
User Documentation

Introduction
License
How to use this document
Deployment architecture
Pre-Installation Requirements

Resource Requirements
Pre-Requisites for Deploying to AWS
Pre-Requisites for Deploying to Bare Metal

Minimum hardware requirements
Other installation requirements

Network requirements
Bare metal node requirements

Pre-Requisites for Deploying to Google Cloud Platform
Pre-Requisites for Deploying to Libvirt

Minimum hardware requirements
Network requirements
Jump host requirements

Installation high level overview
Virtual deployment guide

Create site for AWS and GCP
00_install-config
01_cluster_mods
02_cluster_addons and 03_services

How to deploy on AWS and GCP
CLI tool
Secrets
1. Fetch requirements for a site.
2. Prepare manifests for a site
3. Deploy the cluster
4. Apply workloads

Bare metal deployment guide
Create site for Baremetal

ha-lab-ipmi-creds.yaml:
install-config.name.patch.yaml: https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/community.
baremetal.edge-sites.net/00_install-config/install-config.name.patch.yaml
install-config.patch.yaml : https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/community.
baremetal.edge-sites.net/00_install-config/install-config.patch.yaml
site-config.yaml: https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/community.baremetal.edge-
sites.net/00_install-config/site-config.yaml

Setup installer node
Fetch requirements
Prepare manifests
Deploy masters
Deploy workers
Accessing the Cluster

libvirt deployment guide
Create site for virtual baremetal

install-config.name.patch.yaml: https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/testing.
baremetal.edge-sites.net/00_install-config/install-config.name.patch.yaml
install-config.patch.yaml : https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/testing.baremetal.
edge-sites.net/00_install-config/install-config.patch.yaml

Setup installer node
Fetch requirements
Prepare manifests
Deploy masters
Deploy workers

Verifying the setup
Developer guide and troubleshooting
Uninstall guide

Manual
Automated (Baremetal / virtual baremetal only)

Introduction
This document describes how to deploy blueprints from Akraino's KNI Blueprint Family. It is common to all blueprints in that family, unless otherwise noted.

License
All our code is released under Apache license: https://www.apache.org/licenses/LICENSE-2.0.html

https://www.apache.org/licenses/LICENSE-2.0.html

How to use this document
This document describes the generic installation for our KNI blueprint family. Specific documentation is provided for Provider Access Edge and Industrial
Edge blueprints. See KNI PAE Installation Guide

Deployment architecture
See KNI PAE Architecture document

Pre-Installation Requirements

Resource Requirements

The resource requirements for deployment depend on the specific blueprint and deployment target. Please see:

Provider Access Edge (PAE)
Industrial Edge blueprint

Pre-Requisites for Deploying to AWS

For deploying a KNI blueprint to AWS, you need to

add a public hosted DNS zone for the cluster to Route53,
validate your AWS quota in the chosen region is sufficient,
set up an API user account with the necessarily IAM privileges.

Please see the for details. upstream documentation

Store the and in a credentials file inside $HOME/.aws, with the following format:aws-access-key-id aws-secret-access-key

[default]
aws_access_key_id=xxx
aws_secret_access_key=xxx

Pre-Requisites for Deploying to Bare Metal

The baremetal UPI install can be optionally automated when using knictl (see below). When attempting a manual baremetal UPI install, however, please
be sure to read: https://docs.openshift.com/container-platform/4.4/installing/installing_bare_metal/installing-bare-metal.html

Minimum hardware requirements

This is minimal configuration example where only 3 servers are used. Servers and their role are given in below table.

S
e
r
v
e
r#

Ro
le

Purpose

1 Ins
tall
er
no
de

This host is used for remotely installing and configuring master and worker node. This server also hosts bootstrap node on KVM-QEMU using
libvirt. Several components like- HAProxy, DNS server, DHCP server for provisioning and baremetal network, CoreDNS, Matchbox,
Terraform, IPMItool, TFTPboot are configured on this server. Since cluster coreDNS is running from here, this node will be required later as
well.

2 Ma
ste
r
no
de

This is control plane or master node of K8s cluster that is based on openshift 4.x.

3 Wo
rke
r
no
de

This is worker node which hosts the application.

https://wiki.akraino.org/display/AK/KNI+PAE+Installation+Guide
https://wiki.akraino.org/display/AK/KNI+PAE+Architecture+document
https://wiki.akraino.org/display/AK/Provider+Access+Edge+%28PAE%29+Blueprint
https://wiki.akraino.org/display/AK/Industrial+Edge+%28IE%29+Blueprint
https://github.com/openshift/installer/blob/master/docs/user/aws/README.md
https://docs.openshift.com/container-platform/4.1/installing/installing_bare_metal/installing-bare-metal.html

4 Bo
ots
tra
p
no
de

Bootstrap node and it exists only during the installation and later automatically deleted by installer.runs as VM on installer node

Other installation requirements

Network requirements

Each server should have 3 Ethernet ports configured, purpose of these is listed below. These three are in addition to IPMI port, which is required for
PXE boot.

Interface Purpose

Manageme
nt interface

Remote root login from this interface is used for entire setup. This interface needs to have internet connectivity to download various files.
This can be shared with external interface. This only needs to be present on the Installer node

External
interface

Interface on the installer node that has internet network connectivity. All external traffic from masters/workers is redirected to the external
interface of the installer node.

Baremetal
interface

This interface is for baremetal network, also known as SDN network. This interface doesn’t need internet connectivity.

Provisioning
interface

This interface is for PXE boot. This interface doesn’t need internet connectivity.

These can be independent NICs or VLANs.

Configure required network interfaces as explained earlier. Be sure that each server has the NIC for PXE configured properly, matching to the interface
that you are setting for this deployment. You can set it by entering the BIOS setup, and entering into the NIC configuration of your BIOS setup menu.

Collect IPs and MAC addresses of all the nodes, one sample is given below. This information will be required to populate config files:

Role iDRAC IP/IPMI
port IP

Provisioning
network IP

Baremetal
network IP

Management
network IP

Provisioning network port
& mac

Baremetal network port
& mac

Management network port
& mac

Install
er

xx.xx.xx.xx xx.xx.xx.xx xx.xx.xx.xx xx.xx.xx.xx em1 / 21:02:0E:DC:BC:27 em2/ 21:02:0E:DC:BC:28 em3/ 21:02:0E:DC:BC:29

master
-0

worker
-0

Enable IPMI over LAN for all master and worker nodes. This is required for remote PXE boot from installer node. Different servers have different ways to
enable it.

In absence of this setting, following kind of errors are thrown from installer.

Error: Error running command ' ipmitool -I lanplus -H x.x.x.x -U xxx -P xxxxx chassis bootdev pxe;

 ipmitool -I lanplus -H x.x.x.x -U xxx -P xxxxx power cycle || ipmitool -I lanplus -H x.x.x.x -U xxx -P xxxxx power on;

': exit status 1. Output: Error: Unable to establish IPMI v2 / RMCP+ session

Error: Unable to establish IPMI v2 / RMCP+ session

Error: Unable to establish IPMI v2 / RMCP+ session

Depending on servers, RMCP session needs to be enabled on security settings of the management console.

After enabling this setting, you can run below command to verify that it is working as expected. Give IP address, username and password.

ipmitool -I lanplus -H x.x.x.x -U xxx -P xxxxx chassis status

(where x.x.x.x is IPMI port IP of your master/worker node, this is followed by root username and password for IPMI e.g. iDRAC)

Bare metal node requirements

Node Role OS requirement

Installer CentOS 7.6 and above

Bootstrap RHCOS (Redhat CoreOS)

Master RHCOS (Redhat CoreOS)

Worker RHCOS/RHEL/CentOS/CentOS-rt

Pre-Requisites for Deploying to Google Cloud Platform

For deploying a KNI blueprint to GCP, you need to:

enable service APIs
setup DNS
ensure sufficient quota
create a installer service account

Please, see the for details. As mentioned in the KNI installer repo, the service account JSON file should be located inside upstream documentation
$HOME/.gcp with the name osServiceAccount.json.

Pre-Requisites for Deploying to Libvirt

Minimum hardware requirements

Only one server is needed, that will be acting as a virthost. Master and worker VMs will be created there

S
e
r
v
e
r#

Ro
le

Purpose

1 Ins
tall
er
no
de

This host is used for remotely installing and configuring master and worker node. This server also hosts bootstrap node on KVM-QEMU using
libvirt. Several components like- HAProxy, DNS server, DHCP server for provisioning and baremetal network, CoreDNS, Matchbox, Terraform,
IPMItool, TFTPboot are configured on this server. Since cluster coreDNS is running from here, this node will be required later as well.

Network requirements

Network connectivity will be the same as the baremetal case, but these can be dummy interfaces as all the network connectivity will be just inside the
same host:

Interface Purpose

Manageme
nt interface

Remote root login from this interface is used for entire setup. This interface needs to have internet connectivity to download various files.
This can be shared with external interface. This only needs to be present on the Installer node

External
interface

Interface on the installer node that has internet network connectivity. All external traffic from masters/workers is redirected to the external
interface of the installer node.

Baremetal
interface

This interface is for baremetal network, also known as SDN network. This interface doesn’t need internet connectivity.

Provisioning
interface

This interface is for PXE boot. This interface doesn’t need internet connectivity.

Jump host requirements

Node Role OS requirement

Installer CentOS 7.6 and above

Installation high level overview

https://github.com/openshift/installer/tree/master/docs/user/gcp

Virtual deployment guide

Create site for AWS and GCP

In order to deploy a blueprint, you need to create a repository with a site. The site configuration is based in , and needs to use our blueprints as kustomize
base, referencing that properly. Sample sites for deploying on libvirt, AWS and baremetal can be seen on: https://github.com/akraino-edge-stack/kni-

.blueprint-pae/tree/master/sites
Site needs to have this structure:

.
 00_install-config
 install-config.name.patch.yaml
 install-config.patch.yaml
 kustomization.yaml
 site-config.yaml
 01_cluster-mods
 kustomization.yaml
 manifests
 openshift
 02_cluster-addons
 kustomization.yaml
 03_services
 kustomization.yaml

00_install-config

This folder will contain the basic settings for the site, including the base blueprint/profile, and the site name/domain. The following files are needed:

kustomization.yaml: key file, where it will contain a link to the used blueprint/profile, and a reference to the used patches to customize the site
bases:

bases:
- git::https://gerrit.akraino.org/r/kni/blueprint-pae.git//profiles/production.aws/00_install-config

patches:
- install-config.patch.yaml

patchesJson6902:
- target:
version: v1
kind: InstallConfig
name: cluster
path: install-config.name.patch.yaml

transformers:
- site-config.yaml

The entry in bases needs to reference the blueprint being used (in this case blueprint-pae), and the profile install-config file (in this case
production.aws/00_install-config). The other entries need to be just written literally.
install-config.patch.yaml: is a patch to modify the domain from the base blueprint. You need to customize with the domain you want to give to your
site

apiVersion: v1
kind: InstallConfig
metadata:
name: cluster
baseDomain: devcluster.openshift.com

install-config.name.patch.yaml: is a patch to modify the site name from the base blueprint. You need to customize with the name you want to give
to your site

- op: replace
 path: "/metadata/name"
 value: kni-site

https://github.com/kubernetes-sigs/kustomize
https://github.com/akraino-edge-stack/kni-blueprint-pae/tree/master/sites
https://github.com/akraino-edge-stack/kni-blueprint-pae/tree/master/sites

site-config.yaml: site configuration file, you can add entries in config to override behaviour of knictl (currently just releaseImageOverride is
supported)

apiVersion: kni.akraino.org/v1alpha1
kind: SiteConfig
metadata:
 name: notImportantHere
 config:
 releaseImageOverride: registry.svc.ci.openshift.org/origin/release:4.4

NOTE: If you are deploying on baremetal, specific configuration needs to be set. This is going to be covered in an specific section for it

01_cluster_mods

This is the directory that will contain all the customizations for the basic cluster deployment. You could create patches for modifying number of masters
/workers, network settings... everything that needs to be modified on cluster deployment time. It needs to have a basic file, that will kustomization.yaml
reference the same level file for the blueprint. And you could create additional patches following kustomize syntax:

bases:
- git::https://gerrit.akraino.org/r/kni/blueprint-pae.git//profiles/production.aws/01_cluster-mods

02_cluster_addons and 03_services

Follow same structure as 01_cluster_mods, but in this case is for adding additional workloads after cluster deployment. They also need to have a kustomiz
 file that references the file of the same level for the blueprint, and can include additional resources and patches.ation.yaml

How to deploy on AWS and GCP

The whole deployment workflow is based on knictl CLI tool that this repository is providing.

CLI tool

The current KNI blueprints use the tool from the OKD Kubernetes distro to stand up a minimal Kubernetes cluster. All other Day 1 openshift-install
and Day 2 operations are then driven purely through manipulation of declarative Kubernetes manifests. To use this in the context of Akraino KNI
blueprints, the project has created a helper CLI tool that needs to be installed first on Installer Node.

If necessary, install binary (incl. GOPATH var) using following steps, you can use latest version instead of the one given below.golang

wget https://golang.org/dl/go1.13.4.linux-amd64.tar.gz

tar -C /usr/local -xzf go1.13.4.linux-amd64.tar.gz

export PATH=$PATH:/usr/local/go/bin

Next, install the following dependencies:

sudo yum install -y make gcc libvirt-devel

Then install the knictl:

mkdir -p $GOPATH/src/gerrit.akraino.org/kni
cd $GOPATH/src/gerrit.akraino.org/kni
git clone https://gerrit.akraino.org/r/kni/installer
cd installer
make build
mkdir -p $GOPATH/bin/
cp knictl $GOPATH/bin/

cp knictl /usr/local/go/bin/

Secrets

Most secrets (TLS certificates, Kubernetes API keys, etc.) will be auto-generated for you, but you need to provide at least two secrets yourself:

https://golang.org/doc/install
https://clicktime.symantec.com/3XKkqDtHhzPHgR9wMfVbwZ17Vc?u=https%3A%2F%2Fgolang.org%2Fdl%2Fgo1.13.4.linux-amd64.tar.gz
http://PATH/usr/local/go/bin
https://gerrit.akraino.org/r/kni/installer

a public SSH key
a pull secret

The public SSH key is automatically added to every machine provisioned into the cluster and allows remote access to that machine. In case you don't have
/ want to use an existing key, you can create a new key pair using:

ssh-keygen -t rsa -b 2048 -f ~/.ssh/id_rsa

The pull secret is used to download the container images used during cluster deployment. Unfortunately, the OKD Kubernetes distro used by the KNI
blueprints does not (yet) provide pre-built container images for all of the deployed components. Instead of going through the hassle of building those from
source, we use the ones made available by . Therefore, you need to go to , openshift.com https://cloud.redhat.com/openshift/install/metal/user-provisioned
log in (creating a free account, if necessary), and hit "Download Pull Secret".

Create a $HOME/.kni folder and copy the following files:

id_rsa.pub needs to contain the public key that you want to use to access your nodes
pull-secret.json needs to contain the pull secret previously copied

1. Fetch requirements for a site.

You need to have a site repository with the structure described above. Then, first thing is to fetch the requirements needed for the blueprint that the site
references. This is achieved by:

./knictl fetch_requirements github.com/site-repo.git

Where the first argument references a site repository, following syntax. This will download the site repository, and https://github.com/hashicorp/go-getter
will create a folder with the site name inside . It will also fetch all the binaries needed, and will store them inside $HOME/.kni $HOME/.kni/$SITE_NAME

 folder./requirements

2. Prepare manifests for a site

NOTE: Before performing this step, you must copy your OpenShift pull secret into your build path (i.e. to ~/.kni/pull-secret.json).

Next step is to run a procedure to prepare all the manifests for deploying a site. This is achieved by applying kustomize on the site repository, combining
that with the base manifests for the blueprint, and doing a merge with the manifests generated by the installer at runtime. This is achieved by the following
command:

./knictl prepare_manifests $SITE_NAME

This will generate a set of manifests ready to apply, and will be stored on folder. Along with manifests, a $HOME/.kni/$SITE_NAME/final_manifests profile.
 file has been created also in folder. It includes environment vars that can be sourced before deploying the cluster. Current env $HOME/.kni/$SITE_NAME

vars that can be exported are:

OPENSHIFT_INSTALL_RELEASE_IMAGE_OVERRIDE : used when a new image is wanted, instead of the default one
TF_VAR_libvirt_master_memory, TF_VAR_libvirt_master_vcpu: Used in the libvirt case, to define the memory and CPU for the vms.

3. Deploy the cluster

Before starting the deployment, it is recommended to source the env vars from profile.env . You can achieve it with:

source $HOME/.kni/$SITE_NAME/profile.env

If you are deploying on AWS or libvirt, then you need to deploy the cluster. This can be achieved with:

$HOME/.kni/$SITE_NAME/requirements/openshift-install create cluster --dir=$HOME/.kni/$SITE_NAME/final_manifests

This will deploy a cluster based on the specified manifests. You can learn more about how to manage cluster deployment and how to interact with it on http
s://docs.openshift.com/container-platform/4.4/welcome/index.html

Specific instructions for baremetal are going to be provided later.

4. Apply workloads

After the cluster has been generated, the extra workloads that have been specified in manifests (like kubevirt), need to be applied. This can be achieved
by:

./knictl apply_workloads $SITE_NAME

http://openshift.com
https://cloud.redhat.com/openshift/install/metal/user-provisioned
https://github.com/hashicorp/go-getter
https://docs.openshift.com/container-platform/4.1/welcome/index.html
https://docs.openshift.com/container-platform/4.1/welcome/index.html

This will execute kustomize on the site manifests and will apply the output to the cluster. After that, the site deployment can be considered as finished.

Bare metal deployment guide

Create site for Baremetal

First step to start a baremetal deployment is to have a site defined, with all the network and baremetal settings defined in the yaml files. A sample of site
using this baremetal automation can be seen .here
In order to define the settings for a site, the first section 00_install-config needs to be used.
Start by creating a kustomization file like the following: https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/community.baremetal.
edge-sites.net/00_install-config/kustomization.yaml

bases:
- git::https://gerrit.akraino.org/r/kni/blueprint-pae.git//profiles/production.baremetal/00_install-config

patches:
- install-config.patch.yaml

patchesJson6902:
- target:
 version: v1
 kind: InstallConfig
 name: cluster
 path: install-config.name.patch.yaml

transformers:
- site-config.yaml

In this kustomization file we are patching the default install-config, and also adding some extra files to define networking (site-config.yaml).

ha-lab-ipmi-creds.yaml:

This file is not shown on the site structure as it contains private content. This file should be present with given name in It needs to have 00_install-config.
following structure:

apiVersion: v1
kind: Secret
metadata:
 name: community-lab-ipmi
stringdata:
 username: xxx <- base64 encoded IPMI username
 password: xxx <- base64 encoded IPMI password

type: Opaque

install-config.name.patch.yaml: https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/community.
baremetal.edge-sites.net/00_install-config/install-config.name.patch.yaml

- op: replace
 path: "/metadata/name"
 value: community <- replace with your cluster name here

install-config.patch.yaml : https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/community.
baremetal.edge-sites.net/00_install-config/install-config.patch.yaml

https://github.com/akraino-edge-stack/kni-blueprint-pae/tree/master/sites/community.baremetal.edge-sites.net
https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/community.baremetal.edge-sites.net/00_install-config/kustomization.yaml
https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/community.baremetal.edge-sites.net/00_install-config/kustomization.yaml
https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/community.baremetal.edge-sites.net/00_install-config/install-config.name.patch.yaml
https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/community.baremetal.edge-sites.net/00_install-config/install-config.name.patch.yaml
https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/community.baremetal.edge-sites.net/00_install-config/install-config.patch.yaml
https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/community.baremetal.edge-sites.net/00_install-config/install-config.patch.yaml

apiVersion: v1
kind: InstallConfig
baseDomain: baremetal.edge-sites.net <- domain of your site
compute:
 - name: worker
 replicas: 2 <- number of needed workers
controlPlane:
 name: master
 platform: {}
 replicas: 1 <- number of needed masters (1/3)
metadata:
 name: cluster <- Do not change this value as this is not cluster name
networking:
 clusterNetworks:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 none: {}
 apiVIP: 192.168.111.4 <- IP for Kubernetes api endpoint, needs to be on the range of your baremetal network
 ingressVIP: 192.168.111.3 <- IP for the Kubernetes ingress endpoint, needs to be on the range of your
baremetal network
 dnsVIP: 192.168.111.2 <- IP for the Kubernetes DNS endpoint, needs to be on the range of your baremetal network
 hosts:
 # Master nodes are always RHCOS
 - name: master-0
 role: master
 bmc:
 address: ipmi://10.11.7.12 <- ipmi address for master
 credentialsName: community-lab-ipmi <- this needs to reference the name of the secret provided in
credentials.yaml
 bootMACAddress: 3C:FD:FE:CD:98:C9 <- mac address for the provisioning interface of your master
 sdnMacAddress: 3C:FD:FE:CD:98:C8 <- mac address for the baremetal interface of your master
 # sdnIPAddress: 192.168.111.11 <- Optional -- Set static IP on your baremetal for your master
 hardwareProfile: default
 osProfile:
 # With role == master, the osType is always rhcos
 # And with type rhcos, the following are settings are available
 type: rhcos
 pxe: bios <- pxe boot type either bios (default if not specified) or uefi
 install_dev: sda <- where to install the operating system (sda is the default)
 # Worker nodes can be either rhcos (default) || centos (7.x) || rhel (8.x)
 - name: worker-0
 role: worker
 bmc:
 address: ipmi://10.11.7.13
 credentialsName: community-lab-ipmi
 bootMACAddress: 3C:FD:FE:CD:9E:91
 sdnMacAddress: 3C:FD:FE:CD:9E:90
 hardwareProfile: default
 provisioning_interface: enp134s0f1 <- specify that if the provisioning interface is different than the
one you will provide on next site-config.yaml
 baremetal_interface: enp134s0f0 <- specify that if the baremetal interface is different than the one you
will provide on next site-config.yaml
 # If an osProfile/type is not defined, rhe node defaults to RHCOS
 osProfile:
 type: centos7
 # With type: rhcos the following are settings are available
 pxe: bios # pxe boot type either bios (default if not specified) or uefi
 install_dev: sda # where to install the operating system (sda is the default)
 - name: worker-1
 role: worker
 bmc:
 address: ipmi://10.11.7.14
 credentialsName: community-lab-ipmi
 bootMACAddress: 3C:FD:FE:CD:9B:81
 sdnMacAddress: 3C:FD:FE:CD:9B:80
 hardwareProfile: default
 # If an osProfile/type is not defined, rhe node defaults to RHCOS
 # osProfile:
 # type: rhcos
 # With type: rhcos the following are settings are available
 # pxe: bios|uefi # pxe boot type either bios (default if not specified) or uefi
 # install_dev: sda # where to install the operating system (sda is the default)
pullSecret: 'PULL_SECRET' <- Do not change anything here as this is automatically pulled from installer node
sshKey: |
 SSH_PUB_KEY <- Do not change anything here as this is automatically pulled from installer node

site-config.yaml: https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/community.baremetal.edge-
sites.net/00_install-config/site-config.yaml

https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/community.baremetal.edge-sites.net/00_install-config/site-config.yaml
https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/community.baremetal.edge-sites.net/00_install-config/site-config.yaml

apiVersion: kni.akraino.org/v1alpha1
kind: SiteConfig
metadata:
 name: notImportantHere
config: {}
provisioningInfrastructure:
 hosts:
 # interface to use for provisioning on the masters
 masterBootInterface: ens787f1 <- name of the provisioning interface for the masters
 # interface to use for provisioning on the workers
 workerBootInterface: ens787f1 <- name of the provisioning interface for the workers
 # interface to use for baremetal on the masters
 masterSdnInterface: ens787f0 <- name of the baremetal interface for the masters
 # interface to use for baremetal on the workers
 workerSdnInterface: ens787f0 <- name of the baremetal interface for the workers

 network:
 # The provisioning network's CIDR
 provisioningIpCidr: 172.22.0.0/24 <- range of the provisioning network
 # PXE boot server IP
 # DHCP range start (usually provHost/interfaces/provisioningIpAddress + 1)
 provisioningDHCPStart: 172.22.0.11 <- DHCP start range of the provisioning network
 provisioningDHCPEnd: 172.22.0.51 -> DHCP end range

 # The baremetal networks's CIDR
 baremetalIpCidr: 192.168.111.0/24 <- range of the baremetal network
 # Address map
 # bootstrap: baremetalDHCPStart i.e. 192.168.111.10
 # master-0: baremetalDHCPStart+1 i.e. 192.168.111.11
 # master-1: baremetalDHCPStart+2 i.e. 192.168.111.12
 # master-2: baremetalDHCPStart+3 i.e. 192.168.111.13
 # worker-0: baremetalDHCPStart+5 i.e. 192.168.111.15
 # worker-N: baremetalDHCPStart+5+N
 baremetalDHCPStart: 192.168.111.10 <- DHCP start range of the baremetal network. Needs to start with an IP
that does not conflict with previous baremetal VIP definitions
 baremetalDHCPEnd: 192.168.111.50 <- DHCP end range
 # baremetal network default gateway, set to proper IP if /provHost/services/baremetalGateway == false
 # if /provHost/services/baremetalGateway == true, baremetalGWIP with be located on provHost/interfaces
/baremetal
 # and external traffic will be routed through the provisioning host
 baremetalGWIP: 192.168.111.4
 dns:
 # cluster DNS, change to proper IP address if provHost/services/clusterDNS == false
 # if /provHost/services/clusterDNS == true, cluster (IP) with be located on provHost/interfaces/provisioning
 # and DNS functionality will be provided by the provisioning host
 cluster: 192.168.111.3
 # Up to 3 external DNS servers to which non-local queries will be directed
 external1: 8.8.8.8
external2: 10.11.5.19
external3: 10.11.5.19

 provHost:
 interfaces:
 # Interface on the provisioning host that connects to the provisioning network
 provisioning: enp136s0f1 <- it typically needs to be a nic, not a vlan (unless your system supports pxe
booting from vlans)
 # Must be in provisioningIpCidr range
 # pxe boot server will be at port 8080 on this address
 provisioningIpAddress: 172.22.0.1
 # Interface on the provisioning host that connects to the baremetal network
 baremetal: enp136s0f0.3009
 # Must be in baremetalIpCidr range
 baremetalIpAddress: 192.168.111.1
 # Interface on the provisioning host that connects to the internet/external network
 external: enp136s0f0.3008
 bridges:
 # These bridges are created on the bastion host
 provisioning: provisioning <- typically leave those fixed names
 baremetal: baremetal
 services:
 # Does the provsioning host provide DHCP services for the baremetal network?
 baremetalDHCP: true <- set it to false just if you have your own DHCP for the baremetal network
 # Does the provisioning host provide DNS services for the cluster?
 clusterDNS: true <- set it to false just if you have your own DNS in the baremetal network and you can
configure your names properly
 # Does the provisioning host provide a default gateway for the baremetal network?
 baremetalGateway: true

Setup installer node

Install CentOS operating system there. Once you have it, configure your NIC/VLANS properly (management/external, provisioning, baremetal, ipmi). Be
sure that you collect the information of interfaces/vlans.

Configure the system properly to run knictl on it: Install knictl

Fetch requirements

Inside knictl path (typically $HOME/go/src/gerrit.akraino.org/kni/installer), run the fetch-requirements command, pointing to the github repo of the site you
created

 ./knictl fetch_requirements <site repo URI>

For example:

./knictl fetch_requirements github.com/akraino-edge-stack/kni-blueprint-pae/tree/master/sites/community.baremetal.
edge-sites.net

Prepare manifests

Run the prepare manifests command, using as a parameter the name of your site

./knictl prepare_manifests $SITE_NAME

For example:
./knictl prepare_manifests community.baremetal.edge-sites.net

Remember that the generated files there have a validity of 24 hours. If you don't finish the installation on that time, you'll need to re-run this command.

Deploy masters

./knictl deploy_masters $SITE_NAME

This will deploy a bootstrap VM and begin to bring up your master nodes. Once the masters have reached the ready state, you can then deploy your
workers. You can monitor the process of installation with:

$HOME/.kni/$SITE_NAME/requirements/openshift-install wait-for bootstrap-complete --dir $HOME/.kni/$SITE_NAME
/baremetal_automation/ocp/

When all master nodes are shown as ready, you can start deployment of your workers

Deploy workers

./knictl deploy_workers $SITE_NAME

This will begin to bring up your worker nodes.
You will need to destroy the bootstrap VM once the command is initiated with:deploy_workers

virsh destroy <bootstrap_vm_name>

Monitor your worker nodes are you normally would during this process. If the deployment doesn't hit any errors, you will then have a working baremetal
cluster. You can monitor the state of the cluster with:

$HOME/.kni/$SITE_NAME/requirements/openshift-install wait-for install-complete --dir $HOME/.kni/$SITE_NAME
/baremetal_automation/ocp/

It may happen that the monitor of this process stops at 93%-94%. This is fine, you can just launch again, or simply start using the cluster, as mostly all
operators will come online over the time. Follow

https://docs.openshift.com/container-platform/4.4/installing/installing_bare_metal/installing-bare-metal.html#installation-registry-storage-config_installing-
bare-metal to fix image registry operator.

Accessing the Cluster

After the deployment finishes, a file will be placed inside auth directory:kubeconfig

export KUBECONFIG=$HOME/.kni/$SITE_NAME/final_manifests/auth/kubeconfig

NOTE: When using automated baremetal deployment, the will be found here instead:kubeconfig

https://wiki.akraino.org/pages/viewpage.action?pageId=11993461#UserDocumentation-knictl
https://wiki.akraino.org//wiki.akraino.org/github.com/akraino-edge-stack/kni-blueprint-pae/tree/master/sites/community.baremetal.edge-sites.net
https://wiki.akraino.org//wiki.akraino.org/github.com/akraino-edge-stack/kni-blueprint-pae/tree/master/sites/community.baremetal.edge-sites.net
https://docs.openshift.com/container-platform/4.1/installing/installing_bare_metal/installing-bare-metal.html#installation-registry-storage-config_installing-bare-metal
https://docs.openshift.com/container-platform/4.1/installing/installing_bare_metal/installing-bare-metal.html#installation-registry-storage-config_installing-bare-metal

export KUBECONFIG=$HOME/.kni/$SITE_NAME/baremetal_automation/ocp/auth/kubeconfig

Then cluster can be managed with the kubectl or (drop-in replacement with advanced functionality) CLI tools.oc

To verify a correct setup, you can check again the nodes, and see if masters and workers are ready:

$HOME/.kni/$SITE_NAME/requirements/oc get nodes

You also can check if the cluster is available:

$HOME/.kni/$SITE_NAME/requirements/oc get clusterversion

You can also verify that the console is working, the console url is the following:

 https://console-openshift-console.apps.$CLUSTER_NAME.$CLUSTER_DOMAIN

You can enter the console with user and the password that is shown at the end of the install.kubeadmin

libvirt deployment guide

Create site for virtual baremetal

The procedure for virtual baremetal is the same as for the baremetal case, but adding extra flags to indicate that the process is going to be virtual.

First step to start a virtual baremetal deployment is to have a site defined, with all the network and baremetal settings defined in the yaml files. A sample of
site using this baremetal automation can be seen .here
In order to define the settings for a site, the first section 00_install-config needs to be used.
Start by creating a kustomization file like the following: https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/community.baremetal.
edge-sites.net/00_install-config/kustomization.yaml

bases:
- git::https://gerrit.akraino.org/r/kni/blueprint-pae.git//profiles/production.baremetal/00_install-config

patches:
- install-config.patch.yaml

patchesJson6902:
- target:
 version: v1
 kind: InstallConfig
 name: cluster
 path: install-config.name.patch.yaml

transformers:
- site-config.yaml

In this kustomization file we are patching the default install-config, and also adding some extra files to define networking (site-config.yaml).

install-config.name.patch.yaml: https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/testing.
baremetal.edge-sites.net/00_install-config/install-config.name.patch.yaml

- op: replace
 path: "/metadata/name"
 value: testing <- replace with your cluster name here

install-config.patch.yaml : https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/testing.baremetal.
edge-sites.net/00_install-config/install-config.patch.yaml

https://github.com/akraino-edge-stack/kni-blueprint-pae/tree/master/sites/testing.baremetal.edge-sites.net
https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/community.baremetal.edge-sites.net/00_install-config/kustomization.yaml
https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/community.baremetal.edge-sites.net/00_install-config/kustomization.yaml
https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/testing.baremetal.edge-sites.net/00_install-config/install-config.name.patch.yaml
https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/testing.baremetal.edge-sites.net/00_install-config/install-config.name.patch.yaml
https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/testing.baremetal.edge-sites.net/00_install-config/install-config.patch.yaml
https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/testing.baremetal.edge-sites.net/00_install-config/install-config.patch.yaml

apiVersion: v1
kind: InstallConfig
baseDomain: <- domain for your sitebaremetal.edge-sites.net
compute:
- name: worker
replicas: 2
controlPlane:
 name: master
 platform: {}
 replicas: 1
metadata:
 name: cluster
networking:
 clusterNetworks:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 none: {}
 apiVIP: 192.168.111.4
 ingressVIP: 192.168.111.3
 dnsVIP: 192.168.111.2
 hosts: {} <- see it's empty, this will be created automatically as it's virtual
pullSecret: 'PULL_SECRET' <- leave like that, it will be replaced in runtime
sshKey: |
 SSH_PUB_KEY <- leave like that, it will be replaced in runtime

site-config.yaml: https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/testing.baremetal.edge-sites.net/00_install-config/site-config.
yaml

http://baremetal.edge-sites.net
https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/testing.baremetal.edge-sites.net/00_install-config/site-config.yaml
https://github.com/akraino-edge-stack/kni-blueprint-pae/blob/master/sites/testing.baremetal.edge-sites.net/00_install-config/site-config.yaml

apiVersion: kni.akraino.org/v1alpha1
kind: SiteConfig
metadata:
 name: notImportantHere
config:
 virtualizedInstall: "true" <- this will tell the installer to deploy with virtual baremetal
provisioningInfrastructure:
 hosts:
 # interface to use for provisioning on the masters
 masterBootInterface: eno1
 # interface to use for provisioning on the workers
 workerBootInterface: eno1
 # interface to use for baremetal on the masters
 masterSdnInterface: eno2
 # interface to use for baremetal on the workers
 workerSdnInterface: eno2

 network:
 # The provisioning network's CIDR
 provisioningIpCidr: 172.22.0.0/24
 # PXE boot server IP
 # DHCP range start (usually provHost/interfaces/provisioningIpAddress + 1)
 provisioningDHCPStart: 172.22.0.11
 provisioningDHCPEnd: 172.22.0.51

 # The baremetal networks's CIDR
 baremetalIpCidr: 192.168.111.0/24
 # Address map
 # bootstrap: baremetalDHCPStart i.e. 192.168.111.10
 # master-0: baremetalDHCPStart+1 i.e. 192.168.111.11
 # master-1: baremetalDHCPStart+2 i.e. 192.168.111.12
 # master-2: baremetalDHCPStart+3 i.e. 192.168.111.13
 # worker-0: baremetalDHCPStart+5 i.e. 192.168.111.15
 # worker-N: baremetalDHCPStart+5+N
 baremetalDHCPStart: 192.168.111.10
 baremetalDHCPEnd: 192.168.111.50
 # baremetal network default gateway, set to proper IP if /provHost/services/baremetalGateway == false
 # if /provHost/services/baremetalGateway == true, baremetalGWIP with be located on provHost/interfaces
/baremetal
 # and external traffic will be routed through the provisioning host
 baremetalGWIP: 192.168.111.4
 dns:
 # cluster DNS, change to proper IP address if provHost/services/clusterDNS == false
 # if /provHost/services/clusterDNS == true, cluster (IP) with be located on provHost/interfaces/provisioning
 # and DNS functionality will be provided by the provisioning host
 cluster: 192.168.111.3
 # Up to 3 external DNS servers to which non-local queries will be directed
 external1: 10.10.160.1
 external2: 10.10.160.2

 provHost:
 interfaces:
 # Interface on the provisioning host that connects to the provisioning network
 provisioning: dummy0
 # Must be in provisioningIpCidr range
 # pxe boot server will be at port 8080 on this address
 provisioningIpAddress: 172.22.0.1
 # Interface on the provisioning host that connects to the baremetal network
 baremetal: eno1
 # Must be in baremetalIpCidr range
 baremetalIpAddress: 192.168.111.199
 # Interface on the provisioning host that connects to the internet/external network
 external: eno3
 bridges:
 # These bridges are created on the bastion host
 provisioning: provisioning
 baremetal: baremetal
 services:
 # Does the provsioning host provide DHCP services for the baremetal network?
 baremetalDHCP: true
 # Does the provisioning host provide DNS services for the cluster?
 clusterDNS: true
 # Does the provisioning host provide a default gateway for the baremetal network?
 baremetalGateway: true

Setup installer node

Install CentOS operating system there. Once you have it, configure your NIC/VLANS properly. You can make use of dummy interfaces if you need it, as
the network will all be virtualized.

Configure the system properly to run knictl on it: Install knictl

https://wiki.akraino.org/pages/viewpage.action?pageId=11993461#UserDocumentation-knictl

Fetch requirements

Inside knictl path (typically $HOME/go/src/), run the fetch-requirements command, pointing to the github repo of the site you gerrit.akraino.org/kni/installer
created

 ./knictl fetch_requirements <site repo URI>

For example:

./knictl fetch_requirements github.com/akraino-edge-stack/kni-blueprint-pae/tree/master/sites/testing.baremetal.
edge-sites.net

Prepare manifests

Run the prepare manifests command, using as a parameter the name of your site

./knictl prepare_manifests $SITE_NAME

For example:
./knictl prepare_manifests testing.baremetal.edge-sites.net

Remember that the generated files there have a validity of 24 hours. If you don't finish the installation on that time, you'll need to re-run this command.

Deploy masters

./knictl deploy_masters $SITE_NAME

This will deploy a bootstrap VM and begin to bring up your master nodes. Once the masters have reached the ready state, you can then deploy your
workers. You can monitor the process of installation with:

$HOME/.kni/$SITE_NAME/requirements/openshift-install wait-for bootstrap-complete --dir $HOME/.kni/$SITE_NAME
/baremetal_automation/ocp/

When all master nodes are shown as ready, you can start deployment of your workers

Deploy workers

./knictl deploy_workers $SITE_NAME

This will begin to bring up your worker nodes. Monitor your worker nodes are you normally would during this process. If the deployment doesn't hit any
errors, you will then have a working baremetal cluster.

You can monitor the state of the cluster with:

$HOME/.kni/$SITE_NAME/requirements/openshift-install wait-for install-complete --dir $HOME/.kni/$SITE_NAME
/baremetal_automation/ocp/

After masters and workers are up, you can apply the workloads using the general procedure with:

./knictl apply_workloads $SITE_NAME --kubeconfig $HOME/.kni/$SITE_NAME/baremetal_automation/ocp/auth/kubeconfig

Verifying the setup
After the deployment finishes, a file will be placed inside auth directory:kubeconfig

export KUBECONFIG=$HOME/.kni/$SITE_NAME/final_manifests/auth/kubeconfig

NOTE: When using automated baremetal deployment, the will be found here instead:kubeconfig

export KUBECONFIG=$HOME/.kni/$SITE_NAME/baremetal_automation/ocp/auth/kubeconfig

Then cluster can be managed with the kubectl or (drop-in replacement with advanced functionality) CLI tools.oc

To verify a correct setup, you can check again the nodes, and see if masters and workers are ready:

http://gerrit.akraino.org/kni/installer

$HOME/.kni/$SITE_NAME/requirements/oc get nodes

You also can check if the cluster is available:

$HOME/.kni/$SITE_NAME/requirements/oc get clusterversion

You can also verify that the console is working, the console url is the following:

 https://console-openshift-console.apps.$CLUSTER_NAME.$CLUSTER_DOMAIN

You can enter the console with user and the password that is shown at the end of the install.kubeadmin

Developer guide and troubleshooting
Developer guide -See Developer Documentation

Troubleshooting guide - Please see the for details.upstream documentation

Uninstall guide

Manual

When needed, the site can be destroyed with the openshift-install command, using the following syntax:

$HOME/.kni/$SITE_NAME/requirements/openshift-install destroy cluster --dir $HOME/.kni/$SITE_NAME/final_manifests

Automated (Baremetal / virtual baremetal only)

A baremetal UPI cluster that was deployed using knictl's automation commands (can be destroyed like so:deploy_masters / deploy_workers)

./knictl destroy_cluster $SITE_NAME

https://wiki.akraino.org/display/AK/Developer+Documentation
https://github.com/openshift/installer/blob/master/docs/user/troubleshooting.md

	User Documentation

