
Akraino Security Development Lifecycle

Overview
Akraino SDL Roles

Security training
Requirements

Verify if the project is subject to SDL policies
Security bug reporting tools
Security bug bar
3rd-party code licensing security requirements
Security Plan
Cost Analysis

Design
Risk Analysis

STRIDE threat model analysis
NEAT security user experience

Best Practices
Secure design principles
Security design review
Security architecture
Assets & threat actors identified and addressed
Identity and Access Management
API Security
Cryptograph
Security Analysis
Data Protection
Confidentiality
Integrity
Availability

Implementation
Common types of vulnerable implementations
Hardening
Securely reuse
Deprecate unsafe functions
Use approved tools
Static code analysis

Verification
Release

Incident Response Plan
Final security review
Release/Archive

Response
References

Overview

Akraino SDL Roles

Security advisor/Privacy advisor

Auditor
Expert

Team security champion/privacy champion

Negotiate, accept, and track of minimum security and privacy requirements
Maintain clear lines of communication with advisors and decision makers

Security training
Secure design
Threat modeling
Secure coding
Security testing
Privacy
Security response processes

Requirements

Verify if the project is subject to SDL policies

Deployed in a business or enterprise environment
Processes personally identifiable information (PII) or other sensitive information
Communicates regularly over the Internet or other network

Security bug reporting tools

Security bug effects

Not a Security Bug
Spoofing
Tampering
Repudiation
Information Disclosure
Denial of Service
Elevation of Privilege

Security bug cause

Not a security bug
Buffer overflow/underflow
Arithmetic error (for example, integer overflow)
SQL/Script injection
Directory traversal
Race condition
Cross-site scripting
Cryptographic weakness
Weak authentication
Weak authorization/Inappropriate permission or access control list (ACL)
Ineffective secret hiding
Unlimited resource consumption (Denial of Service [DoS])
Incorrect/No error messages
Incorrect/No pathname canonicalization
Other

Security bug bar

3rd-party code licensing security requirements

Security Plan

Team training
Threat modeling
Security push
Final security review

Cost Analysis

Security risk assessment
What portions of the project will require threat models before release.
What portions of the project will require security design reviews before release.
What portions of the project will require penetration testing (pen testing)
Any additional testing or analysis requirements the security advisor deems necessary to mitigate security risks.
Clarification of the specific scope of fuzz testing requirements

Project privacy impact rating
P1 high privacy risk
P2 Moderate privacy risk
P3 Low privacy risk

Design

Risk Analysis

STRIDE threat model analysis

STRIDE:

Spoofing of user identity
Tampering
Repudiation
Information disclosure (privacy breach or data leak)
Denial of service
Elevation of privilege

Threats and vulnerabilities
External code
Threat models
Design review for P1 privacy projects
Detail privacy analysis

NEAT security user experience

Necessary
Explained
Actionable
Tested

Best Practices

Secure design principles

•Secure defaults
•Defense-in-depth
•Separation of privilege
•Least privilege
•Least common mechanism
•Psychological acceptability
•Minimize default attack surface
•Input validation with whitelists

Security design review

• Individual projects ensures their code passes security tests suits.

• Akraino Stack people models individual projects, and conduct model checking (using dafny) for fault tolerance and information flow properties.

Security architecture

•Attack surface measurement
•Product structure or layering

Assets & threat actors identified and addressed

Identity and Access Management

Akraino , if not integrated with the Operator's Identity and Access Management system, support the creation of multiple IDs so that individual MUST
accountability can be supported.
Akraino allow the Operator to restrict access based on the assigned permissions associated with an ID in order to support Least Privilege (no more MUST
privilege than required to perform job functions).
Each architectural layer of Akraino (eg. operating system, network, application) support access restriction independently of all other layers so that MUST
Segregation of Duties can be implemented.
Akraino allow the assumption of the permissions of another account to mask individual accountability. For example, use SUDO when a user MUST NOT
requires elevated permissions such as root or admin.
Akraino set the default settings for user access to deny authorization, except for a super user type of account. When Akraino is installed, nothing MUST
should be able to use it until the super user configures Akraino to allow other users (human and application) have access.
Akraino support strong authentication, also known as multifactor authentication, on all protected interfaces exposed by Akraino for use by human MUST
users. Strong authentication uses at least two of the three different types of authentication factors in order to prove the claimed identity of a user. # Look at
making this MUST for infrastructure and SHOULD for other areas #
Akraino disable unnecessary or vulnerable programs. # Completely disallow cgi-bin #MUST cgi-bin
Akraino provide access controls that allow the Operator to restrict access to Akraino functions and data to authori zed entities. # Least privilege #MUST
Akraino support OAuth 2.0 authorization using an external Authorization Server.SHOULD
Akraino , if not integrated with the Operator's Identity and Access Management system, support configurable length and password expiration.MUST
Akraino , if not integrated with the Operator's Identity and Access Management system, support Role-Based Access Control to enforce least MUST
privilege.
Akraino , if not integrated with the Operator's Identity and Access Management system, comply with "password complexity" policy. When passwords MUST
are used, they shall be complex and shall at least meet the following password construction requirements: (1) be a minimum configurable number of
characters in length, (2) include 3 of the 4 following types of characters: upper-case alphabetic, lower-case alphabetic, numeric, and special, (3) not be the
same as the UserID with which they are associated or other common strings as specified by the environment, (4) not contain repeating or sequential
characters or numbers, (5) not to use special characters that may have command functions, and (6) new passwords must not contain sequences of three
or more characters from the previous password.
Akraino MUST not store authentication credentials to itself in clear text or any reversible form and must use salting.
Akraino , if not integrated with the Operator's Identity and Access Management system, support the ability to disable the userID after a configurable MUST
number of consecutive unsuccessful authentication attempts using the same userID.
Akraino , if not integrated with the Operator's identity and access management system, authenticate all access to protected GUIs, CLIs, and APIs.MUST
Note: I (could) read this like: "if I integrate with operator's IdAM then I don't need to do anything on authentication". Maybe improve wording…
Akraino integrate with standard identity and access management protocols such as LDAP, TACACS+, Windows Integrated Authentication MUST
(Kerberos), SAML federation, or OAuth 2.0.
Akraino have the capability of allowing the Operator to create, manage, and automatically provision user accounts using an Operator approved MUST
identity lifecycle management tool using a standard protocol.
Akraino support account names that contain at least A-Z, a-z, 0-9 character sets and be at least 6 characters in length.MUST
A failed authentication attempt identify the reason for the failure to the user, only that the authentication failed.MUST NOT
Akraino display "Welcome" notices or messages that could be misinterpreted as extending an invitation to unauthorized users.MUST NOT
Akraino provide a means for the user to explicitly logout, thus ending that session for that authenticated user.MUST
Akraino , if not integrated with the Operator's Identity and Access Management system, or enforce a configurable "terminate idle sessions" policy by MUST
terminating the session after a configurable period of inactivity.

•Strong log-out and session management

API Security

This section covers API security requirements when these are used by the Akraino. Key security areas covered in API security are Access Control,
Authentication, Passwords, PKI Authentication Alarming, Anomaly Detection, Lawful Intercept, Monitoring and Logging, Input Validation, Cryptography,
Business continuity, Biometric Authentication, Identification, Confidentiality and Integrity, and Denial of Service.
The solution in a virtual environment needs to meet the following API security requirements:
Akraino integrate with the Operator's authentication and authorization services (e.g., IDAM).Note: Should specify explicitly what has to be SHOULD
supported.
Akraino implement the following input validation control: Check the size (length) of all input. Do not permit an amount of input so great that it would MUST
cause Akraino to fail. Where the input may be a file, Akraino API must enforce a size limit.
Akraino implement the following input validation controls: Do not permit input that contains content or characters inappropriate to the input expected MUST
by the design. Inappropriate input, such as SQL expressions, may cause the system to execute undesirable and unauthorized transactions against the
database or allow other inappropriate access to the internal network (injection attacks).
Akraino implement the following input validation control on APIs: Validate that any input file has a correct and valid Multipurpose Internet Mail MUST
Extensions (MIME) type. Input files should be tested for spoofed MIME types.

Cryptograph

This section covers Akraino cryptography requirements that are mostly applicable to encryption or protocol methods.
Akraino support an automated certificate management protocol such as CMPv2, Simple Certificate Enrollment Protocol (SCEP) or Automated SHOULD
Certificate Management Environment (ACME).Notes:- Possibly also: Akraino should support installing certificates as part of configuration data, ie "offline
enrollment"?- For Akraino we could list explicitly which protocols MUST be supported- Security architecture to define that only AAF certman need to
support interface to CA (I think)
Akraino provide the capability to integrate with an external encryption service.Note: Security architecture work: Which use cases, which protocolSHOULD
(s)
Akraino use symmetric keys of at least 112 bits in length.MUST
Akraino use asymmetric keys of at least 2048 bits in length.MUST
Akraino provide the capability to configure encryption algorithms or devices so that they comply with the laws of the jurisdiction in which there are MUST
plans to use data encryption.
Akraino provide the capability of allowing certificate renewal and revocation.MUST
Akraino provide the capability of testing the validity of a digital certificate by validating the CA signature on the certificate.MUST
Akraino provide the capability of testing the validity of a digital certificate by validating the date the certificate is being used is within the validity MUST
period for the certificate.
Akraino provide the capability of testing the validity of a digital certificate by checking the Certificate Revocation List (CRL) for the certificates of that MUST
type to ensure that the certificate has not been revoked.
Akraino provide the capability of testing the validity of a digital certificate by recognizing the identity represented by the certificate - the MUST
"distinguished name".
Akraino support HTTP/S using TLS v1.2 or higher with strong cryptographic ciphers.MUST
Akraino support the use of X.509 certificates issued from any Certificate Authority (CA) that is compliant with RFC5280, e.g., a public CA such as MUST
DigiCert or Let's Encrypt, or an RFC5280 compliant Operator CA.Note: Akraino provider cannot require the use of self-signed certificates in an Operator's
run time environment.

Akraino use AES for symmetric enc/dec.SHOULD

Akraino use RSA for asymmetric enc/dec and signatures.SHOULD

Akraino use SHA-256 or better for hashing and message-authentication codes.MUST

Akraino support certificate revocation.MUST

Akraino limit lifetimes for symmetric keys and asymmetric keys without associated certificates.MUST

Akraino support cryptographically secure versions of SSL (support SSL v2).MUST must not

Akraino use cryptographic certificates reasonably and choose reasonable certificate validity periods.SHOULD

Akraino check the Common Name attribute to be sure it matches the host with which you intended to communicate.SHOULD

Security Analysis

This section covers Akraino security analytics requirements that are mostly applicable to security monitoring. The Akraino Security Analytics cover the
collection and analysis of data following key areas of security monitoring:

Anti-virus software
Logging
Data capture
Tasking
DPI
API based monitoring
Detection and notification
Resource exhaustion detection
Proactive and scalable monitoring
Closed loop monitoring
Interfaces to management and orchestration
Malformed packet detections
Service chaining
Dynamic security control
Dynamic load balancing
Connection attempts to inactive ports (malicious port scanning)

The following requirements of security monitoring need to be met by the solution in a virtual environment.
Akraino support Real-time detection and notification of security events.MUST
Akraino support Integration functionality via API/Syslog/SNMP to other functional modules in the network (e.g., PCRF, PCEF) that enable dynamic MUST
security control by blocking the malicious traffic or malicious end users.Note: PCRF, PCEF are not good examples here à to be changed or removed
Akraino support API-based monitoring to take care of the scenarios where the control interfaces are not exposed, or are optimized and proprietary MUST
in nature.
Akraino support detection of malformed packets due to software misconfiguration or software vulnerability, and generate an error to the syslog MUST
console facility.
Akraino support proactive monitoring to detect and report the attacks on resources so that Akraino's and associated VMs can be isolated, such as MUST
detection techniques for resource exhaustion, namely OS resource attacks, CPU attacks, consumption of kernel memory, local storage attacks.
Akraino operate with anti-virus software which produces alarms every time a virus is detected.SHOULD
Akraino protect all security audit logs (including API, OS and application-generated logs), security audit software, data, and associated MUST
documentation from modification, or unauthorized viewing, by standard OS access control mechanisms, by sending to a remote system, or by encryption.
Akraino log successful and unsuccessful authentication attempts, e.g., authentication associated with a transaction, authentication to create a MUST
session, authentication to assume elevated privilege.
Akraino log logoffs.MUST
Akraino log starting and stopping of security logging.MUST
Akraino log success and unsuccessful creation, removal, or change to the inherent privilege level of users.MUST
Akraino log connections to the network listeners of the resource.MUST
Akraino log the field "event type" in the security audit logs.MUST
Akraino log the field "date/time" in the security audit logs.MUST
Akraino log the field "protocol" in the security audit logs.MUST
Akraino log the field "service or program used for access" in the security audit logs.MUST
Akraino log the field "success/failure" in the security audit logs.MUST
Akraino log the field "Login ID" in the security audit logs.MUST
Akraino include an authentication credential, e.g., password, in the security audit logs, even if encrypted.MUST NOT
Akraino detect when its security audit log storage medium is approaching capacity (configurable) and issue an alarm.MUST
Akraino support the capability of online storage of security audit logs.MUST
Akraino activate security alarms automatically when a configurable number of consecutive unsuccessful login attempts is reached.MUST
Akraino activate security alarms automatically when it detects the successful modification of a critical system or application file.MUST
Akraino activate security alarms automatically when it detects an unsuccessful attempt to gain permissions or assume the identity of another user.MUST
Akraino include the field "date" in the Security alarms (where applicable and technically feasible).MUST
Akraino include the field "time" in the Security alarms (where applicable and technically feasible).MUST
Akraino include the field "service or program used for access" in the Security alarms (where applicable and technically feasible).MUST
Akraino include the field "success/failure" in the Security alarms (where applicable and technically feasible).MUST
Akraino include the field "Login ID" in the Security alarms (where applicable and technically feasible).MUST
Akraino restrict changing the criticality level of a system security alarm to users with administrative privileges.MUST
Akraino monitor API invocation patterns to detect anomalous access patterns that may represent fraudulent access or other types of attacks, or MUST
integrate with tools that implement anomaly and abuse detection.
Akraino generate security audit logs that can be sent to Security Analytics Tools for analysis.MUST
Akraino log successful and unsuccessful access to Akraino resources, including data.MUST
Akraino support the storage of security audit logs for a configurable period of time.MUST
Akraino have security logging for Akraino applications/services and their OSs be active from initialization. Audit logging includes automatic routines MUST
to maintain activity records and cleanup programs to ensure the integrity of the audit/logging systems.
Akraino be implemented so that it is not vulnerable to OWASP Top 10 web application security risks.MUST
Akraino protect against all denial of service attacks, both volumetric and non-volumetric, or integrate with external denial of service protection tools.MUST
Akraino be capable of automatically synchronizing the system clock daily with the Operator's trusted time source, to assure accurate time reporting MUST
in log files. It is recommended that Coordinated Universal Time (UTC) be used where possible, so as to eliminate ambiguity owing to daylight savings time.
Akraino log the Source IP address in the security audit logs.MUST
Akraino have the capability to securely transmit the security logs and security events to a remote system before they are purged from the system.MUST
Akraino provide the capability of maintaining the integrity of its static files using a cryptographic method.SHOULD
Akraino log automated remote activities performed with elevated privileges.MUST

Data Protection

This section covers Akraino data protection requirements that are mostly applicable to security monitoring.
Akraino provide the capability to restrict read and write access to data handled by Akraino.MUST
Akraino Provide the capability to encrypt data in transit on a physical or virtual network.MUST
Akraino provide the capability to encrypt data on non-volatile memory. Non-volative memory is storage that is capable of retaining data without MUST
electrical power, e.g. Complementary metal-oxide-semiconductor (CMOS) or hard drives.
Akraino disable the paging of the data requiring encryption, if possible, where the encryption of non-transient data is required on a device for SHOULD
which the operating system performs paging to virtual memory. If not possible to disable the paging of the data requiring encryption, the virtual memory
should be encrypted.
Akraino use NIST and industry standard cryptographic algorithms and standard modes of operations when implementing cryptography.MUST
Akraino use compromised encryption algorithms. For example, SHA, DSS, MD5, SHA-1 and Skipjack algorithms. Acceptable algorithms can MUST NOT
be found in the NIST FIPS publications () and in the NIST Special Publications ().https://csrc.nist.gov/publications/fips https://csrc.nist.gov/publications/sp
Akraino use, whenever possible, standard implementations of security applications, protocols, and formats, e.g., S/MIME, TLS, SSH, IPSec, X.509 MUST
digital certificates for cryptographic implementations. These implementations must be purchased from reputable vendors or obtained from reputable open
source communities and must not be developed in-house.
Akraino provide the ability to migrate to newer versions of cryptographic algorithms and protocols with minimal impact.MUST
Akraino support digital certificates that comply with X.509 standards.Note: Security architecture should define all the use cases for certificatesMUST
Akraino use keys generated or derived from predictable functions or values, e.g., values considered predictable include user identity MUST NOT
information, time of day, stored/transmitted data.
Akraino provide the capability of using X.509 certificates issued by an external Certificate Authority.MUST
Akraino be capable of protecting the confidentiality and integrity of data at rest and in transit from unauthorized access and modification.Note: Either MUST
as part of req, or separately: specify to protect the data; can be different approach for:- keys/secrets- DBs- configuration data- logs- …how

https://csrc.nist.gov/publications/fips
https://csrc.nist.gov/publications/sp

Confidentiality

Passwords stored on server as iterated salted hashes using bcrypt
Remember me token: Cryptographic nonce is stored on client & bcrypt digest stored on server
Email addresses only revealed to owner & admins
HTTPS

Integrity

HTTPS
Data modification requires authorization
Modifications to official application requires authentication

Availability

Cloud & CDN deployment
Timeout
Can return to operation quickly after DDOS attack stops
Login disabled mode
Multiple backups

Implementation

Common types of vulnerable implementations

OWASP top 10 Vulnerabilities

Injection (including SQL injection)
Auth & session
XSS (Esp. SafeBuffer)
Insecure object references
Security misconfiguration
Sensitive data exposure
Missing access control
CSRF
Known vulnerabilities
Unvalidated redirect/fwd
XXE (2017 A4)
Insecure Deserialization (2017 A8)
Insufficient logging and monitoring (2017 A10)

Hardening

Force HTTPS, including via HSTS (Http strict transport security)
Hardened outgoing HTTP headers, including restrictive CSP
HTTP-only Cookies
User secure cookie over HTTPS
CSRF token hardening
Incoming rate limits
Address Space Layout Randomization (ASLR)
Harden or disable XML entity resolution
Load DLLs securely
Reflection and authentication relay defense
Safe redirect, online only
Do not use the Javascript eval() or equivalent functions
Integer overflow/underflow
Input validation and handling
Encrypted email addresses
Gravatar restricted

Securely reuse

Review before use
Get authentic version
Use package manager

Deprecate unsafe functions

Use approved tools

Static code analysis

Verification
Recommended tools:

Tool
Name

Description License

Static
analysis

Coverity This tool finds defects and security vulnerabilities in custom source code written in C, C++, Java, C#, JavaScript and more

Coverity Scan is a free static-analysis cloud-based service for the open source community

Commerci
al

SonarQube SonarQube (formerly Sonar)[1] is an open-source platform developed by SonarSource for continuous inspection of code quality t
o perform automatic reviews with static analysis of code to detect bugs, code smells, and security vulnerabilities

GNU
LGPL

Veracode Veracode provides multiple security analysis technologies on a single platform, including , , static analysis dynamic analysis
mobile application behavioral analysis and software composition analysis. Evaluated by AT&T

Fortify Used by AT&T

Helix QAC Helix QAC is the most accurate static code analyzer for C and C++.

CodeSonar CodeSonar performs a unified dataflow and symbolic execution analysis that examines the computation of the entire program.

MISRA MISRA and the associated tools. Should we conform with MISRA standard?

Dynami
c
analysis

IBM Security
AppScan

Evaluated by AT&T Commerci
al

Fortify
WebInspect

Used by AT&T Commerci
al

VeraCode Veracode provides multiple security analysis technologies on a single platform, including , , static analysis dynamic analysis
mobile application behavioral analysis and software composition analysis.

Commerci
al

angr angr is a platform-agnostic binary analysis framework. It performs

Disassembly and intermediate-representation lifting
Program instrumentation
Symbolic execution
Control-flow analysis
Data-dependency analysis
Value-set analysis (VSA)
Decompilation

Valgrind Valgrind tool suite provides a number of debugging and profiling tools. GPLv2

KLEE KLEE is a symbolic virtual machine built on top of the LLVM compiler infrastructure, and available under the UIUC open source
license.

LLVM/Clang
Sanitizers

It is a fast memory error detector. It consists of a compiler instrumentation module and a run-time library. The tool can detect the
following types of bugs:

AddressSanitizer (detects addressability issues) and (detects memory leaks)LeakSanitizer
ThreadSanitizer (detects data races and deadlocks) for and C++ Go
MemorySanitizer (detects use of uninitialized memory)

FlowDroid
(Java)

FlowDroid is a static taint analysis tool, it could be leveraged to scan context-, flow-, field-, object-sensitive and lifecycle-aware
Java Bytecode.

Pen test Metasploit
Framework

The Metasploit Project is a computer security project that provides information about security vulnerabilities and aids in
penetration testing and IDS signature development.

BSD

OWASP Zed
Attack Proxy
(ZAP)

OWASP ZAP is an open-source web application security scanner. Apache

Autosploit AutoSploit attempts to automate the exploitation of remote hosts.

Armitage Armitage is a graphical cyber attack management tool for the Metasploit.

https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Open-source_model
https://en.wikipedia.org/wiki/SonarQube#cite_note-1
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/SonarSource
https://en.wikipedia.org/wiki/Software_quality
https://en.wikipedia.org/wiki/Static_program_analysis
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Code_smell
https://en.wikipedia.org/wiki/Static_program_analysis
https://en.wikipedia.org/wiki/Web_application_security_scanner
https://www.grammatech.com/products/codesonar
https://en.wikipedia.org/wiki/Static_program_analysis
https://en.wikipedia.org/wiki/Web_application_security_scanner
http://valgrind.org/
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://github.com/google/sanitizers/wiki/ThreadSanitizerGoManual
https://github.com/google/sanitizers/wiki/MemorySanitizer

cisco-global-
exploiter

Cisco Global Exploiter (CGE), is an advanced, simple and fast security testing tool .

BURP suite

Postman Browser plugin (to add details as to how to integrate with CI/CDRandy Stricklin

Fuzzing
test

OSS-Fuzz OSS-Fuzz conducts continuous fuzzing of open source softwares. Apache

AFL American fuzzy lop is a fuzzer that employs genetic algorithms in order to efficiently increase code coverage of the test cases.

https://github.com/mirrorer/afl

Apache

Vulnera
bility
analysis

JFrog XRay Used by AT&T. For container, npm, RPM, and debian etc artifacts vulnerability scan Commerci
al

CoreOS Clair Clair is an open source project for the static analysis of vulnerabilities in application containers (currently including appcand docker
).

Apache

Cybellum Cybellum V-Ray ™. Gives full component visibility and risk assessment, based on automated vulnerability detection.

GrammaTech
CodeSonar

Source code and binary level static analysis

ClamAV Anti-virus Open
source

NMAP Discover hosts and services on a computer network by sending packets and analyzing the responses. Modified
GPLv2

OpenVAS The OpenVAS scanner is a comprehensive vulnerability assessment system that can detect security issues in all manner of
servers and network devices.

Wireshark Wireshark is a free and open-source packet analyzer. It is used for network troubleshooting, analysis, software and
communications protocol development, and education.

Nessus
Professional

Nessus helps the security pros on the front lines quickly and easily identify and fix vulnerabilities - including software flaws,
missing patches, malware, and misconfigurations.

John the
Ripper

John the Ripper is a free password cracking software tool.

Stress
Test

SlowHTTPTe
st

SlowHTTPTest is a highly configurable tool that simulates some Application Layer Denial of Service attacks by prolonging HTTP
connections in different ways.

Apache

MoonGen
with DPDK

Fast and flexible packet generator for 10 Gbit/s Ethernet and beyond. MoonGen uses hardware features for accurate and precise
latency measurements and rate control.

MIT

Pktgen with
DPDK

Pktgen is a traffic generator powered by Intel's DPDK at 10Gbit wire rate traffic with 64 byte frames.

Full
stack
test

Lynis

OpenSCAP

Lynis is a free and open source security and auditing tool.

OpenSCAP is used by OPNFV for security scan

Kali Linux is a Linux distribution containing 300+ penetration tool. This distribution can be used for testing external attacks on
Akraino systems.

TODO: For a complete system test we may need to define a test diagram similar to this https://insights.sei.cmu.edu/sei_blog
 which should encompass all our tests and describe tests hierarchy and test /07092018_testingtools_scanlon_figure2_2.png

strategy.

GPLv3

GPLv2

Platform Currently, there are no open source tools for platform security verification available for Arm platforms. Arm provides Server Base
Security Guide (SBSG) which is specifying security requirements and guidance for SBSA/SBBR class systems: https://developer.

 arm.com/docs/den0086/latest

Release

Incident Response Plan

An identified sustained engineering team

https://tools.kali.org/vulnerability-analysis/cisco-global-exploiter
https://tools.kali.org/vulnerability-analysis/cisco-global-exploiter
https://wiki.akraino.org/display/~rs7776
https://dl.acm.org/citation.cfm?id=3138820
https://github.com/mirrorer/afl
https://en.wikipedia.org/wiki/Static_program_analysis
https://github.com/appc/spec
https://github.com/docker/docker/blob/master/image/spec/v1.2.md
https://github.com/docker/docker/blob/master/image/spec/v1.2.md
https://tools.kali.org/stress-testing/slowhttptest
https://tools.kali.org/stress-testing/slowhttptest
https://cisofy.com/solutions/#lynis
https://www.kali.org/
https://insights.sei.cmu.edu/sei_blog/07092018_testingtools_scanlon_figure2_2.png
https://insights.sei.cmu.edu/sei_blog/07092018_testingtools_scanlon_figure2_2.png
https://developer.arm.com/docs/den0086/latest
https://developer.arm.com/docs/den0086/latest

1.
2.
3.

On-call contacts with decision-making authority
Security servicing plan for code inherited from other group
Security servicing plan for licensed 3rd-party code

Final security review

Examination of

Threat models
Exception requests
Tool output
Performance against the previously determined quality gates or bug bars

FSR outcome

Passed FSR
Passed FSR with exceptions
FSR with escalation

Release/Archive

Certify
Archive all pertinent information and data

Response
Security servicing and response execution

References
Microsoft Security Development Lifecycle (SDL) Process Guidance - Version 5.2
Core Infrastructure Initiative best practices badge - security
ONAP Security Best Practices

https://download.microsoft.com/download/3/4/3/343BAFCB-C685-4A70-9639-FF76BCBB609C/Microsoft%20SDL_Version%205.2.docx
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/security.md
https://wiki.onap.org/pages/viewpage.action?pageId=15995347

	Akraino Security Development Lifecycle

