
Workload performance management and elasticity

Application scaling based on performance metrics
Check core metrics in the system

Metrics APIs provided by Kubernetes can be gotten by:
cAdvisor automatically scrapes metrics from every active pod in the system regarding to CPU and memory usage. The state of
core metrics can be requested by the following:
With this command you can get core metrics from nodes respectively to CPU and memory usage.

Check custom metrics in the system
Basic example application in Python:

Core metrics and Custom metrics examples
HPA manifest with core metrics scraping:
HPA manifest with custom metrics scraping:

The starter command for custom metric based HPA manifest is:
After HPA start you can get information about the state of actual performance management of the system with:

Example Kubernetes manifests for testing with core metrics:

Application scaling based on performance metrics

Basically there is one performance management solution in CaaS sub-system and it is exposed to the application via the provided by Kubernetes HPA API
platform. Applications can use both core metrics and custom metrics to horizontally scale themselves. The first is based on CPU and memory usage and
the other uses practically every metric that the developer provides to the API Aggregator via an HTTP server.

In the following there is a short overview of the components of Performance management and elasticity sub-system of CaaS.

API Aggregator: The API Aggregator is part of the K8S (Kubernetes) API server. The aggregation layer allows Kubernetes to be extended with
additional APIs, beyond what is offered by the core Kubernetes APIs. The aggregation layer enables installing additional Kubernetes-style APIs in
K8S cluster. These can either be pre-built, existing 3rd party solutions or user-created APIs. The role of the API aggregator in scaling is to proxy

. In CaaS these are the core, and custom metrics API requests to the core, and custom metrics API handler servers registered to serve the APIs
the metrics server for core: , and Prometheus for custom: .link link
API Server: The Kubernetes API server validates and configures data for the API objects which include pods, services, replication controllers,
and others. The API Server services REST operations and provides the frontend to the cluster’s shared state through which all other components
interact.
cAdvisor: cAdvisor is an open source container resource usage and performance analysis agent. It is purpose-built for containers and supports
Docker containers natively. In Kubernetes, cAdvisor is integrated into the Kubelet binary. cAdvisor auto-discovers all containers in the machine
and collects CPU, memory, filesystem, and network usage statistics. cAdvisor also provides the overall machine usage by analyzing the ‘root’
container on the machine.
Custom Metric adapter: Custom Metric adapter is an element to provide connection between Prometheus and API Aggregator.
HPA (Horizontal Pod Autoscaler): The Horizontal Pod Autoscaler is implemented as a Kubernetes API resource and a controller. It
automatically scales the number of pods in a replication controller, deployment or replica set based on core or custom metrics.
Kubelet: The Kubelet acts as a bridge between the Kubernetes master and the nodes. It manages the pods and containers running on a
machine. Kubelet translates each pod into its constituent containers and fetches individual container usage statistics from cAdvisor. It then
exposes the aggregated pod resource usage statistics via a REST API.
Prometheus: Prometheus is an open-source software project written in Go that is used to record real-time metrics in a time series database
(allowing for high dimensionality) built using a HTTP pull model, with flexible queries and real-time alerting.

The key differences between core and custom metrics are that core metrics support scraping metrics only from CPU and memory whereas custom metrics
can scrape practically every kind of metrics. In the first case Kubernetes offers the metrics out of box, but in the second case users have to implement the
metrics provider HTTP server.

Note that the database behind the performance management system is not persistent but uses time-series database to store metric values in both
solutions.

Check core metrics in the system

Metrics APIs provided by Kubernetes can be gotten by:

~]$ kubectl api-versions

...

custom.metrics.k8s.io/v1beta1

...

metrics.k8s.io/v1beta1

...

cAdvisor automatically scrapes metrics from every active pod in the system regarding to CPU and memory usage. The
state of core metrics can be requested by the following:

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/kubernetes-incubator/metrics-server
https://prometheus.io/

~]$ kubectl top node

NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%

172.24.16.104 1248m 62% 5710Mi 74%

172.24.16.105 1268m 63% 5423Mi 71%

172.24.16.107 1215m 60% 5191Mi 68%

172.24.16.112 253m 6% 846Mi 11%

With this command you can get core metrics from nodes respectively to CPU and memory usage.

The printout shows the the usage of CPUs in percentage and milli standard for 2 CPUs in the example names of nodes actually the IP addresses of nodes,
furthermore memory usage in percentage and Mi (MiB) standard.

~]$ kubectl top pod --namespace=kube-system | grep elasticsearch
NAME CPU(cores) MEMORY(bytes)
elasticsearch-data-0 71m 1106Mi
elasticsearch-data-1 65m 1114Mi
elasticsearch-data-2 75m 1104Mi
elasticsearch-master-0 4m 1068Mi
elasticsearch-master-1 7m 1076Mi
elasticsearch-master-2 3m 1075Mi

Console output shows pod names and their CPU and memory consumption in the same format.

Check custom metrics in the system

In case of the usage of Custom Metrics the developer has to provide the exposition of metrics in his application in Prometheus format. There are specific
libraries that can be used for creating HTTP server and Prometheus client for this purpose in Golang, Python etc.

Basic example application in Python:

from prometheus_client import start_http_server, Histogram
import random
import time

function_exec = Histogram('function_exec_time',
 'Time spent processing a function',
 ['func_name'])

def func():
 if (random.random() < 0.02):
 time.sleep(2)
 return

time.sleep(0.2)
start_http_server(9100)

while True:
 start_time = time.time()
 func()
 function_exec.labels(func_name="func").observe(time.time() - start_time)

This application imports http_server and Histogram metrics from Prometheus client library and exposes metrics from the func() function. Prometheus can
scrape these metrics from port 9100.

~]$ kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1" | jq .

{
 "kind": "APIResourceList",
 "apiVersion": "v1",
 "groupVersion": "custom.metrics.k8s.io/v1beta1",
 "resources": [
 {
 "name": "pods/go_memstats_heap_released_bytes",
 "singularName": "",
 "namespaced": true,
 "kind": "MetricValueList",
 "verbs": [
 "get"
]
 },
 {
 "name": "jobs.batch/http_requests",
 "singularName": "",
 "namespaced": true,
 "kind": "MetricValueList",
 "verbs": [
 "get"
]
 }
]
}

The command result lists the custom metrics in the system, each metrics can be requested one by one for more details:

kubectl get –raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/kube-system/pods/*/http_requests" | jq .

{
 "kind": "MetricValueList",
 "apiVersion": "custom.metrics.k8s.io/v1beta1",
 "metadata": {
 "selfLink": "/apis/custom.metrics.k8s.io/v1beta1/namespaces/kube-system/pods/%2A/http_requests"
 },
 "items": [
 {
 "describedObject": {
 "kind": "Pod",
 "namespace": "kube-system",
 "name": "podinfo-bd494c88d-lmt2j",
 "apiVersion": "/v1"
 },
 "metricName": "http_requests",
 "timestamp": "2019-02-14T10:21:19Z",
 "value": "898m"
 },
 {
 "describedObject": {
 "kind": "Pod",
 "namespace": "kube-system",
 "name": "podinfo-bd494c88d-lxng7",
 "apiVersion": "/v1"
 },
 "metricName": "http_requests",
 "timestamp": "2019-02-14T10:21:19Z",
 "value": "898m"
 }
]
}

~]$ curl http://$(kubectl get service podinfo --namespace=kube-system -o jsonpath='{ .spec.clusterIP }'):9898
/metrics
…
http_request_duration_seconds_bucket{method="GET",path="healthz",status="200",le="0.005"} 2040
http_request_duration_seconds_bucket{method="GET",path="healthz",status="200",le="0.01"} 2040
http_request_duration_seconds_bucket{method="GET",path="healthz",status="200",le="0.025"} 2040
http_request_duration_seconds_bucket{method="GET",path="healthz",status="200",le="0.05"} 2072
http_request_duration_seconds_bucket{method="GET",path="healthz",status="200",le="0.1"} 2072
http_request_duration_seconds_bucket{method="GET",path="healthz",status="200",le="0.25"} 2072
…

HELP http_requests_total The total number of HTTP requests.
TYPE http_requests_total counter
http_requests_total{status="200"} 5593
…

This is a HTTP request with cURL, it shows the custom metrics exposed by an HTTP server of an application running in a Kubernetes pod.

Core metrics and Custom metrics examples

HPA manifest with core metrics scraping:

php-apache-hpa.yml
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: php-apache-hpa
spec:
 scaleTargetRef:
 apiVersion: extensions/v1beta1
 kind: Deployment
 name: php-apache-deployment
 minReplicas: 1
 maxReplicas: 5
 targetCPUUtilizationPercentage: 50

In this example HPA scrapes metrics from CPU consumption of php-apache-deployment. The initial pod number is one and the maximum replica counts
are five. HPA initiates pod scaling when the CPU utilization is higher than 50%. If the utilization is less than 50% HPA starts scaling down the number of
pods by one.

HPA manifest with custom metrics scraping:

podinfo-hpa-custom.yaml
apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:
 name: podinfo
 namespace: kube-system
spec:
 scaleTargetRef:
 apiVersion: extensions/v1beta1
 kind: Deployment
 name: podinfo
 minReplicas: 2
 maxReplicas: 10
 metrics:
 - type: Pods
 pods:
 metricName: http_requests
 targetAverageValue: 10

In the second example HPA uses custom metrics to manage the performance. The podinfo application contains the implementation of an HTTP server
which exposes the metrics in Prometheus format. The initial number of pods are two and the maximum are ten. The custom metric is the cardinality of the
http requests on the HTTP server regarding to the metrics exposed.

The starter command for custom metric based HPA manifest is:

~]$ kubectl create -f podinfo-hpa-custom.yaml --namespace=kube-system

In case of starting core metrics HPA the command is the same.

After HPA start you can get information about the state of actual performance management of the system with:

~]$ kubectl describe hpa podinfo --namespace=kube-system
Name: podinfo
Namespace: kube-system
Labels: <none>
Annotations: <none>
CreationTimestamp: Tue, 19 Feb 2019 10:08:21 +0100
Reference: Deployment/podinfo
Metrics: (current / target)
 "http_requests" on pods: 901m / 10
Min replicas: 2
Max replicas: 10
Deployment pods: 2 current / 2 desired
Conditions:

 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale recommended size matches current size
 ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from
pods metric http_requests
 ScalingLimited True TooFewReplicas the desired replica count is increasing faster than the maximum
scale rate

Events: <none>

Note that: HPA API supports scaling based on both core and custom metrics within the same HPA object.

Example Kubernetes manifests for testing with core metrics:

Example Kubernetes manifests for testing with custom metrics:

	Workload performance management and elasticity

