/caas-registry tree view packages, configures, and integrates the components responsible for managing container images. Docker Registry (https://git
) is used as the front-end, and Swift object store () is used as the backend component.hub.com/docker/distribution https://github.com/openstack/swift

 (): ta/caas-security tree view contains all the code related to managing users, certificates for TLS, authentication, authorization, and hardening of the
CaaS sub-system.

 ():ta/caas-storage tree view packages, configures, and integrates the components responsible for configuring the availability of persistent storage for K8s
Pods

L3 Deployer related repos

 (): ta/ansible-role-ntp tree view configures NTP for the whole cluster during deployment

 (): ta/hw-detector tree view responsible for recognizing the specific hardware type the deployment is executed on. Can be used both as a library, or
through CLI. Uses IPMI. Contains the hardware specific configuration templates

 (): ta/image-provision tree view This project contains dracut modules. They are used for provisioning image to the installation controller’s hard disk from
the AKREC boot CD.

 (): ta/infra-ansible tree view This repository contains all the generic deployment playbooks, which configure services running directly on the host. Includes
playbooks for disk partitioning, Ceph configuration, hardening, security, SSH, operating system level user management etc.

 (): ta/ipa-deployer tree view some scripts responsible for bootstrapping the Ironic Python agent on all hosts

 (): ta/ironic-virtmedia-driver tree view this project contains Ironic drivers for baremetal provisioning using Virtual media for Quanta Hardware and Virtual
environment. The main motivation for writing own drivers is to avoid L2 Network dependency and to support L3 based deployment.

: ta/openstack-ansible-XYZ these projects are re-used from the upstream Openstack-Ansible project () for https://github.com/openstack/openstack-ansible
the purpose of deploying Galera, Keystone, RabbitMQ, and Ironic. These services are used by various middleware, and deployer components.

 (): ta/os-net-config tree view contains a fork of the Openstack os-net-config tool (). Used to configure the host https://github.com/openstack/os-net-config
network interfaces based on the deployment configuration.

https://gerrit.akraino.org/r/admin/repos/ta/rpmbuilder
https://gerrit.akraino.org/r/gitweb?p=ta%2Frpmbuilder.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/caas-cpupooler
https://gerrit.akraino.org/r/gitweb?p=ta%2Fcaas-cpupooler.git;a=summary
https://github.com/nokia/CPU-Pooler
https://github.com/nokia/CPU-Pooler
https://gerrit.akraino.org/r/admin/repos/ta/caas-danm
https://gerrit.akraino.org/r/gitweb?p=ta%2Fcaas-danm.git;a=summary
https://github.com/nokia/danm
https://github.com/coreos/flannel
https://github.com/intel/sriov-network-device-plugin
https://github.com/intel/sriov-network-device-plugin
https://gerrit.akraino.org/r/admin/repos/ta/caas-etcd
https://gerrit.akraino.org/r/gitweb?p=ta%2Fcaas-etcd.git;a=summary
https://github.com/etcd-io/etcd
https://gerrit.akraino.org/r/admin/repos/ta/caas-helm
https://gerrit.akraino.org/r/gitweb?p=ta%2Fcaas-helm.git;a=summary
https://github.com/helm/helm
https://gerrit.akraino.org/r/admin/repos/ta/caas-install
https://gerrit.akraino.org/r/gitweb?p=ta%2Fcaas-helm.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/caas-kubedns
https://gerrit.akraino.org/r/gitweb?p=ta%2Fcaas-kubedns.git;a=summary
https://github.com/kubernetes/dns
https://github.com/kubernetes/dns
https://gerrit.akraino.org/r/admin/repos/ta/caas-kubernetes
https://gerrit.akraino.org/r/gitweb?p=ta%2Fcaas-kubernetes.git;a=summary
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://gerrit.akraino.org/r/admin/repos/ta/caas-lcm
https://gerrit.akraino.org/r/gitweb?p=ta%2Fcaas-lcm.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/caas-logging
https://gerrit.akraino.org/r/gitweb?p=ta%2Fcaas-logging.git;a=summary
https://github.com/fluent/fluentd
https://github.com/fluent/fluentd
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://gerrit.akraino.org/r/admin/repos/ta/caas-metrics
https://gerrit.akraino.org/r/gitweb?p=ta%2Fcaas-metrics.git;a=summary
https://github.com/kubernetes-incubator/metrics-server
https://github.com/prometheus
https://github.com/kubernetes-incubator/custom-metrics-apiserver
https://gerrit.akraino.org/r/admin/repos/ta/caas-registry
https://gerrit.akraino.org/r/gitweb?p=ta%2Fcaas-registry.git;a=summary
https://github.com/docker/distribution
https://github.com/docker/distribution
https://github.com/openstack/swift
https://gerrit.akraino.org/r/admin/repos/ta/caas-security
https://gerrit.akraino.org/r/gitweb?p=ta%2Fcaas-security.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/caas-storage
https://gerrit.akraino.org/r/gitweb?p=ta%2Fcaas-storage.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/ansible-role-ntp
https://gerrit.akraino.org/r/gitweb?p=ta%2Fansible-role-ntp.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/hw-detector
https://gerrit.akraino.org/r/gitweb?p=ta%2Fhw-detector.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/image-provision
https://gerrit.akraino.org/r/gitweb?p=ta%2Fimage-provision.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/infra-ansible
https://gerrit.akraino.org/r/gitweb?p=ta%2Finfra-ansible.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/ipa-deployer
https://gerrit.akraino.org/r/gitweb?p=ta%2Fipa-deployer.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/ironic-virtmedia-driver
https://gerrit.akraino.org/r/gitweb?p=ta%2Fironic-virtmedia-driver.git;a=summary
https://gerrit.akraino.org/r/admin/repos/q/filter:ta%252Fopenstack-ansible
https://github.com/openstack/openstack-ansible
https://gerrit.akraino.org/r/admin/repos/ta/os-net-config
https://gerrit.akraino.org/r/gitweb?p=ta%2Fos-net-config.git;a=summary
https://github.com/openstack/os-net-config

 (): ta/python-ilorest-library tree view forked from . Used to remotely manage the iLO and iLO https://github.com/HewlettPackard/python-ilorest-library
Chassis Manager based HPE servers.

 (): ta/start-menu tree view The installation menu which is used to configure the external IP of the installation controller and starting the installation after
the user-config is copied to the installation controller

 (): ta/storage tree view this project stores the static disk partitioning configuration for the root disk of all the supported deployment variants’

 (): ta/ironic tree view Patched version of openstack ironic that supports setting boot media to floppy. Used for L3 provisioning on certain hardware. (https://
,)github.com/openstack/ironic https://github.com/rdo-packages/ironic-distgit

 (): ta/ironicclient tree view Patched version of openstack ironicclient that adds the support for floppy.(, https://github.com/openstack/python-ironicclient http
)s://github.com/rdo-packages/ironicclient-distgit

Middleware services

AAA

 (): ta/access-management tree view code of the AAA middleware service lives here

 ():ta/python-peewee tree view A small, expressive ORM written in python () - this repository just packages the https://github.com/coleifer/peewee
upstream code into CentOS RPM

CLI

 (): ta/hostcli tree view this repo holds the code for the pluggable AKREC CLI framework. The CLI connects to the infra REST API

 ():ta/lockcli tree view CLI for global system locks

Config Manager

 (): ta/cm-plugins tree view cm plugins store all the existing AKREC plugins slotted into the configuration manager framework. There are four distinct
plugin types:

validators are responsible to ensure only semantically correct configuration changes are admitted into the configuration manager server’s
backend (that is, Redis)
userconfighandlers can mutate the content of a user’s configuration change based on domain-specific policies
inventoryhandlers are responsible to create Ansible inventories from the configuration data. Ansible inventories are consumed by the Deployer
playbooks
activators are invoked when something was changed in the data of their respective domain. These plugins are responsible for executing run-time
changes in the system, based on the submitted config data changes

 ()ta/distributed-state-server tree view : a service for persistent state management. It is used to store/share the state information between multiple nodes.
It uses either etcd or file-based backend. CM uses it to store e.g. the configuration activation state.

 (): ta/config-manager tree view the framework of the configuration manager is located in this repo

 ():ta/monitoring tree view A set of components related to virtual IP management, database bootstrapping

REST framework

 (): ta/yarf tree view “Yet-Another-REST-Framework” is -as the name suggests- the pluggable framework implementing the AKREC north-bound
management API

Installation

 (): ta/remote-installer tree view install REC from an ISO image

https://gerrit.akraino.org/r/admin/repos/ta/python-ilorest-library
https://gerrit.akraino.org/r/gitweb?p=ta%2Fpython-ilorest-library.git;a=summary
https://github.com/HewlettPackard/python-ilorest-library
https://gerrit.akraino.org/r/admin/repos/ta/start-menu
https://gerrit.akraino.org/r/gitweb?p=ta%2Fstart-menu.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/storage
https://gerrit.akraino.org/r/gitweb?p=ta%2Fstorage.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/ironic
https://gerrit.akraino.org/r/gitweb?p=ta%2Fironic.git;a=summary
https://github.com/openstack/ironic
https://github.com/openstack/ironic
https://github.com/rdo-packages/ironic-distgit
https://gerrit.akraino.org/r/admin/repos/ta/ironicclient
https://gerrit.akraino.org/r/gitweb?p=ta%2Fironicclient.git;a=summary
https://github.com/openstack/python-ironicclient
https://github.com/rdo-packages/ironicclient-distgit
https://github.com/rdo-packages/ironicclient-distgit
https://gerrit.akraino.org/r/admin/repos/ta/access-management
https://gerrit.akraino.org/r/gitweb?p=ta%2Faccess-management.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/python-peewee
https://gerrit.akraino.org/r/gitweb?p=ta%2Fpython-peewee.git;a=summary
https://github.com/coleifer/peewee
https://gerrit.akraino.org/r/admin/repos/ta/hostcli
https://gerrit.akraino.org/r/gitweb?p=ta%2Fhostcli.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/lockcli
https://gerrit.akraino.org/r/gitweb?p=ta%2Flockcli.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/cm-plugins
https://gerrit.akraino.org/r/gitweb?p=ta%2Fcm-plugins.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/distributed-state-server
https://gerrit.akraino.org/r/gitweb?p=ta%2Fdistributed-state-server.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/config-manager
https://gerrit.akraino.org/r/gitweb?p=ta%2Fconfig-manager.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/monitoring
https://gerrit.akraino.org/r/gitweb?p=ta%2Fmonitoring.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/yarf
https://gerrit.akraino.org/r/gitweb?p=ta%2Fyarf.git;a=summary
https://gerrit.akraino.org/r/admin/repos/ta/remote-installer
https://gerrit.akraino.org/r/gitweb?p=ta%2Fremote-installer.git;a=summary

	Gerrit Code Repository Overview

