Sdewan CRD Controller

Goal

Sdwan Design Principle

Architecture

CNF Deployment

Sdewan rule CRs

CNF Service CR

Sdewan rule CRD Reconcile Logic
Unsual Cases

Admission Webhook Usage

Sdewan rule CR type level Permission Implementation
ServiceRule controller (For next release)
References

Goal

Sdewan CRD Controller (config agent) is the controller of Sdewan CRDs. With the CRD Controller, we are able to deploy Sdewan CRs to configure CNF
rules. In this page, we have the following terms, let's define them here.

CNF Deployment: A deployment running network function process(openWRT)

Sdewan rule: The rule defines the CNF behaves. We have 3 classes of rules: mwang3, firewall, ipsec. Each class includes several kinds of rules.
For example, mwan3 has 2 kinds: mwan3_policy and mwan3_rule. Firewall has 5 kinds: firewall_zone, firewall_snat, firewall_dnat,
firewall_forwarding, firewall_rule. Ipsec has xx(ruoyu) kinds: xx, xx.

Sdewan rule CRD: The CRD defines each kind of sdewan rule. For each kind of Sdewan rule, we have a Sdewan rule CRD. Sdewan rule CRD
is namespaced resource.

Sdewan rule CR: Instance of Sdewan rule CRD.

Sdewan controller: The controller watching Sdewan rule CRs.

CNF: A network function running in container.

To deploy a CNF, user needs to create one CNF deployment and some Sdewan rule CRs. In a Kubernetes namespace, there could be more than one
CNF deployment and many Sdewan rule CRs. We use label to correlate one CNF with some Sdewan rule CRs. The Sdewan controller watches Sdewan
rule CRs and applies them onto the correlated CNF by calling CNF REST api.

Sdwan Design Principle

There could be multiple tenants/namespaces in a Kubernetes cluster. User may deploy multiple CNFs in any one or more tenants.

The replica of CNF deployment could be more than one for active/backup purpose. We should apply rules for all the pods under CNF deployment.
(This release doesn't implement VRRP between pods)

CNF deployment and Sdewan rule CRs can be created/updated/deleted in any order

The Sdewan controller and CNF process could be crash/restart at anytime for some reasons. We need to handle these scenarios

Each Sdewan rule CR has labels to identify the type it belongs to. 3 types are available at this time: basi c, app-i nt ent and k8s- servi ce.
We extend k8s user role permission so that we can set user permission at type level of Sdewan rule CR

Sdewan rule CR dependencies are checked on creating/updating/deleting. For example, if we create a mwan3_rule CR which uses policy pol i cy
- X, but no mwan3_policy CR named pol i cy- x exists. Then we block the request

Architecture

Create/Update/Delete

Register Controller

and Webhook SDEWAN CRD Controller
. Configure/
CR Change Firewall MWAN3 IpSec Ase;i‘?:ﬁ{m Query
“d
CR ’ Controller Controller Controller CF:)F:nroller S

K8s APl Server

Request Permission
Check

BucketPermission LabelValidateWeb Runtime
Webhook hook Controller

. In scope Qut of scope

SDEWAN CRD Controller internally calls SDEWAN Restful API to do CNF configuration. And a remote client (e.g. SDEWAN Overlay Controller) can
manage SDEWAN CNF configuration through creating/updating/deleting SDEWAN CRs. It includes below components:

MWANS3 Controller: monitor mwan3 related CR change then do mwan3 configuration in SDEWAN CNF

Firewall Controller: monitor firewall related CR change then do firewall configuration in SDEWAN CNF

IpSec Controller: monitor ipsec related CR change then do ipsec configuration in SDEWAN CNF

Service/Application Controller: configure firewall/NAT rule for in-cluster service and application

Runtime controller: collect runtime information of CNF include IPSec, IKE, firewall/NAT connections, DHCP leases, DNS entries, ARP entries etc..
BucketPerssion/LabelValidateWebhook: do sdewan CR request permission check based on CR label and user

CNF Deployment

In this section we describe what the CNF deployment should be like, as well as the pod under the deployment.

CNF pod should has multiple network interfaces attached. We use multus and ovn4nfv CNIs to enable multiple interfaces. So in the CNF pod
yaml, we set annotations: k8s. v1. cni . cncf. i o/ net wor ks, k8s. pl ugi n. opnf v. or g/ nf n- net wor k.

When user deploys a CNF, she/he most likely want to deploy the CNF on a specified node instead of a random node. Because some nodes may
don't have provider network connected. So we set spec. nodeSel ect or for pod

CNF pod runs Sdewan CNF (based on openWRT in ICN). We use image i nt egr at edcl oudnati ve/ openwr t : dev

CNF pod should setup with rediness probe. Sdewan controller would check pod readiness before calling CNF REST api.

CNF pod

api Ver si on: extensions/vlbetal
ki nd: Depl oynent
net adat a:

name: cnf-1

nanmespace: defaul t

| abel s:
sdewanPur pose: cnf-1
spec:
replicas: 1
strategy:

rol i ngUpdat e:
maxSurge: 25%
maxUnavai | abl e: 25%
type: RollingUpdate
tenpl ate:
net adat a:
annot ati ons:
k8s. pl ugi n. opnfv. org/ nfn-network: |-

{ "type": "ovn4nfv", "interface": [

{
"defaul t Gateway": "fal se",
"interface": "net0Q",
"nane": "ovn-priv-net"

H

{
"def aul t Gateway": "fal se",
"interface": "netl",
"nane": "ovn-provider-netl"

H

{
"def aul t Gat eway": "fal se",
"interface": "net2",
"nanme": "ovn-provider-net2"

}

1}
k8s.vl.cni.cncf.io/networks: '[{ "name": "ovn-networkobj"}]"'
spec:
cont ai ners:
- command:
- /bin/sh

- /tnp/ sdewan/ ent rypoi nt.sh
i mage: integratedcl oudnative/openwt: dev
nanme: sdewan
readi nessProbe:
failureThreshold: 5

httpCet:
path: /
port: 80

schene: HITP

initial Del aySeconds: 5

peri odSeconds: 5

successThreshold: 1

ti meout Seconds: 1
securityContext:

privileged: true

prochMount: Defaul t

vol umeMount s:

- mount Path: /tnp/sdewan
name: exanpl e- sdewan
readOnly: true

nodeSel ector:
kuber net es. i o/ host nane: ubuntul8

Sdewan rule CRs

CRD defines all properties of a resource, but it's not human friendly. So we paste Sdewan rule CR samples instead of CRDs.

® Each Sdewan rule CR has a label named sdewanPur pose to indicate which CNF should the rule be applied onto

® Each Sdewan rule CR has the st at us field which indicates if the latest rule is applied and when it's applied

® Mrvan3Pol i cy. spec. nenber s[] . net wor k should match the networks defined in CNF pod annotation k8s. pl ugi n. opnf v. or g/ nf n-
net wor k. As well as Fi rewal | Zone. spec[]. net work

CR samples of Mwan3 type:

Mwan3Policy CR

api Ver si on: batch. sdewan. akr ai no. or g/ vlal phal
ki nd: Maan3Pol i cy
nmet adat a:

nane: bal ancel

namespace: defaul t

| abel s:
sdewanPur pose: cnf-1
spec:
menbers:
- network: ovn-netl
wei ght: 2
metric: 2
- network: ovn-net2
weight: 3
metric: 3
stat us:

appl i edVersion: "2"
appl i edTi ne: "2020- 03- 29T04: 21: 482"
inSync: True

Mwan3Rule CR

api Ver si on: batch. sdewan. akr ai no. or g/ vlal phal
ki nd: Mrvan3Rul e
net adat a
name: http_rule
nanmespace: default
| abel s:
sdewanPur pose: cnf-1
spec:
policy: balancel
src_ip: 192.168.1.2
dest _ip: 0.0.0.0/0
dest _port: 80
proto: tcp
st at us:
appl i edVersi on: "2"
appl i edTi ne: "2020- 03- 29T04: 21: 482"
inSync: True

CR samples of Firewall type:

api Ver si on: batch. sdewan. akr ai no. or g/ vlal phal
ki nd: Firewal | Zone
nmet adat a
nane: |anl
nanmespace: default
| abel s:
sdewanPur pose: cnf-1
spec:
newt or k:
- ovn-netl
i nput: ACCEPT
out put : ACCEPT
st at us:
appl i edversion: "2"
appl i edTi ne: "2020- 03- 29T04: 21: 482"
inSync: True

api Ver si on: bat ch. sdewan. akr ai no. or g/ vlal phal
ki nd: Firewal |l Rul e
net adat a

name: reject_80

namespace: defaul t

| abel s:

sdewanPur pose: cnf-1

spec:

src: lanl

src_ip: 192.168.1.2

src_port: 80

proto: tcp
target: REJECT
st at us:

appl i edVersion: "2"
appl i edTi me: "2020-03-29T04: 21: 482"
inSync: True

api Ver si on: bat ch. sdewan. akr ai no. or g/ vlal phal
ki nd: Firewal | SNAT
net adat a
name: snat_|anl
namespace: default
| abel s:
sdewanPur pose: cnf-1
spec:
src: lanl
src_ip: 192.168.1.2
src_dip: 1.2.3.4
dest: wanl
proto: icnp
st at us:
appl i edVersion: "2"
appl i edTi me: "2020-03-29T04: 21: 482"
inSync: True

api Ver si on: batch. sdewan. akr ai no. or g/ vlal phal
ki nd: Firewal | DNAT
nmet adat a
name: dnat_wanl
nanmespace: default
| abel s:
sdewanPur pose: cnf-1
spec:
src: wanl
src_dport: 19900
dest: lanl
dest _ip: 192.168.1.1
dest _port: 22
proto: tcp
st at us:
appl i edVersion: "2"
appl i edTi me: "2020-03-29T04: 21: 482"
inSync: True

api Ver si on: batch. sdewan. akr ai no. or g/ vial phal
ki nd: Firewal | Forwardi ng
net adat a
nanme: forwarding_l an_to_wan
namespace: default
| abel s:
sdewanPur pose: cnf-1
spec:
src: lanl
dest: wanl
st at us:
appl i edVersion: "2"
appl i edTi ne: "2020- 03- 29T04: 21: 482"
inSync: True

CR samples of IPSec type(ruoyu):

IPSec Proposal CR

api Ver si on: sdewan. akr ai no. org/ vlal phal
ki nd: | psecProposal
net adat a
nane: test_proposal _1
nanespace: default
| abel s:
sdewanPur pose: cnf-1
spec:
encryption_al gorithm aes128
hash_al gorithm sha256
dh_group: nodp3072
stat us:
appl i edVersion: "1"
appl i edTi me: "2020-04-12T09: 28: 382"
inSync: True

IPSec Site CR

api Ver si on: sdewan. akrai no. or g/ vlal phal
ki nd: IpsecSite
net adat a:
name: ipsecsite-sanple
nanmespace: defaul t
| abel s:
sdewanPur pose: cnf-1
spec:
renote: XX.XX.XX.XX
aut henti cati on_met hod: psk
pre_shared_key: xxx
| ocal _public_cert:
| ocal _private_cert:
shared_ca:
local _identifier:
remote_identifier:
crypto_proposal :
- test_proposal _1
connecti ons:
- connection_nane: connection_A
type: tunnel
node: start
| ocal _subnet: 172.12.0.0/24, 10.239.160.22
renote_sourcei p: 172.12.0.30-172.12.0.45
renot e_subnet :
crypto_proposal :
- test_proposal _1
st at us:
appl i edVersion: "1"
appl i edTi me: "2020-04-12T09: 28: 382"
inSync: True

IPSec Host CR

api Ver si on: sdewan. akrai no. or g/ vlal phal
ki nd: | psecHost
net adat a:
name: i psechost-sanpl e
nanmespace: defaul t
| abel s:
sdewanPur pose: cnf-1
spec:
renote: Xxx.XX.XX.Xxx/ %any
aut henti cati on_met hod: psk
pre_shared_key: xxx
| ocal _public_cert:
| ocal _private_cert:
shared_ca:
local _identifier:
remote_identifier:
crypto_proposal :
- test_proposal _1
connecti ons:
- connection_nane: connection_A
type: tunnel
node: start
| ocal _sourceip: %onfig
renpte_sourcei p: XX. XX. XX. XX
renot e_subnet: xx.XX.XX.XX/ XX
crypto_proposal :
- test_proposal _1
st at us:
appl i edVersion: "1"
appl i edTi ne: "2020- 04- 12T09: 28: 382"
inSync: True

CNF Service CR

.spec.fullname - The full name of the target service, with which we can get the service IP

.spec.port - The port exposed by CNF, we will do DNAT for the requests accessing this port of CNF

.spec.dport - The port exposed by target service

CNF Service CR

api Ver si on: bat ch. sdewan. akr ai no. or g/ vial phal
ki nd: CNFService
net adat a:

name: cnfservice-sanpl e

namespace: default

| abel s:
sdewanPur pose: cnfl
spec:
full name: httpd-svc. default.svc.cluster.|ocal
port: "2288"
dport: "8080"

Sdewan rule CRD Reconcile Logic

As we have many kinds of CRDs, they have almost the same reconcile logic. So we only describe the Mwan3Rule logic.

Mwan3Rule Reconcile could be triggered by the following cases:

® Create/Update/Delete Mwan3Rule CR
® CNF deployment ready status change (With predicate feature, we can only watch CNF deployment readiness status. With enqueueRequestsFrom
MapFunc, we can enqueue all Mwan3Rule CRs with specified | abel s. sdewanPur pose, if CNF deployment's ready status changes)
© CNF becomes ready after creating
© CNF becomes ready after restart
© CNF becomes not-ready after crash

Mwan3Rule Reconcile flow:

def Mwan3Rul eReconci | er. Reconcil e(req ctrl.Request):
rule_cr = k8sClient.get(req. NanespacedNane)
cnf _depl oynent = k8sd i ent.get_depl oynent _with_| abel (rul e_cr. | abel s. sdewanPur pose)
if rule_cr DeletionTimestanp exists:
The CRis being deleted. finalizer on the CR
if cnf_depl oynment exists:
if cnf_depl oyment is ready:
for cnf_pod in cnf_depl oynent:
err = openwt_client.delete_rule(cnf_pod_ip, rule_cr)
if err:
return "re-queue req"
rule_cr.finalizer = nil
return "ok"
el se:
return "re-queue req"
el se:
Just renove finalizer, because no CNF pod exists
rule_cr.finalizer = nil
return "ok"
el se:
The CR is not being deleted
if cnf_depl oyment not exist:
return "ok"
el se:
if cnf_depl oynment not ready:
set appliedVersion = nil if cnf_deployment get into not_ready status
rul e_cr.status. appliedVersion = nil
return "re-queue req"
el se:
for cnf_pod in cnf_depl oynent:
runtinme_cr = openwt_client.get_rul e(cnf_pod_ip)

if runtinme_cr !'=rule_cr:
err = openwt_client.add_or_update_rul e(cnf_pod_ip, rule_cr)
if err:

err could be caused by dependencies not-applied or other reason
return "re-queue req"
set appliedVerson only when it's applied for all the cnf pods
rule_cr.finalizer = cnf_finalizer
rul e_cr.status. appliedVersion = rul e_cr.resourceVersion
rule_cr.status.inSync = True
return "ok"

Unsual Cases

In the following cases, when we say "call CNF api to create/update/delte rule”, it means the logic below:

https://godoc.org/sigs.k8s.io/controller-runtime/pkg/predicate#example-Funcs
https://godoc.org/sigs.k8s.io/controller-runtime/pkg/handler#example-EnqueueRequestsFromMapFunc
https://godoc.org/sigs.k8s.io/controller-runtime/pkg/handler#example-EnqueueRequestsFromMapFunc

def create_or_update_rul e(rule):
runtinme_rule = openwt_client.get_rule(rule.nane)

if

runtime_rul e exist:

if runtime_rule equal rule:

return

el se:

openwt _client.update_rule(rule)

el se:
openwt _client.add_rul e(rule)

def delete_rule(rule):
runtine_rule = openwt_client.get_rule(rule.nane)

if

runtime_rul e exist:

openwt_client.del _rule(rule)

Case 1:

A deployment(CNF) for a given purpose has two pod replicas (CNF-pod-1 and CNF-pod-2)

Controller is also brought yup.

CNF-pod-1 and CNF-pod-2 are both running with no/default configuration.

MWANS3 policy 1 is added

MWANS3 rule 1 and Rule 2 are added to use MWAN3 Policy1.

Since all controller, CNF-pod-1 and CNF-pod-2 are running, CNF-pod-1 and CNF-pod-2 has configuration MWAN3 Policy1, rulel and rule2.
Now CNF-pod-1 is stopped.

Mwan3Policy controller and Mwan3Rule controller receives a CNF event. Mwan3Policy addes all the related mwan3Policy CRs to reconcile
gqueue. Mwan3Rule addes all the related mwan3Rule CRs to reconcile queue. In the reconicle, it finds that the CNF is not ready, so CR
status.appliedVersion is set nil. The CRs are re-queued with time delay.

MWANS3 rule 1 is deleted.

As every CR has finalizer, rule 1 CR is not deleted from etcd directly. Instead, deleteTimestap field is added to the rule 1 CR. The
mwan3Rule controller receives an event. In the reconcile, controller detects the CNF is not ready, so it re-queues the CR with delay.

MWANS3 rule 3 added

Mwan3Rule controller receives an event. In the reconcile, controller detects the CNF is not ready, so it re-queues the CR with delay.

MWANS3 rule 2 is updated.

@ Mwan3Rule controller receives an event. In the reconcile, controller detects the CNF is not ready, so it re-queues the CR with delay.

® CNF-pod-1 is brought back up after 10 minutes (more than 5 minutes)

As pod restart, CNF-pod-1 is running with no/default configuration. In Mwan3Rule reconcile queue, there are 3 CRs: rulel, rule2, rule3. The
controller reconcile them, and do the right things. For rulel, controller calls cnf api to delete rulel from both CNF-pod-1 and CNF-pod-2.
Then controller removes finalizer from the rulel CR, then rulel CR is deleted from etcd by k8s. For rule2, controller calls cnf api to update
rul2 for both CNF-pod-1 and CNF-pod-2. Then set rule2 status.appliedVersion=<current-version> and status.appliedTime=<now-time> and
status.inSync=true. For rule3, controller calls cnf api to add rul3 for both CNF-pod-1 and CNF-pod-2. Then set rule3 finalizer. Also set rule3
status.appliedVersion=<current-version> and status.appliedTime=<now-time> and status.inSync=true.

® Ensure that both CNF-pod-1 and CNF-pod-2 have latest configuration.

Case 2:

@ Once the reconcile finish, both CNF-pod-1 and CNF-pod-2 have latest configuration.

® A deployment(CNF) for a given purpose has two pod replicas (CNF-pod-1 and CNF-pod-2)

Case 3:

Controller is also brought yup.

CNF-pod-1 and CNF-pod-2 are both running with no/default configuration.

MWANS3 policy 1 is added

MWANS3 rule 1 and Rule 2 are added to use MWAN3 Policy1.

Since all controller, CNF-pod-1 and CNF-pod-2 are running, CNF-pod-1 and CNF-pod-2 has configuration MWAN3 Policy1, rulel and rule2.
Now CNF-pod-1 is disconnected, but still running.

@ We have the API rediness check for CNF pod, when it is disconnected. The CNF-pod-1 becomes not-ready. Mwan3Policy controller
and Mwan3Rule controller receives a CNF event. Mwan3Policy addes all the related mwan3Policy CRs to reconcile queue.
Mwan3Rule addes all the related mwan3Rule CRs to reconcile queue. In the reconicle, it finds that the CNF is not ready, so CR status.
appliedVersion is set nil. The CRs are re-queued with time delay.

MWANS3 rule 1 is deleted.

@ As every CR has finalizer, rule 1 CR is not deleted from etcd directly. Instead, deleteTimestap field is added to the rule 1 CR. The
mwan3Rule controller receives an event. In the reconcile, controller detects the CNF is not ready, so it re-queues the CR with delay.

MWANS3 rule 3 added

@ Mwan3Rule controller receives an event. In the reconcile, controller detects the CNF is not ready, so it re-queues the CR with delay.

MWANS3 rule 2 is updated.

@ Mwan3Rule controller receives an event. In the reconcile, controller detects the CNF is not ready, so it re-queues the CR with delay.

CNF-pod-1 is brought back up after 10 minutes (more than 5 minutes)

@ As pod restart, CNF-pod-1 is running with no/default configuration. In Mwan3Rule reconcile queue, there are 3 CRs: rulel, rule2, rule3.
The controller reconcile them, and do the right things. For rulel, controller calls cnf api to delete rulel from both CNF-pod-1 and CNF-
pod-2. Then controller removes finalizer from the rulel CR, then rulel CR is deleted from etcd by k8s. For rule2, controller calls cnf api
to update rul2 for both CNF-pod-1 and CNF-pod-2. Then set rule2 status.appliedVersion=<current-version> and status.
appliedTime=<now-time> and status.inSync=true. For rule3, controller calls cnf api to add rul3 for both CNF-pod-1 and CNF-pod-2.
Then set rule3 finalizer. Also set rule3 status.appliedVersion=<current-version> and status.appliedTime=<now-time> and status.
inSync=true.

Ensure that both CNF-pod-1 and CNF-pod-2 have latest configuration.

@ Once the reconcile finish, both CNF-pod-1 and CNF-pod-2 have latest configuration.

A deployment(CNF) for a given purpose has two pod replicas (CNF-pod-1 and CNF-pod-2)

Controller is also brought yup.

CNF-pod-1 and CNF-pod-2 are both running with no/default configuration.

MWANS3 policy 1 is added

MWANS3 rule 1 and Rule 2 are added to use MWAN3 Policy1.

Since all controller, CNF-pod-1 and CNF-pod-2 are running, CNF-pod-1 and CNF-pod-2 has configuration MWAN3 Policyl, rulel and rule2.
Controller is down for 10 minutes.

MWANS3 rule 1 is deleted.

@ As controller is down, so no event, no reconcile. rulel CR is not deleted from etcd because of finalizer. Instead, DeleteTimestamp is
added to rulel CR by k8s

MWANS3 rule 3 added

@ As controller is down, no event no reconcile. rule3 CR is added to etcd, but not applied onto CNF. rule3 status.appliedVersion and
status.appliedTime and status.inSync are nil/default value.

MWANS3 rule 2 is updated.

@ As controller is down, no event no reconcile. rule2 CR is updated to etcd, but not applied onto CNF. rule3 status.appliedVersion and
status.appliedTime and status.inSync are the value before controller goes down.

Case 4:

Controller is up.

G) Controller reconciles for all CRs. For rulel CR, controller calls cnf api to delete rulel from both CNF-pod-1 and CNF-pod-2. Then
controller removes finalizer from the rulel CR, then rulel CR is deleted from etcd by k8s. For rule2, controller calls cnf api to update
rul2 for both CNF-pod-1 and CNF-pod-2. Then set rule2 status.appliedVersion=<current-version> and status.appliedTime=<now-time>
and status.inSync=true. For rule3, controller calls cnf api to add rul3 for both CNF-pod-1 and CNF-pod-2. Then set rule3 finalizer. Also
set rule3 status.appliedVersion=<current-version> and status.appliedTime=<now-time> and status.inSync=true.

Ensure that CNF-pod-1 and CNF-pod-2 have latest configuration and there is no duplicate information.

@ Once the reconcile finish, both CNF-pod-1 and CNF-pod-2 have latest configuration.

A deployment(CNF) for a given purpose has two pod replicas (CNF-pod-1 and CNF-pod-2)

Controller is also brought yup.

CNF-pod-1 and CNF-pod-2 are both running with no/default configuration.

MWANS3 policy 1 is added

MWANS3 rule 1 and Rule 2 are added to use MWAN3 Policy1.

Since all controller, CNF-pod-1 and CNF-pod-2 are running, CNF-pod-1 and CNF-pod-2 has configuration MWAN3 Policyl, rulel and rule2.
Controller is down for 10 minutes.

After controller goes down, CNF-pod-1 is down

@ As controller is down, so no event, no reconcile.

MWANS3 rule 1 is deleted.

@ As controller is down, so no event, no reconcile. rulel CR is not deleted from etcd because of finalizer. Instead, DeleteTimestamp is
added to rulel CR by k8s

MWANS3 rule 3 added

As controller is down, no event no reconcile. rule3 CR is added to etcd, but not applied onto CNF. rule3 status.appliedVersion and
status.appliedTime and status.inSync are nil/default value.

® For MWANS rule 2, we don't make any change

CNF-pod-1 is up

@ As controller is down, so no event, no reconcile. As pod restart, CNF-pod-1 is running with no/default configuration.

Controller is up.

@ Controller reconciles for all CRs. For rulel CR, controller calls cnf api to delete rulel from both CNF-pod-1 and CNF-pod-2. Then
controller removes finalizer from the rulel CR, then rulel CR is deleted from etcd by k8s. For rule2, controller calls cnf api to update
rul2 for both CNF-pod-1 and CNF-pod-2. Then set rule2 status.appliedVersion=<current-version> and status.appliedTime=<now-time>
and status.inSync=true. For rule3, controller calls cnf api to add rul3 for both CNF-pod-1 and CNF-pod-2. Then set rule3 finalizer. Also
set rule3 status.appliedVersion=<current-version> and status.appliedTime=<now-time> and status.inSync=true.

Ensure that CNF-pod-1 and CNF-pod-2 have latest configuration and there is no duplicate information.

@ Once the reconcile finish, both CNF-pod-1 and CNF-pod-2 have latest configuration.

Admission Webhook Usage

We use admission webhook to implemention several features.

1. Prevent creating more than one CNF of the same lable and the same namespace
2.
3. Extend user permission to control the operations on rule CRs. For example, we can control that ONAP can't update/delete rule CRs created by

Validate CR dependencies. For example, mwan3 rule depends on mwan3 policy

platform.

Sdewan rule CR type level Permission Implementation

8s support permission control on namespace level. For example, userl may be able to create/update/delete one kind of resource(e.g. pod) in namespace
nsl, but not namespace ns2. For Sdewan, this can't fit our requirement. We want label level control of Sdewan rule CRs. For example, user_onap can
create/update/delete Mwan3Rule CR of label sdewan- bucket -t ype=app- i nt ent, but not label sdewan- bucket -t ype=basi c.

Let me first describe the extended permission system and then explain how we implement it. In k8s, user or serviceAccount could be bonded to one or
more roles. The roles defines the permissions, for example the following role defines that sdewan- t est role can create/update Mwan3Rule CRs in def au
It namespace. Also sdewan- t est role can get Mwan3Policy CRs.

api Versi on: rbac. aut hori zation. k8s.io/vl
kind: Role
nmet adat a:
annot ati ons:
nanme: sdewan-test
nanmespace: defaul t
rul es:
- api G oups:
resources:
- mrvan3rul es
ver bs:
- create
- update
- api G oups:
resources:
- mnvan3pol i cies
ver bs:
- get

We extend the Role with annotations. In the annotation, we can define labled based permissions. For example, the following role extends sdewan- t est ro
le permission: sdewan-t est can only create/update Mwan3Rule CRs with label sdewan- bucket - t ype=app- i nt ent or sdewan- bucket -t ype=k8s-
servi ce. Also it can only get Mwan3Policy CR with label sdewan- bucket -t ype=app-i ntent.

api Version: rbac. aut hori zation. k8s.io/vl
kind: Role
net adat a:
annot at i ons:
sdewan- bucket - t ype- perm ssion: |-
{ "mwan3rul es": ["app-intent", "k8s-service"],
"mvan3pol i cies": ["app-intent"] }
nane: sdewan-test
namespace: default
rul es:
- api G oups:
resources:
- mnvan3rul es
ver bs:
- create
- update
- api G oups:
resources:
- mnvan3pol i cies
ver bs:
- get

We use admission webhook to implement the type level permission control. Let me describe how admission webhook in simple words. When k8s api
receives a request, kube-api call webhook API before save the object into etcd. If the webhook returns al | owed=t r ue, kube-api continues to persistent
the object into etcd. Otherwise, kube-api reject the request. The webhook can optional tell kube-api to update the object together with al | owed=t r ue retur
ned. Webhook request body has a field named userinfo, it indicates who is making the k8s api request. With this field, we can implement the extended
permission in webhook.

https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/#webhook-request-and-response

def mwan3rul e_webhook_handl e_per m ssi on(req admi ssi on. Request):
userinfo = reqg["userlnfo]
mrvan3rul e_cr = decode(req)
roles = k8s_client.get_role_fromuser(userinfo)
for role in roles:
if mvan3rul e_cr. | abel s. sdewan-bucket-type in rol e.annotati on. sdewan- bucket -type- perni ssi on. mmnan3r ul es:
return {"allowd": True}
return {"allowd": Fal se}

ServiceRule controller (For next release)

We create a controller watches the services created in the cluster. For each service, it creates a FirewallDNAT CR. On controller startup, it makes a
syncup to remove unused CRs.

References

https://github.com/kubernetes-sigs/controller-runtime/blob/master/pkg/doc.go
https://book.kubebuilder.io/reference/using-finalizers.html
https://godoc.org/sigs.k8s.io/controller-runtime/pkg/predicate#example-Funcs
https://godoc.org/sigs.k8s.io/controller-runtime/pkg/handler#example-EnqueueRequestsFromMapFunc

https://github.com/kubernetes-sigs/controller-runtime/blob/master/pkg/doc.go
https://book.kubebuilder.io/reference/using-finalizers.html
https://godoc.org/sigs.k8s.io/controller-runtime/pkg/predicate#example-Funcs
https://godoc.org/sigs.k8s.io/controller-runtime/pkg/handler#example-EnqueueRequestsFromMapFunc

	Sdewan CRD Controller

