OpenNESS 19.12 Integration

® OpenNESS 19.12 Design
® Gap Analysis for Integrating OpenNESS with ICN
© Network Policy
©° DNS
© Cross-Node communication
© OS (Ubuntu)
® Openness Integration Design
© Openness Microserivces
© Openness integration for Multus, SR-IOV CNI, SR-IOV Network Device Plugin, FPGA, Bios, Topology Manager, CMK, NFD
© Openness integration test plan for Multus, SR-IOV CNI, SR-IOV Network Device Plugin, Topology Manager, CMK, NFD
© Add more realistic test cases for platform related micro-services
O Task List
o Application
® |ICN Requirements for adding EAA support for geo-distributed producing and consuming applications
© BACKGROUND
© REQUIREMENT

OpenNESS 19.12 Design

Openness released 19.12 on December 21 2019 and this new release has removed the deployment mode (kubernetes + NTS). Two modes is supported
now: Native deployment Mode (which is based on pure docker/libvirt) and Infrastructure Mode (which is based on kube-ovn), below are the brief summary

of the difference of these 2 modes:

Functionality
Usage Scenarios

Infrastructure

Micro-Services in
OpenNESS
Controller

Micro-Services in
OpenNESS Node

Application on-
boarding

Edge node interface
configuration

Traffic Policy
configuration

Native Deployment Mode
On-Premises Edge

Virtualization base: docker/libvirt
Orchestration: OpenNESS controller

Network: docker network (container) + NTS (through new added
KNI interface)

Web Ul controller Ul

Edge Node/Edge application lifecycle management
Core Network Configuration

Telemetry

EAA: application/service registration, authentication etc.

ELA/EVA/EDA: used by controller to configure host interfaces,
network policy (used by NTS), create/destroy application etc.

DNS: for client to access MS in edge node
NTS: traffic steering

OpenNESS Controller Web Ul or Restful API
ELA (Edge LifeCycle Agent, Implemented by OpenNESS) —

Configurated by OpenNESS controller

EDA (Edge Dataplane Agent, Implemented by OpenNESS) —
Configurated by OpenNESS controller

Infrastructure Deployment Mode
Network Edge
Orchestration: Kubernetes

Network: kube-ovn CNI

Core Network Configuration: Configure the access
network (e.g., LTE/CUPS, 5G) control plane

Telemetry

EAA: application/service registration, authentication etc.

EIS(Edge Interface Service), looks to be similar with
providernet implemented in ovs4nfv k8s CNI

DNS: for client to access MS in edge node

Kubernetes (e.g. Kubectl apply -f application.yaml)
Note: unlike 19.09, No Ul used to on-board application

EIS (Edge Interface Service, which is an kubectl extension
to configurate edge node host network adapter), use

e.g. kubectl interfaceservice attach SNODE_NAME
$PCI_ADDRESS

Kubenetes Network Policy CRD

e.g. kubectl apply -f network_policy.yml

Note: unlike 19.09, No Ul used to configure policy

DataPlane Service NTS (Implemented based on DPDK in OpenNESS) to provide kube-ovn + Network policy
additional KNI interface for container

Gap Analysis for Integrating OpenNESS with ICN

Network Policy

Network policy and DNS is used for traffic steering. Network policy is used for restrict access among services but NOT “proactively” forward
the traffic, While the OpenNESS DNS service can help “redirect” the external client’s traffic to the edge application service

By default, in a Network Edge environment, all ingress traffic is blocked (services running inside of deployed applications are not reachable) and all egress
traffic is enabled (pods are able to reach the internet). The following NetworkPolicy definition is used:

Default network policy: block all ingress

api Versi on: networking. k8s.io/vl
net adat a:
name: bl ock-all-ingress
nanmespace: defaul t # sel ects default nanmespace
spec:
podSel ector: {} # matches all the pods in the default namespace
pol i cyTypes:
- Ingress
ingress: [] # no rules allowing ingress traffic = ingress blocked

Admin can enable access to certain service by applying a NetworkPolicy CRD. For example:

1. To deploy a Network Policy allowing ingress traffic on port 5000 (tcp and udp) from 192.168.1.0/24 network to OpenVINO consumer application pod,
create the following specification file for this Network Policy:

Admin defined network policy

api Versi on: networking. k8s.io/vl
ki nd: Networ kPol i cy
net adat a:
name: openvi no-policy
namespace: default
spec:
podSel ector:
mat chLabel s:
nane: openvi no-cons-app
pol i cyTypes:
- Ingress
i ngress:
- from
- ipBlock:
cidr: 192.168.1.0/24
ports:
- protocol: TCP
port: 5000
- protocol: UDP
port: 5000

2. Create the Network Policy:
kubectl apply -f network_policy.yml

DNS

DNS service can help “redirect” the external client’s traffic to the edge application service. This gap analysis is to investigate whether
OpenNESS DNS can be used for ICN traffic steering or not.

OpenNESS provides DNS server which provides the microsevice’s ip address based on FQDN. OpenNESS extends kubectl utility with kubectl edgedns
cmd to set/delete DNS entry. For example

1. define a file with below content: openvino-dns.json

"record_type":"A",

"fgdn™:"openvino.openness",
"addresses":["10.16.0.10"]

2. Then use below command to add an entry in OpenNESS DNS server:
kubectl edgedns set <edge_node_host_name> openvino-dns.json

Below are implement details of OpenNESS DNS server:

® Run as independent process/container in each Edge Node : ./edgednssvr -port 53 -fwdr=8.8.8.8 -db XXX.db // port: DNS server port; fwdr:
forwarder ip used when cannot found FQDN in OpenNESS DNS DB; db: OpenNESS db file
® Provide 2 servers after running:
Control Server: gRPC/IP based API to receive DNS record add/remove request — OpenNESS controller can call this interface to add DNS
record
DNS server: DNS service is based on https://github.com/miekg/dns
® DNS process flow: After get a DNS request, it will try to find the FQDN in local OpenNESS DNS db first, if not found, forward the request to an
external forwarder (default is 8.8.8.8, set by “-fwdr* parameter)

The OpenNESS DNS service is different from K8s’ CoreDNS to support different usages:

® CoreDNS: provides DNS service within K8s cluster, e.g. from app in container to find the service also running in container of the same cluster.

® OpenNESS DNS: provides DNS service for app of external host which is not running in the edge cluster to find a app (which may not be a K8s
service, so its ip may not be recorded in coreDNS) in k8s cluster. e.g. in OpenNESS OpenVINO demo, the video stream generator is running in a
separate host, admin needs manually (add a new name server in /etc/resolv.conf) set it's DNS server IP to point to OpenNESS edge node DNS
server then it can know how to send the stream.

Cross-Node communication

Edge apps can be divided into producer and consumer. This gap analysis is to investigate the communication between the producers and
consumers which are on different edge nodes.

Edge applications must introduce themselves to OpenNESS framework and identify if they would like to activate new edge services or consume an
existing service. Edge Application Agent (EAA) component is the handler of all the edge applications hosted by the OpenNESS edge node and acts as
their point-of-contact.

OpenNESS-awareness involves (a) authentication, (b) service activation/deactivation, (c) service discovery, (d) service subscription, and (e) Websocket
connection establishment. The Websocket connection retains a channel for EAA for notification forwarding to pre-subscribed consumer applications.
Notifications are generated by "producer” edge applications and absorbed by "consumer" edge applications.

The sequence of operations for the producer application:

1. Authenticate with OpenNESS edge node
2. Activate new service and include the list of notifications involved
3. Send natifications to OpenNESS edge node according to business logic

The sequence of operations for the consumer application:

1. Authenticate with OpenNESS edge node
2. Discover the available services on OpenNESS edge platform
3. Subscribe to services of interest and listen for notifications

Edge apps will access eaa through eaa.openness (name.namespace) which is a kubernetes service:
https://github.com/open-ness/edgecontroller/blob/master/kube-ovn/openness.yaml#L18

For example: as following links show, openvino consumer will access http://eaa.openness:443/auth for authentication.
https://github.com/open-ness/edgeapps/blob/master/openvino/consumer/cmd/main.go#L24
https://github.com/open-ness/edgeapps/blob/master/openvino/consumer/cmd/main.go#L66

eaa is deployed as a deployment and only 1 eaa will be deployed:
https://github.com/open-ness/edgecontroller/blob/master/kube-ovn/openness.yaml#L41

Because all edge apps will access only 1 eaa, it doesn't matter that eaa is stateful.
For example:

only 1 eaa is deployed on nodel. producerl and producer2 will activate the new service with eaa. consumerl and consumer2 will consume services stored
in eaa. Because all the information are stored in only 1 eaa, there won't be issues.

nodel node2
eaa
producerl consumerl producer2 consumer2

Because edge apps on different edge node all can access service eaa, the consumer can consume the service provided by producer which is on a
different node.

https://github.com/miekg/dns
https://github.com/open-ness/edgecontroller/blob/master/kube-ovn/openness.yaml#L18
http://eaa.openness:443/auth
https://github.com/open-ness/edgeapps/blob/master/openvino/consumer/cmd/main.go#L24
https://github.com/open-ness/edgeapps/blob/master/openvino/consumer/cmd/main.go#L66
https://github.com/open-ness/edgecontroller/blob/master/kube-ovn/openness.yaml#L41

For example:

producerl is located in nodel and consumer2 is located on node2. The networking flow will be:
producerl -> service eaa -> pod eaa
consumer2 -> service eaa -> pod eaa

nodel node2
eaa
producerl consumer2

OS (Ubuntu)

OpenNESS only supports Centos but ICN is based on Ubuntu 18.04. This gap analysis is to investigate how to deploy OpenNESS on Ubuntu
18.04

OpenNESS only supports Centos but ICN is based on Ubuntu 18.04. By changing the ansible scripts of OpenNESS, it is able to deploy OpenNESS on
Ubuntu 18.04. The following parts of ansible scripts need to change:

1. Following ansible roles can be removed for OpenNESS master: grub, cnca, multus, nfd. Ansible role grub can be removed for OpenNESS node.
Because:

grub is used to add hugepages to grub and hugepages are not useful for integration OpenNESS with ICN.
cnca is not required for integration.

multus has already been integrated with ICN.

nfd will be integrated directly with ICN.

2. Centos uses yum to install packages and we need to use apt for Ubuntu.
3. Some packages which will be installed by ansible scripts should be removed or replaced:
® Some Centos packages doesn't exist on Ubuntu and these packages should be removed. For example, yum-utils, device-mapper-persistent-data.
® Some Centos packages' name are different for Ubuntu. For example, python2-pip should be replaced with python-pip, python-devel should be
replaced with python-dev.
4. Selinux is not used on Ubuntu and need to remove the ansible scripts configuring selinux.
5. Epel repository is for Centos and Ubuntu doesn't need this repository.

6. Proxy will be set for yum and need to change the scripts to set proxy for apt.

7. Docker installation for Centos and Ubuntu are different. Need to change the scripts following the installation guide. For example: the docker repository is
different for Centos and Ubuntu.

8. Auditd is used for Docker. Auditd is delivered with Centos by default but Ubuntu needs to install auditd.

9. Kubernetes installation for Centos and Ubuntu are different. Need to change the scripts following the installation guide. For example: gpg key is different
for Centos and Ubuntu, ubuntu use deb and Centos uses repository.

10. cgroups driver is different for Centos (systemd) and Ubuntu (cgroups). By default, cgroups driver is cgroups and need to remove the ansible scripts
which configures cgroups driver to systemd.

11. firewalld is used in Centos and need to change to ufw which is used by Ubuntu.

12. Packages are different for installing openvswitch and ovn. Centos uses RPMs. Ubuntu uses openvswitch-switch, ovn-common, ovn-central and ovn-
host.

13. Topology manager and CPU manager is configured for edge node's kubelet. No need to use topology manager and can remove these.

Openness Integration Design

Openness Microserivces

We are planning to integrate Openness Infrastructure mode. The following figure shows the microservices of Openness infrastructure mode and also lists
the microserivces that we propose to integrate.

Microservices Description Deployment Deployment Propose to
of Openness method of the integrate
Infrastructure component
mode
eaa application/service registration, authentication etc deployment edge node yes
edgedns for client to access microservices in edge node daemonset edge node yes
(propose to
change to

deployment)

interfaceservice

cnca

syslog

multus

nfd

sriov

topology manager

CMK

bios

fpga

similar with providernet implemented in ovn4nfv-k8s-plugin

Core Network Configuration: Configure the access network (e.g., LTE/CUPS, 5G) control
plane

log service for openness

enabling attaching multiple network interfaces to pods

node feature discovery

sriov network device plugin & sriov cni

kubernetes topology manager

CPU Manager

Used for change BIOS and firmware configuration: CPU configuration, Cache and
Memory configuration, PCle Configuration, Power and Performance configuration, etc

Open Programmable Acceleration Engine (OPAE) package consisting of a kernel driver
and user space FPGA utils package that enables programming of the FPGA is used.
sriov is used to configure the FPGA resources such as Virtual Functions and queues

daemonset

deployment

daemonset

daemonset

daemonset

daemonset

Kubelet
component

part of kubelet

privileged Pod

pod

edge node

controller

controller &
edge node

controller &
edge node

controller &
edge node

controller &
edge node

controller &
edge node

controller &
edge node

controller &
edge node

controller &
edge node

no, will

use ovn4nfv-k8s-
plugin's provider
network

no

no

Already covered
by ONAP4K8s -
KUD

Already covered
by ONAP4K8s -
KUD

Already covered
by ONAP4K8s -
KUD

Work in Progress
to upgrade the
K8s v16.0
integrate

into ONAP4KS8s -
KUD

Work in Progress
- Integrate

into ONAP4K8s -
KUD

Required for ICN?
Already in ICN
Metal3, could be
enabled part of it

Need to integrate
into ONAP4KS8s -
KUD with FPGA
device

Openness integration for Multus, SR-IOV CNI, SR-IOV Network Device Plugin, FPGA, Bios, Topology
Manager, CMK, NFD

Micr | Integration Detail
oser
vice

mult | Version 3.3

us Downloading the following 3 files:
kustomization.ymi[1] rename_default_net.ymlI[2] multus-daemonset.ymI[3] multus-daemonset.ymI[4]

Components | T
es
ting

multus N

running as ot
daemonset fo

und
And then run the following command to kustomize the yml file and then apply.
kubectl kustomize . | kubectl apply -f -
Command kustomize will add parameter: “--rename-conf-file=true” to the daemonset ym file like following:
Containers:
- args:
- --multus-conf-file=auto
- --cni-version=0.3.1
- --rename-conf-file=true
This parameter will add suffix “.old” to the original cni conf file. For example, “.old" is added to the kube-ovn conf
file as below:
[root@master net.d)# Is /etc/cni/net.d/
00-kube-ovn.conflist.old 00-multus.conf multus.d
[1]https://github.com/open-ness/openness-experience-kits/blob/master/roles/multus/files/kustomization.yml
[2]https://github.com/open-ness/openness-experience-kits/blob/master/roles/multus/files/rename_default_net.yml
[3]https://raw.githubusercontent.com/intel/multus-cni/v3.3/images/multus-daemonset.yml
[4]https://raw.githubusercontent.com/intel/multus-cni/v3.3/images/multus-daemonset.yml
sriov | git clone https://github.com/intel/sriov-cni sriov cni N

cni docker build . -t nfvpe/sriov-cni
kubectl create -f ./images/k8s-v1.16/sriov-cni-daemonset.yaml [1]

running as ot
daemonset | fo

kubectl create -f openness-sriov-crd.ymi[2] und

[1]https://github.com/intel/sriov-cni/blob/master/images/k8s-v1.16/sriov-cni-daemonset.yaml|
[2]https://github.com/open-ness/openness-experience-kits/blob/master/roles/sriov/master/files/openness-sriov-

crd.yml

Dependency

Nothing

Request to openness team

where the test cases are.

SR-IOV
enabled NIC

Propose to
integrate

Test cases are missing and need to ask | No

This is standard
multus and only
changes a
parameter.

Test cases are missing and need to ask ' No
where the test cases are.

This is standard
sriov cni.

https://github.com/open-ness/openness-experience-kits/blob/master/roles/multus/files/kustomization.yml
https://github.com/open-ness/openness-experience-kits/blob/master/roles/multus/files/kustomization.yml
https://github.com/open-ness/openness-experience-kits/blob/master/roles/multus/files/rename_default_net.yml
https://github.com/open-ness/openness-experience-kits/blob/master/roles/multus/files/rename_default_net.yml
https://raw.githubusercontent.com/intel/multus-cni/v3.3/images/multus-daemonset.yml
https://raw.githubusercontent.com/intel/multus-cni/v3.3/images/multus-daemonset.yml
https://raw.githubusercontent.com/intel/multus-cni/v3.3/images/multus-daemonset.yml
https://github.com/intel/sriov-cni
https://github.com/intel/sriov-cni
https://github.com/intel/sriov-cni/blob/master/images/k8s-v1.16/sriov-cni-daemonset.yaml
https://github.com/intel/sriov-cni/blob/master/images/k8s-v1.16/sriov-cni-daemonset.yaml
https://github.com/open-ness/openness-experience-kits/blob/master/roles/sriov/master/files/openness-sriov-crd.yml
https://github.com/open-ness/openness-experience-kits/blob/master/roles/sriov/master/files/openness-sriov-crd.yml

sriov
netw
ork
devi
ce
plugin

fpga

git clone https://github.com/intel/sriov-network-device-plugin sriov

network

if fpga_sriov_userspace.enabled: device

patch FPGA_SRIOV_USERSPACE_DEV_PLUGIN.patch[1] to sriov network device plugin directory plugin

running as

make image daemonset
if fpga_sriov_userspace.enabled:

kubectl create -f fpga_configMap([2]
else:

kubectl create -f sriov_configMap[3]
kubectl create -f ./deployments/k8s-v1.16/sriovdp-daemonset.yaml[4]
Provide ansible scripts to create VF and bind igh_uio driver.
If FPGA is used, fpga_sriov_userspace.enabled should be set to true. Then
FPGA_SRIOV_USERSPACE_DEV_PLUGIN.patch will be patched to sriov network device plugin. This patch
enables sriov network device plugin to control fpga devices which are bounded to userspace driver.
Fpga_configMap will be applied and this configmap will create resource intel_fec_5g and intel_fec_lte which is
based on fpga device by specifying vendor_id, device_id and driver.
[1]https://github.com/open-ness/edgecontroller/blob/master/fpga/FPGA_SRIOV_USERSPACE_DEV_PLUGIN.
patch
[2]https://github.com/open-ness/edgecontroller/blob/master/fpga/configMap.yaml
[3]https://github.com/open-ness/edgecontroller/blob/master/sriov/configMap.yaml|
[4]https://github.com/intel/sriov-network-device-plugin/blob/master/deployments/k8s-v1.16/sriovdp-daemonset.
yaml
bbdev_config_service, n3000-1-3-5-beta-rte-setup.zip, n3000-1-3-5-beta-cfg-2x2x25g-setup.zip, flexran-dpdk- kubectl
bbdev-v19-10.patch, FPGA image for 5GNR VRAN are not available and need to ask openness team. plugin rsu

fpga_sriov_userspace.enabled should be set to true.

On master node, build the kubectl plugin rsu (Remote System Update) and move the binary file to directory the
lusr/bin/. This plugin will create kubernetes jobs and run OPAE in those jobs. OPAE(Open Programmable
Acceleration Engine) enables programming of the FPGA and is used to program the FPGA factory image or the
user image (5GN FEC vRAN). The plugin also allows for obtaining basic FPGA telemetry such as temperature,
power usage and FPGA image information.

On worker node, using n3000-1-3-5-beta-rte-setup.zip (can be used to install OPAE), n3000-1-3-5-beta-cfg-
2x2x25g-setup.zip to build docker image ‘fpga-opae-pacn3000:1.0'. OPAE will be installed in this docker image.
RSU will create a kubernetes job which uses image ‘fpga-opae-pacn3000:1.0" as below:
apiVersion: batch/vl
kind: Job
metadata:
name: fpga-opae-job
spec:
template:
spec:
containers:
- securityContext:
privileged: true
name: fpga-opea
image: fpga-opae-pacn3000:1.0
imagePullPolicy: Never
command: ["/bin/bash",
args: ["./check_if_modules_loaded.sh && fpgasupdate /root/images/<img_name>
<RSU_PCI_bus_function_id> && rsu bmcimg (RSU_PCI_bus_function_id)"]
volumeMounts:
- name: class
mountPath: /sys/devices
readOnly: false
- name: image-dir
mountPath: /root/images
readOnly: false
volumes:
- hostPath:
path: "/sys/devices"
name: class
- hostPath:
path: "/temp/vran_images"
name: image-dir
restartPolicy: Never
nodeSelector:
kubernetes.io/hostname: samplenodename
backoffLimit: 0

User FPGA images will be put in the directory /temp/vran_images/.

To configure the VFs with the necessary number of queues for the vVRAN workload the BBDEV configuration
utility is to be run as a job within a privileged container.

make build-docker-fpga-cfg

kubectl create -f fpga-sample-configmap.yami[1]

kubectl create -f fpga-config-job.yaml[2]

A sample pod requesting the FPGA (FEC) VF may look like this:
apiVersion: v1
kind: Pod
Metadata:
name: test
Labels:
env: test
spec:
containers:
- name: test
image: centos:latest
command: ["/bin/bash”, "-c", "--"]
args: ["while true; do sleep 300000; done;"]
resources:
requests:
intel.com/intel_fec_5g: '1'
limits:
intel.com/intel_fec_5g: '1'

[1]https://github.com/open-ness/edgecontroller/blob/master/fpga/fpga-sample-configmap.yaml
[2]https://github.com/open-ness/edgecontroller/blob/master/fpga/fpga-config-job.yaml

N SR-IOV

Test cases are missing and need to ask

ot ' enabled device = where the test cases are.

fo
und

N Intel® FPGA
ot ' Programmable
fo | Acceleration
und Card (Intel
FPGA PAC)
N3000,
DPDK 18.08,
Hugepage
support

1. Test cases are missing and need to
ask where the test cases are.

2.bbdev_config_service, n3000-1-3-5-
beta-rte-setup.zip, n3000-1-3-5-beta-cfg-
2x2x25g-setup.zip, flexran-dpdk-bbdev-
v19-10.patch are not available. Need to
request these packages.

3. FPGA image for 5GNR VRAN is not
available. Need to request this image.

4.What's the difference between flexran
and vran

Yes

Special patch
will be patched
to this project
and is needed by
FPGA.

Yes

This is
developed by
openness team
and FPGA is
requested by
Srini.

https://github.com/intel/sriov-network-device-plugin
https://github.com/open-ness/edgecontroller/blob/master/fpga/FPGA_SRIOV_USERSPACE_DEV_PLUGIN.patch
https://github.com/open-ness/edgecontroller/blob/master/fpga/FPGA_SRIOV_USERSPACE_DEV_PLUGIN.patch
https://github.com/open-ness/edgecontroller/blob/master/fpga/FPGA_SRIOV_USERSPACE_DEV_PLUGIN.patch
https://github.com/open-ness/edgecontroller/blob/master/fpga/configMap.yaml
https://github.com/open-ness/edgecontroller/blob/master/fpga/configMap.yaml
https://github.com/open-ness/edgecontroller/blob/master/sriov/configMap.yaml
https://github.com/open-ness/edgecontroller/blob/master/sriov/configMap.yaml
https://github.com/intel/sriov-network-device-plugin/blob/master/deployments/k8s-v1.16/sriovdp-daemonset.yaml
https://github.com/intel/sriov-network-device-plugin/blob/master/deployments/k8s-v1.16/sriovdp-daemonset.yaml
http://kubernetes.io/hostname
http://intel.com/intel_fec_5g
http://intel.com/intel_fec_5g
https://github.com/open-ness/edgecontroller/blob/master/fpga/fpga-sample-configmap.yaml
https://github.com/open-ness/edgecontroller/blob/master/fpga/fpga-config-job.yaml

bios

topol
ogy

man
ager

CMK

On master node, build the kubectl plugin biosfw and move the binary file to directory the /usr/bin/. This plugin will | Kubectl
create a kubernetes job and run syscfg in that job. Intel® System Configuration Utility (Syscfg) is a command- plugin biosfw | ot
line utility that can be used to save and restore BIOS and firmware settings to a file or to set and display fo
individual settings. und

Server
platforms

https://downloa

dcenter
.intel.com
/download/

On worker node, using syscfg_package.zip to build docker image ‘openness-biosfw’. Syscfg will be upzipped in
this docker image. The kubernetes job created by kubectl plugin biosfw will use this image ‘openness-biosfw’ as
below:
apiVersion: batch/vl
kind: Job
metadata:
name: openness-biosfw-job
spec:
backoffLimit: 0
activeDeadlineSeconds: 100
template:
spec:
restartPolicy: Never
containers:

- name: openness-biosfw-job
image: openness-biosfw
imagePullPolicy: Never
securityContext:

privileged: true
args: ['$(BIOSFW_COMMAND)"]
env:
- name: BIOSFW_COMMAND
valueFrom:
configMapKeyRef:
name: biosfw-config
key: COMMAND
volumeMounts:
- name: host-devices
mountPath: /dev/mem
- name: biosfw-config-volume
mountPath: /biosfw-config/
volumes:

- name: host-devices

hostPath:
path: /dev/imem

- name: biosfw-config-volume

configMap:
name: biosfw-config

System-

Utility-
SYSCFG-

Configure kubelet on the worker node as below: Kubelet N K8s1.16
1. Set cpuManagerPolicy to static component | ot

2. Set topologyManagerPolicy to best-effort fo

BEGIN OpenNESS configuration - General und

apiVersion: kubelet.config.k8s.io/vlbetal
kind: KubeletConfiguration
KubeletCgroups: "/systemd/system.slice"
Authentication:

x509:

clientCAFile: /etc/kubernetes/pki/ca.crt

clusterDNS:

-10.96.0.10
clusterDomain: cluster.local
featureGates:

TopologyManager: True
podPidsLimit: 2048
END OpenNESS configuration - General
BEGIN OpenNESS configuration - CPU Manager
cpuManagerPolicy: static
kubeReserved:

cpu: "1"
END OpenNESS configuration - CPU Manager
BEGIN OpenNESS configuration - Topology Manager
topologyManagerPolicy: best-effort
END OpenNESS configuration - Topology Manager

Download the following files: N Nothing
cmk-namespace.yami[1] cmk-serviceaccount.yaml[2] cmk-rbac-rules.yami[3] cmk-cluster-init-pod.yamI[4] ot
fo

Copy following files to the same directory as cmk-namespace.yaml, cmk-serviceaccount.yaml, cmk-rbac-rules. und
yaml and cmk-cluster-init-pod.yaml:

Kustomization.ymi[5] rewrite_args.yml.j2[6]

Run the following command:
kubectl kustomize . | kubectl apply -f -
This kustomize command will change the parameters in cmk-cluster-init-pod.yaml:
- args:
Change this value to pass different options to cluster-init.
- "lemk/cmk.py cluster-init --host-list=nodel,node2,node3 --saname=cmk-serviceaccount --namespace=c
mk-namespace"

On each worker node, clone the project https:/github.com/intel/CPU-Manager-for-Kubernetes and then checkout
the commit e3df769521558cff7734c568ac5d3882d4f41af9. Using command ‘make’ to build the docker image.

[1]https://raw.githubusercontent.com/intel/CPU-Manager-for-Kubernetes
1e3df769521558cff7734c568ac5d3882d4f41af9/resources/authorization/cmk-namespace.yaml|
[2]https://raw.githubusercontent.com/intel/CPU-Manager-for-Kubernetes
1e3df769521558cff7734c568ac5d3882d4f41af9/resources/authorization/cmk-serviceaccount.yaml
[3]https://raw.githubusercontent.com/intel/CPU-Manager-for-Kubernetes
/e3df769521558c¢ff7734c568ac5d3882d4f41af9/resources/authorization/cmk-rbac-rules.yaml
[4]https://raw.githubusercontent.com/intel/CPU-Manager-for-Kubernetes
1e3df769521558cff7734c568ac5d3882d4f41af9/resources/pods/cmk-cluster-init-pod.yaml
[5]https://github.com/open-ness/openness-experience-kits/blob/master/roles/cmk/master/files/kustomization.yml
[6]https://github.com/open-ness/openness-experience-kits/blob/master/roles/cmk/master/templates/rewrite_args.
yml.j2

N | certain Intel®

28713/Save-
and-Restore-

Configuration-

1.Test cases are missing and need to
ask where the test cases are.

2. Ask the server version, motherboard
version, bios version for testing epa
feature bios?

Test cases are missing and need to ask
where the test cases are.

Test cases are missing and need to ask
where the test cases are.

Yes

This is
developed by
openness team.

No

This is standard
topology
manager.

No
This is standard
CMK.

https://downloadcenter.intel.com/download/28713/Save-and-Restore-System-Configuration-Utility-SYSCFG-
https://downloadcenter.intel.com/download/28713/Save-and-Restore-System-Configuration-Utility-SYSCFG-
https://downloadcenter.intel.com/download/28713/Save-and-Restore-System-Configuration-Utility-SYSCFG-
https://downloadcenter.intel.com/download/28713/Save-and-Restore-System-Configuration-Utility-SYSCFG-
https://downloadcenter.intel.com/download/28713/Save-and-Restore-System-Configuration-Utility-SYSCFG-
https://downloadcenter.intel.com/download/28713/Save-and-Restore-System-Configuration-Utility-SYSCFG-
https://downloadcenter.intel.com/download/28713/Save-and-Restore-System-Configuration-Utility-SYSCFG-
https://downloadcenter.intel.com/download/28713/Save-and-Restore-System-Configuration-Utility-SYSCFG-
https://downloadcenter.intel.com/download/28713/Save-and-Restore-System-Configuration-Utility-SYSCFG-
https://downloadcenter.intel.com/download/28713/Save-and-Restore-System-Configuration-Utility-SYSCFG-
http://kubelet.config.k8s.io/v1beta1
https://github.com/intel/CPU-Manager-for-Kubernetes
https://raw.githubusercontent.com/intel/CPU-Manager-for-Kubernetes/e3df769521558cff7734c568ac5d3882d4f41af9/resources/authorization/cmk-namespace.yaml
https://raw.githubusercontent.com/intel/CPU-Manager-for-Kubernetes/e3df769521558cff7734c568ac5d3882d4f41af9/resources/authorization/cmk-namespace.yaml
https://raw.githubusercontent.com/intel/CPU-Manager-for-Kubernetes/e3df769521558cff7734c568ac5d3882d4f41af9/resources/authorization/cmk-namespace.yaml
https://raw.githubusercontent.com/intel/CPU-Manager-for-Kubernetes/e3df769521558cff7734c568ac5d3882d4f41af9/resources/authorization/authorization/cmk-serviceaccount.yaml
https://raw.githubusercontent.com/intel/CPU-Manager-for-Kubernetes/e3df769521558cff7734c568ac5d3882d4f41af9/resources/authorization/authorization/cmk-serviceaccount.yaml
https://raw.githubusercontent.com/intel/CPU-Manager-for-Kubernetes/e3df769521558cff7734c568ac5d3882d4f41af9/resources/authorization/authorization/cmk-serviceaccount.yaml
https://raw.githubusercontent.com/intel/CPU-Manager-for-Kubernetes/e3df769521558cff7734c568ac5d3882d4f41af9/resources/authorization/cmk-rbac-rules.yaml
https://raw.githubusercontent.com/intel/CPU-Manager-for-Kubernetes/e3df769521558cff7734c568ac5d3882d4f41af9/resources/authorization/cmk-rbac-rules.yaml
https://raw.githubusercontent.com/intel/CPU-Manager-for-Kubernetes/e3df769521558cff7734c568ac5d3882d4f41af9/resources/authorization/cmk-rbac-rules.yaml
https://raw.githubusercontent.com/intel/CPU-Manager-for-Kubernetes/e3df769521558cff7734c568ac5d3882d4f41af9/resources/pods/cmk-cluster-init-pod.yaml
https://raw.githubusercontent.com/intel/CPU-Manager-for-Kubernetes/e3df769521558cff7734c568ac5d3882d4f41af9/resources/pods/cmk-cluster-init-pod.yaml
https://raw.githubusercontent.com/intel/CPU-Manager-for-Kubernetes/e3df769521558cff7734c568ac5d3882d4f41af9/resources/pods/cmk-cluster-init-pod.yaml
https://github.com/open-ness/openness-experience-kits/blob/master/roles/cmk/master/files/kustomization.yml
https://github.com/open-ness/openness-experience-kits/blob/master/roles/cmk/master/files/kustomization.yml
https://github.com/open-ness/openness-experience-kits/blob/master/roles/cmk/master/templates/rewrite_args.yml.j2
https://github.com/open-ness/openness-experience-kits/blob/master/roles/cmk/master/templates/rewrite_args.yml.j2

nfd | version: v0.4.0

Download the following files:
Nfd-master.yaml.template[1] nfd-worker-daemonset.yaml.template[2]

nfd-master N = Nothing
running as ot
daemonset fo

on und
kubernetes

Test cases are missing and need to ask
where the test cases are.

No

This is standard
nfd and only a
few changes are
applied such as

Copy following files to the same directory as nfd-master.yaml.template and nfd-worker-daemonset.yaml.template:
Add_nfd_namespace.yaml[3] kustomization.ymi[4] replace_cluster_role_binding_namespace.ymi[5]
replace_service_account_namespace.yml[6] enable_nfd_master_certs.yml.j2[7] enable_nfd_worker_certs.yml.j2

(8]

Run the following command to kustomize the files (nfd-master.yaml and nfd-worker-daemonset.yaml):
kubectl kustomize . | kubectl apply -f -

The above kustomize command will replace the namespace ‘default’ with ‘openness’, add certs to nfd-master
and nfd-worker.

Apply below network policy to allow the communication between nfd-master and nfd-worker:
https://github.com/open-ness/edgecontroller/blob/master/kube-ovn/nfd_network_policy.yml

[1]https://raw.githubusercontent.com/kubernetes-sigs/node-feature-discovery/v0.4.0/nfd-master.yaml.template
[2]https://raw.githubusercontent.com/kubernetes-sigs/node-feature-discovery/v0.4.0/nfd-worker-daemonset.yaml.
template
[3]https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/files/add_nfd_namespace.yml
[4]https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/files/kustomization.yml
[5]https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/files
Ireplace_cluster_role_binding_namespace.yml|
[6]https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/files
Ireplace_service_account_namespace.yml
[71https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/templates
/enable_nfd_master_certs.yml.j2
[8]https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/templates
lenable_nfd_worker_certs.yml.j2

master node

nfd-worker
running as
daemonset

namespace,
certs.

Openness integration test plan for Multus, SR-IOV CNI, SR-IOV Network Device Plugin, Topology

Manager, CMK, NFD

Microser | ICN OPENNESS
vice
MULTUS
1. Apply the bridge-network.yaml[1]. 1. Apply the macvlan-network.yaml.
2. Create Multus-deployment.yami[2] 2. Create a pod with macvlan annotation.
with two bridge interfaces. 3. Verify the “netl” interface was

3. Exec follow command to check if configured in the deployed pod.

the “netl” interface was created.

kubectl exec -it $deployment_pod | Link:

—-ipa openness multus usage: https://github.com
lopen-ness/specs/blob/master/doc/enhanced-
platform-awareness/openness-sriov-multiple-
interfaces.md#multus-usage

[1]https://github.com/onap/multicloud-k8s

/blob

/9c63ce2a7b2b66b3e3fce5d1f553f32714

8df83f/kud/tests/_common.sh#L856

[2]https://github.com/onap/multicloud-k8s
/blob
/9c63ce2a7h2b66b3e3fce5d1f553f32714
8df83f/kud/tests/_common.sh#L873

Difference

* Different network types used for testing.

ICN is using the ‘bridge’ type,
OPENNESS is ‘macvlan’.

* Beside deploying the pod with sriov
interface, ICN checks the current
allocated sriov resource status.

® Update ICN test case with

verifying macvlan network
type.

® ICN has a more

comprehensive testing and
It covers openness test

scope. So the ICN test case

SRIOV
CNI 1. Apply the sriov-network.yaml[1]. 1. Apply the sriov-network.yaml

2. Check if the Ethernet adapter 2. Create a pod with the sriov annotation
SRIOV version is equal to "XL710". field and the sriov resource requested.
NETWO 3. Create a pod[2] with the sriov 3. Verify the “netl” interface was
RK annotation field and the sriov configured in the deployed pod.
DEVICE resource requested.
PLUGIN

4. Verify the the deployed pod status.
kubectl get pods $pod | awk
'‘NR==2{print $3}'

5. Check the current sriov resource
allocation status[3].

[1]https://github.com/onap/multicloud-k8s
/blob
/9c63ce2a7b2b66b3e3fce5d1f553f32714
8df83f/kud/deployment_infra/playbooks
Isriov-nad.yml#L1
[2]https://github.com/onap/multicloud-k8s
/blob
/9c63ce2a7h2b66b3e3fce5d1f553f32714
8df83f/kud/tests/sriov.sh#L.32
[3]https://github.com/onap/multicloud-k8s
/blob
/9c63ce2a7h2b66b3e3fce5d1f553f32714
8df83f/kud/tests/sriov.sh#L68

Link:
Openness sriov usage:
https://github.com/open-ness/specs/blob

/master/doc/enhanced-platform-awareness
lopenness-sriov-multiple-interfaces.md#usage

remains unchanged.

https://github.com/open-ness/edgecontroller/blob/master/kube-ovn/nfd_network_policy.yml
https://raw.githubusercontent.com/kubernetes-sigs/node-feature-discovery/v0.4.0/nfd-master.yaml.template
https://raw.githubusercontent.com/kubernetes-sigs/node-feature-discovery/v0.4.0/nfd-master.yaml.template
https://raw.githubusercontent.com/kubernetes-sigs/node-feature-discovery/v0.4.0/nfd-worker-daemonset.yaml.template
https://raw.githubusercontent.com/kubernetes-sigs/node-feature-discovery/v0.4.0/nfd-worker-daemonset.yaml.template
https://raw.githubusercontent.com/kubernetes-sigs/node-feature-discovery/v0.4.0/nfd-worker-daemonset.yaml.template
https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/files/add_nfd_namespace.yml
https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/files/add_nfd_namespace.yml
https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/files/kustomization.yml
https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/files/kustomization.yml
https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/files/replace_cluster_role_binding_namespace.yml
https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/files/replace_cluster_role_binding_namespace.yml
https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/files/replace_cluster_role_binding_namespace.yml
https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/files/replace_service_account_namespace.yml
https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/files/replace_service_account_namespace.yml
https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/files/replace_service_account_namespace.yml
https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/templates/enable_nfd_master_certs.yml.j2
https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/templates/enable_nfd_master_certs.yml.j2
https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/templates/enable_nfd_master_certs.yml.j2
https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/templates/enable_nfd_worker_certs.yml.j2
https://github.com/open-ness/openness-experience-kits/blob/master/roles/nfd/templates/enable_nfd_worker_certs.yml.j2
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/_common.sh#L856
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/_common.sh#L856
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/_common.sh#L856
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/_common.sh#L856
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/_common.sh#L873
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/_common.sh#L873
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/_common.sh#L873
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/_common.sh#L873
https://github.com/open-ness/specs/blob/master/doc/enhanced-platform-awareness/openness-sriov-multiple-interfaces.md#multus-usage
https://github.com/open-ness/specs/blob/master/doc/enhanced-platform-awareness/openness-sriov-multiple-interfaces.md#multus-usage
https://github.com/open-ness/specs/blob/master/doc/enhanced-platform-awareness/openness-sriov-multiple-interfaces.md#multus-usage
https://github.com/open-ness/specs/blob/master/doc/enhanced-platform-awareness/openness-sriov-multiple-interfaces.md#multus-usage
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/deployment_infra/playbooks/sriov-nad.yml#L1
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/deployment_infra/playbooks/sriov-nad.yml#L1
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/deployment_infra/playbooks/sriov-nad.yml#L1
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/deployment_infra/playbooks/sriov-nad.yml#L1
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/deployment_infra/playbooks/sriov-nad.yml#L1
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/sriov.sh#L32
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/sriov.sh#L32
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/sriov.sh#L32
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/sriov.sh#L32
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/sriov.sh#L68
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/sriov.sh#L68
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/sriov.sh#L68
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/sriov.sh#L68
https://github.com/open-ness/specs/blob/master/doc/enhanced-platform-awareness/openness-sriov-multiple-interfaces.md#usage
https://github.com/open-ness/specs/blob/master/doc/enhanced-platform-awareness/openness-sriov-multiple-interfaces.md#usage
https://github.com/open-ness/specs/blob/master/doc/enhanced-platform-awareness/openness-sriov-multiple-interfaces.md#usage

NFD

CMK

Topology
Manager

Verify NFD by setting pod.yaml with *
affinity’ field.

apiVersion: vl
kind: Pod
metadata:
name: $pod_name
spec:
affinity:
nodeAffinity:
requiredDuringSchedulinglgnored
DuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: "feature.node. kubernetes.
io/kernel-version.major"
operator: Gt
values:
-'3
containers:
- name: with-node-affinity
image: gcr.io/google_containers/pause:
2.0

Link:

KUD test script:
https://github.com/onap/multicloud-k8s
/blob/master/kud/tests/nfd.sh

NIL

Link:

CMK official validate solution:
https://github.com/intel/CPU-Manager-for-
Kubernetes/blob/master/docs/operator.
md#validating-the-environment

Liang's patch:
https://gerrit.onap.org/r/c/multicloud/k8s/+
/102311

N

L

Link:

Topology Manager limitation:
https://kubernetes.io/docs/tasks
/administer-cluster/topology-manager
J#known-limitations

Verify NFD by setting pod.yaml with
‘nodeSelector’ field.

apiVersion: vl
kind: Pod
metadata:
labels:
env: test
name: golang-test
spec:
containers:
- image: golang
name: gol
nodeSelector:
feature.node.kubernetes.io/cpu-pstate.
turbo: ‘true’

Link:

Openness nfd usage:
https://github.com/open-ness/specs/blob
/master/doc/enhanced-platform-awareness
lopenness-node-feature-discovery.md#usage

1. Create a pod that can be used to deploy
applications pinned to a core.

Link:

Openness CMK usage:
https://github.com/open-ness/specs/blob
/master/doc/enhanced-platform-awareness
Jopenness-dedicated-core.md#usage

1. Create a pod with guaranteed(requests
equal to limits) QoS class.

2. Check in kubelet's logs on you node
(journalctl -xeu kubelet).

Link:

Openness TM usage:
https://github.com/open-ness/specs/blob
/master/doc/enhanced-platform-awareness
/openness-topology-manager.md#usage

* Node affinity is conceptually similar to
nodeSelector. it allows you to constrain
which nodes your pod is eligible to be
scheduled on, based on labels on the
node.

Both tests are roughly the same like each
other, ICN specifies ‘affinity’ to check if
the NFD is effective, and OPENNESS
uses the ‘nodeSelector’ field.

* CMK'’s integration is under way in ICN.
So ICN doesn't provide a test case now.

* Not implement Topology Manager at ICN.

So ICN doesn't provide test case now.

Add more realistic test cases for platform related micro-services

Microservice

Test cases in KUD

1. Enable Multus AddOn support.
2. Verify the minion interface network type

[1]https://github.com/onap/multicloud-k8s/blob
/9c63ce2a7h2b66b3e3fce5d1f553f327148df83f/kud/tests/_common.sh#L856
[2]https://github.com/onap/multicloud-k8s/blob
/9c63ce2a7h2b66b3e3fce5d1f553f327148df83f/kud/tests/_common.sh#L1053
[3]https://github.com/onap/multicloud-k8s/blob
/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/sriov.sh#L.32

Multus
- bridge[1]
- ovnanfv[2]
- sr-iov[3]
SR-I0OV CNI

SR-IOV Network
Device Plugin

1. Enable SR-IOV cni and network device plugin AddOn support.
2. Check VF allocated status.
- Verify single VF allocated[1]

[1]https://github.com/onap/multicloud-k8s/blob
/9c63ce2a7h2b66b3e3fce5d1f553f327148df83f/kud/tests/sriov.sh#L47

® Add a check condition
for label ‘feature.node.
kubernetes.io/cpu-pstate.
turbo: ‘true”.

* NIL

* Dependence on k8s version.

Test cases to be added

1. Add more k8s-cni[1] type verification:

- macvlan
-ipvlan
- ptp

[1] https://github.com/containernetworking

Iplugins

1. Add multi-VF allocated verification

- Verify multiple VF allocated

https://github.com/onap/multicloud-k8s/blob/master/kud/tests/nfd.sh
https://github.com/onap/multicloud-k8s/blob/master/kud/tests/nfd.sh
https://github.com/open-ness/specs/blob/master/doc/enhanced-platform-awareness/openness-node-feature-discovery.md#usage
https://github.com/open-ness/specs/blob/master/doc/enhanced-platform-awareness/openness-node-feature-discovery.md#usage
https://github.com/open-ness/specs/blob/master/doc/enhanced-platform-awareness/openness-node-feature-discovery.md#usage
https://github.com/intel/CPU-Manager-for-Kubernetes/blob/master/docs/operator.md#validating-the-environment
https://github.com/intel/CPU-Manager-for-Kubernetes/blob/master/docs/operator.md#validating-the-environment
https://github.com/intel/CPU-Manager-for-Kubernetes/blob/master/docs/operator.md#validating-the-environment
https://gerrit.onap.org/r/c/multicloud/k8s/+/102311
https://gerrit.onap.org/r/c/multicloud/k8s/+/102311
https://github.com/open-ness/specs/blob/master/doc/enhanced-platform-awareness/openness-dedicated-core.md#usage
https://github.com/open-ness/specs/blob/master/doc/enhanced-platform-awareness/openness-dedicated-core.md#usage
https://github.com/open-ness/specs/blob/master/doc/enhanced-platform-awareness/openness-dedicated-core.md#usage
https://kubernetes.io/docs/tasks/administer-cluster/topology-manager/#known-limitations
https://kubernetes.io/docs/tasks/administer-cluster/topology-manager/#known-limitations
https://kubernetes.io/docs/tasks/administer-cluster/topology-manager/#known-limitations
https://github.com/open-ness/specs/blob/master/doc/enhanced-platform-awareness/openness-topology-manager.md#usage
https://github.com/open-ness/specs/blob/master/doc/enhanced-platform-awareness/openness-topology-manager.md#usage
https://github.com/open-ness/specs/blob/master/doc/enhanced-platform-awareness/openness-topology-manager.md#usage
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/_common.sh#L856
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/_common.sh#L856
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/_common.sh#L1053
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/_common.sh#L1053
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/sriov.sh#L32
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/sriov.sh#L32
https://github.com/containernetworking/plugins
https://github.com/containernetworking/plugins
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/sriov.sh#L47
https://github.com/onap/multicloud-k8s/blob/9c63ce2a7b2b66b3e3fce5d1f553f327148df83f/kud/tests/sriov.sh#L47

NFD

1. Enable NFD AddOn support. 1. Enhance the "affinity" verification method.
2. Using the "affinity"[1] field verifies If NFD is effective or not. - Add different kinds of operator, e.g. In, Not
- Using 'Gt' operator to check kernel version. In, Exists, DoesNotEXxist, Lt.
- Add multiple "matchExpressions"
[1]https://github.com/onap/multicloud-k8s/blob/master/kud/tests/nfd.sh#L27 verification.
- Add multiple "nodeSelectorTerms"
verification.

2. Add a “nodeSelector” field to verify.

CMK CMK is not integrated into KUD yet. It's going to be added the patch below:

https://gerrit.onap.org/r/c/multicloud/k8s/+
/102311

Task List

® Create Ansible scripts to create building environment, build microservices' docker images and push them to docker repository
® Create helm charts to run microservice in ONAP4K8s

Application

* TBD

ICN Requirements for adding EAA support for geo-distributed producing and consuming
applications

BACKGROUND

Cloud native applications usually use microservice architecture. It means the application will contain multiple micro-serivces like Figure 1. This application
consists of four micro-services (s1, s2, s3, s4). And s1 communicates with s2, s2 communicates with s3 and s3 communicates with s4. sl is an user facing
micro-service. s1 and s2 are expected to be deployed together. s2 is stateful and hence needs to communicate with other s2.

https://github.com/onap/multicloud-k8s/blob/master/kud/tests/nfd.sh#L27
https://gerrit.onap.org/r/c/multicloud/k8s/+/102311
https://gerrit.onap.org/r/c/multicloud/k8s/+/102311

Public/Private cloud

us4
us

nsS4

us

7 2

Figure 1 Centralized Application

When it comes to edge computing, some micro-services will be deployed on the edge clouds and some micro-services will be deployed on the central
cloud like Figure 2. s1 and s2 are deployed on the edge cloud. s3 and s4 are deployed on the central cloud. Thus the application for edge computing is
geo-distributed in nature.

Public/Private cloud

o External
System

N
Edge Ege N

Edge Platform Edge Platform

Network (LAN/WAN)

Figure 2. Distributed Application

ICN (which includes EMCO - formerly ONAP4KS8s) is to show multiple clusters as one as far as the application life cycle is concerned as applications are
becoming geo-distributed. In EMCO, we have a concept called ‘Logical Cluster” which is an abstracted cluster across multiple K8s clusters as Figure 3.

Edge 1 Edge N Public/Private cloud

Logical Cluster 1
ps2
ps1 us1

Logical Cluster 2

) Edge Platform ‘@j}Edge Platform

Figure 3 Logical Cluster

REQUIREMENT

EAA provides application/service registration and authentication in openness. For now eaa only supports single cluster applications and doesn’t support
geo-distributed, multi-cluster applications which are typically edge applications. To support geo-distributed applications, eaa needs to support application
[service registration and authentication on different edge clouds which are kubernetes clusters in network edge. For example,

® |f creating one EAA for every tenant (logical cluster): micro-services on different edge clouds which are kubernetes clusters should be able to
communicate with each other by registering the services to the EAA and consuming the services from the EAA on different edge clouds. For
example: s2 is stateful and needs to communicate with other s2 on different edge clouds to synchronize the states.

® |f creating one EAA for every kubernetes cluster, EAAs need to synchronize the states because EAAs are stateful: The certs of EAAs on different
edge clouds are signed by different Root CAs which are generated by Openness ansible scripts. What's more, producing application and
consuming application will get certs from EAA and those certs are signed by EAA’s certs. And this will cause the producing application and
consuming application on different edge cloud can’t communicate with each other because their certs are on different certificate chains. To solve
this issue, the certs of EAAs should be signed by the same orchestrator. For example, ICN DCM (Distributed Cloud Manager) can take this role:

https://wiki.onap.org/pages/viewpage.action?pageld=76875956

https://wiki.onap.org/pages/viewpage.action?pageId=76875956

	OpenNESS 19.12 Integration

