
Steps To Implement Security Scan Requirements

1 Who should perform security scan
2 Incubation Inclusion in Release Review: Security Requirements Criteria
3 Maturity Review: Security Requirements Criteria
4
5 Vuls

5.1 Installation
5.2 Set up and run
5.3 Vuls Incubation and Maturity: PASS/FAIL Criteria, v1.0

6 Lynis
6.1 Install and Execute
6.2 Report
6.3 Lynis Incubation: PASS/FAIL Criteria, v1.0
6.4 Lynis Maturity: PASS/FAIL Criteria, v1.0

7 Kuber-Hunter
7.1 Kube-Hunter Incubation and Maturity: PASS/FAIL Criteria, v1.0

8 Security Scan Additional Information and Tips
8.1 How To Create Security Logs

Who should perform security scan
If you are working on driver code, Vuls and Lynis are needed.

If you are developing container based application code, Vuls, Lynis and Kuber-Hunter are needed.

If you are developing VM based application code, Vuls (testing setup inside each VM) and Lynis (testing setup inside each VM) are needed.

Vuls scan usually takes around 10 to 20 mins.

Kuber-Hunter usually takes about 10 mins.

Lynis scan usually takes about 2 mins.

Incubation Inclusion in Release Review: Security Requirements
Criteria

Releases typically occur every 6 months.
A release will use the last TSC approved security requirements that were approved at least 6 month prior to the release.
Exceptions must be submitted a minimum of 21 days prior to release
Note: Critical vulnerabilities/security items, as categorized by the Akraino Security Sub-Committee, must be fixed even if found inside lock out
window.

Release 4 (Target Date November 30, 2020) Incubation Requirements:

Vuls PASS/FAIL Criteria, v1.0
Lynis PASS/FAIL Criteria, v1.0
Kube-Hunter PASS/FAIL Criteria, v1.0

Month 6/2020 7/2020 8/2020 9/2020 10/2020 11/2020 12/2020 1/2021

Release Rel. 4

Security Requirement

Update

v. 1.0

Minimum Security

Requirement

v. 1.0

Maximum Security

Requirement

v. 1.0

https://wiki.akraino.org/pages/viewpage.action?pageId=11996301#StepsToImplementSecurityScanRequirements-VulsIncubationandMaturityPASSFAIL
https://wiki.akraino.org/pages/viewpage.action?pageId=11996301#StepsToImplementSecurityScanRequirements-LynisIncubationandMaturityPASSFAIL
https://wiki.akraino.org/pages/viewpage.action?pageId=11996301#StepsToImplementSecurityScanRequirements-KubeHunterIncubationandMaturityPASSFAIL

Release 4 Minimum Security Requirement

Lock Out Window

Maturity Review: Security Requirements Criteria
Exception granted in cases of non-applicability.
Exception granted in cases where another security mechanism specified in the blueprint and implemented mitigates the risk.
Exceptions requested for cases above must be approved by the security sub-committee.
Exceptions require a maximum of 21 days to review.
The formal email date received, requesting a maturity review would be the Maturity Request date and this would define the set of security
requirements that apply.
Note: Critical vulnerabilities/security items, as categorized by the Akraino Security Sub-Committee, must be fixed even if found inside lock out
window.

Current Maturity Requirements:

Vuls PASS/FAIL Criteria, v1.0
Lynis PASS/FAIL Criteria, v1.0
Kube-Hunter PASS/FAIL Criteria, v1.0

Month 6/2020 7/2020 8/2020 9/2020 10/2020 11/2020 12/2020 1/2021

Maturity Request

Security Requirement

Update

v. 1.0

Minimum Security

Requirement

v. 1.0 v. 1.0 v. 1.0 v. 1.0 v. 1.0 v. 1.0

Maximum Security

Requirement

v. 1.0 v. 1.0 v. 1.0 v. 1.0 v. 1.0 v. 1.0

Release 4 Minimum Security Requirement

Lock Out Window

https://wiki.akraino.org/pages/viewpage.action?pageId=11996301#StepsToImplementSecurityScanRequirements-VulsIncubationandMaturityPASSFAIL
https://wiki.akraino.org/pages/viewpage.action?pageId=11996301#StepsToImplementSecurityScanRequirements-LynisIncubationandMaturityPASSFAIL
https://wiki.akraino.org/pages/viewpage.action?pageId=11996301#StepsToImplementSecurityScanRequirements-KubeHunterIncubationandMaturityPASSFAIL

Vuls
Vuls will be integrated with Blueprint Validation Framework ()Bluval User Guide

Below are the list of tasks for integration.

Installation

Install Vuls containers (). Vuls containers can be found at: https://vuls.io/docs/en/install-with-docker.html https://hub.docker.com/u/vuls/

Install go-cve-dictionary, run "docker pull vuls/go-cve-dictionary"
Install goval-dictionary, run "docker pull vuls/goval-dictionary"
Install gost, run "docker pull vuls/gost"
Install vuls, run "docker pull vuls/vuls"

Set up and run

Detailed instruction can be found at https://vuls.io/docs/en/tutorial-docker.html

Prepare log dir

$ /path/to/working/dircd

$ mkdir go-cve-dictionary-log goval-dictionary-log gost-log

Fetch NVD

$ i `seq 2002 $(date +)`; \for in "%Y" do docker run --rm -it \ -v $ \ -v $PWD/ \ vuls/go-cve-PWD:/vuls go-cve-dictionary-log:/var/log/vuls
dictionary fetchnvd -years $i; \ done

Fetch OVAL
if you are using redhat/fedora

$ docker run --rm -it \ -v $ \ -v $PWD/ \ vuls/goval-dictionary fetch-redhat 5 6 7 8PWD:/vuls goval-dictionary-log:/var/log/vuls

if you are using ubuntu/debian

$ docker run --rm -it \ -v $ \ -v $PWD/ \ vuls/goval-dictionary PWD:/vuls goval-dictionary-log:/var/log/vuls fetch-ubuntu 16 17 18 19

https://wiki.akraino.org/display/AK/Bluval+User+Guide
https://vuls.io/docs/en/install-with-docker.html
https://hub.docker.com/u/vuls/
https://vuls.io/docs/en/tutorial-docker.html
http://PWD/vuls
http://go-cve-dictionary-log/var/log/vuls
http://PWD/vuls
http://goval-dictionary-log/var/log/vuls
http://PWD/vuls
http://goval-dictionary-log/var/log/vuls

1.
2.

Fetch gost

$ docker run --rm -i \ -v $ \ -v $PWD/ \ vuls/gost fetch redhatPWD:/vuls goval-log:/var/log/gost

Or

$ -v $ \ -v $PWD/ \ vuls/gost fetch ubuntudocker run --rm -i \ PWD:/vuls goval-log:/var/log/gost

Config the SUT, configuration will be stored in config.toml
SSH key generation & distribution: As Vuls connects to target server through SSH, and Vuls has to use SSH key-based authentication.
There needs to be a way to generate SSH key pair, save the private key for Vuls container and dispatch the public key to target server.
We probably don’t want to store the private key with the container image if the container image is public accessible.

[servers]

[servers.c74]

host = "54.249.93.16"

port = "22"

user = "vuls-user"

keyPath = "/root/.ssh/id_rsa" # path to ssh private key in docker

Start Vuls container to run tests
$ docker run --rm -it \ -v ~/. \ -v $ \ -v $PWD/ \ -v /etc/ \ -e ssh:/root/.ssh:ro PWD:/vuls vuls-log:/var/log/vuls localtime:/etc/localtime:ro
"TZ=Asia/Tokyo" \ vuls/vuls scan \ -config=./config.toml

To get the report:
$ docker run --rm -it -v ~/. -v $ -v $PWD/ -v /etc/ -e "TZ=Asiassh:/root/.ssh:ro PWD:/vuls vuls-log:/var/log/vuls localtime:/etc/localtime:ro
/Tokyo" vuls/vuls report -config=./config.toml

Write Bluval configuration file for security tests
Push test results to LF Nexus

Todo: How to tell test success or fail
Todo: Sample Test result

Show test results in Bluval UI

Vuls Incubation and Maturity: PASS/FAIL Criteria, v1.0

All Critical vulnerabilities detected by Vuls must be patched/fixed. Critical vulnerabilities are defined as a CVSS score of 9.0-10.0. After patches/fixes are
applied, Vuls must be run again to verify that the vulnerability is no longer detected.

The vuls.log output file and exception requests for any vulnerabilities that cannot be fixed must be sent to the security sub-committee.

Lynis
Lynis requires to run on SUT (System Under Test). The overall test framework will the similar to that of Vuls. As to the Lynis installation, there are two
options:

Lynis is pre-installed on SUT by project team.
Lynis is to be installed as part of test flow from Validation Framework.

Considering the complexity of installing application on target system, it is recommended that option 1 is to be used.

For more information about Lynis, please check the link below:

https://cisofy.com/documentation/lynis/get-started/

You can download Lynis from . It is cisofy.com just over 1,000 lines of shell code.

You can use this version to check the configuration of a single server, either local or remote, as well as the configuration of a single docker file.

Just do ./lynis audit system

The output of the scan will be save in /var/log with the file name lynis-report.dat.

Then please upload these files in above folder and the report in txt or log format for the report.

Install and Execute

If you are using CentOS:

http://PWD/vuls
http://goval-log/var/log/gost
http://PWD/vuls
http://goval-log/var/log/gost
http://ssh/root/.ssh:ro
http://PWD/vuls
http://vuls-log/var/log/vuls
http://localtime/etc/localtime:ro
http://ssh/root/.ssh:ro
http://PWD/vuls
http://vuls-log/var/log/vuls
http://localtime/etc/localtime:ro
https://cisofy.com/documentation/lynis/get-started/
http://cisofy.com

1.
2.

1.
2.

$ yum install lynis; lynis audit system

If you are using Ubuntu:

$ git clone https://github.com/CISOfy/lynis

$ cd lynis; ./lynis audit system

Report

After running, detailed test logs are stored in /var/log/lynis.log, information for each test includes:

Time of an action/event
Reason(s) why a test failed or was skipped
Output of (internal) tests
Suggestions about configuration options or how to fix/improve things
Threat/impact score

In addition to log file, Lynis also creates a report and stores it in /var/log/lynis-report.dat. The report file contains the following information:

Remarks = #<remark>
Section = [<section name>]
Option/value = <option name>=<value of option>

Lynis Incubation: PASS/FAIL Criteria, v1.0

The Lynis Program Update test MUST pass with no errors.
The following list of tests MUST complete as passing as described below.

In the lynis.log outputfile each test suite has one or more individual tests. The beginning and ending of a test suite is marked with "====". For
example, the 'ID BOOT-5122' test suite should display:

020-04-08 15:36:28 ====
2020-04-08 15:36:28 Performing test ID BOOT-5122 (Check for GRUB boot password)
...

2020-04-08 15:36:29 Hardening: assigned maximum number of hardening points for this item (3).
2020-04-08 15:36:29 ===

If any tests in the test suit failed, there would be the following:

2020-04-08 15:36:29 Suggestion: <Description of failed test>

Also, the 'Hardening' line show above would not say 'assigned maximum number of hardening points', instead it would say 'assigned partial
number of hardening points'.

1 Test: Checking PASS_MAX_DAYS option in /etc/login.defs

2 Performing test ID AUTH-9328 (Default umask values)

3 Performing test ID SSH-7440 (Check OpenSSH option: AllowUsers and AllowGroups)

4 Test: checking for file /etc/network/if-up.d/ntpdate

5 Performing test ID KRNL-6000 (Check sysctl key pairs in scan profile) : Following sub-tests required

5a sysctl key fs.suid_dumpable contains equal expected and current value (0)

5b sysctl key kernel.dmesg_restrict contains equal expected and current value (1)

5c sysctl key net.ipv4.conf.default.accept_source_route contains equal expected and current value (0)

6 Test: Check if one or more compilers can be found on the system

The lynis.log output file and exception requests for any of the items listed above that cannot be fixed must be sent to the security sub-committee.

Lynis Maturity: PASS/FAIL Criteria, v1.0

The Lynis Program Update test MUST pass with no errors.
The following list of tests MUST complete as passing as described below.

2.

In the lynis.log outputfile each test suite has one or more individual tests. The beginning and ending of a test suite is marked with "====". For
example, the 'ID BOOT-5122' test suite should display:

020-04-08 15:36:28 ====
2020-04-08 15:36:28 Performing test ID BOOT-5122 (Check for GRUB boot password)
...

2020-04-08 15:36:29 Hardening: assigned maximum number of hardening points for this item (3).
2020-04-08 15:36:29 ===

If any tests in the test suit failed, there would be the following:

2020-04-08 15:36:29 Suggestion: <Description of failed test>

Also, the 'Hardening' line show above would not say 'assigned maximum number of hardening points', instead it would say 'assigned partial
number of hardening points'.

1 Performing test ID BOOT-5122 (Check for GRUB boot password)

2 Performing test ID BOOT-5184 (Check permissions for boot files/scripts)

3 Test: Checking presence /var/run/reboot-required.pkgs

4 Performing test ID AUTH-9228 (Check password file consistency with pwck)

5 Performing test ID AUTH-9229 (Check password hashing methods)

6 Test: Checking SHA_CRYPT_MIN_ROUNDS option in /etc/login.defs

7 Test: Checking PASS_MAX_DAYS option in /etc/login.defs

8 Test: collecting accounts which have an expired password (last day changed + maximum change time)

9 Performing test ID AUTH-9328 (Default umask values)

10 Performing test ID FILE-6368 (Checking ACL support on root file system)

11 Performing test ID USB-2000 (Check USB authorizations)

12 Performing test ID USB-3000 (Check for presence of USBGuard)

13 Performing test ID PKGS-7370 (Checking for debsums utility)

14 Performing test ID PKGS-7388 (Check security repository in apt sources.list file)

15 Performing test ID SSH-7408 (Check SSH specific defined options)

16 Test: Checking AllowTcpForwarding in /tmp/lynis.ZotHQ7RQAj

17 Test: Checking ClientAliveCountMax in /tmp/lynis.ZotHQ7RQAj

18 Test: Checking ClientAliveInterval in /tmp/lynis.ZotHQ7RQAj

19 Test: Checking FingerprintHash in /tmp/lynis.ZotHQ7RQAj

20 Test: Checking IgnoreRhosts in /tmp/lynis.ZotHQ7RQAj

21 Test: Checking MaxAuthTries in /tmp/lynis.ZotHQ7RQAj

22 Test: Checking MaxSessions in /tmp/lynis.ZotHQ7RQAj

23 Test: Checking Port in /tmp/lynis.ZotHQ7RQAj

24 Test: Checking StrictModes in /tmp/lynis.ZotHQ7RQAj

25 Test: Checking TCPKeepAlive in /tmp/lynis.ZotHQ7RQAj

26 Performing test ID SSH-7440 (Check OpenSSH option: AllowUsers and AllowGroups)

27 Test: checking for file /etc/network/if-up.d/ntpdate

28 Performing test ID KRNL-6000 (Check sysctl key pairs in scan profile)

29 Test: Check if one or more compilers can be found on the system

The lynis.log output file and exception requests for any of the items listed above that cannot be fixed must be sent to the security sub-committee.

Kuber-Hunter

Kube-Hunter Incubation and Maturity: PASS/FAIL Criteria, v1.0

The kube-hunter vulnerabilities listed as 'Yes' in the 'Critical' column MUST be resolved.

Kube-Hunter Vulnerability CVE Critic
al

Remediation

1 KHV002 - Kubernetes
version disclosure

Yes Disable --enable-debugging-handlers kubelet flag.

2 KHV003 - Azure Metadata
Exposure

No -
Azure
Only

3 KHV004 - Azure SPN
Exposure

No -
Azure
Only

4 KHV005 - Access to
Kubernetes API

Yes

5 KHV006 - Insecure (HTTP)
access to Kubernetes API

Yes Ensure your setup is exposing kube-api only on an HTTPS port.

Do not enable kube-api’s --insecure-port flag in production.

6 KHV007 - Specific Access
to Kubernetes API

Yes Review the RBAC permissions to Kubernetes API server for the anonymous and default service account.

Depending on the Kubernetes cluster setup and preferences this may not be a problem.

7 KHV020 - Possible Arp
Spoof

Yes Consider dropping the NET_RAW capability from your pods using Pod.spec.securityContext.capabilities

8 KHV021 - Certificate
Includes Email Address

Yes Do not include email address in the Kubernetes API server certificate. (You should continue to use certificates to
secure the API Server!)

9 KHV022 - Critical Privilege
Escalation CVE

CVE-
2018-
1002105

Yes Kubernetes v1.0.x-1.9.x – no fix available

Kubernetes v1.10.0-1.10.10 – fixed inv1.10.11

Kubernetes v1.11.0-1.11.4 – fixed inv1.11.5

Kubernetes v1.12.0-1.12.2 – fixed inv1.12.3

10 KHV023 - Denial of
Service to Kubernetes API
Server

CVE-
2019-
1002100

Yes Upgrade your kube-apiserver to newer versions, namely v1.11.8, v1.12.6, or v1.13.4

If you cannot upgrade, or until you do, the best course of action is to remove patch permissions from untrusted
users, or generally from admins who don’t really use it.

12 KHV024 - Possible Ping
Flood Attack

CVE-
2019-
9512

Yes Disable HTTP/2 support OR obtain a software patch if available

13 CVE-
2019-
9514

Yes Disable HTTP/2 support OR obtain a software patch if available

14 KHV026 - Arbitrary Access
To Cluster Scoped
Resources

CVE-
2019-
11247

Yes Vulnerable versions: Fixed versions:

Kubernetes 1.7.x-1.12.x Fixed in v1.13.9 by #80852

Kubernetes 1.13.0-1.13.8 Fixed in v1.14.5 by #80851

Kubernetes 1.14.0-1.14.4 Fixed in v1.15.2 by #80850

Kubernetes 1.15.0-1.15.1 Fixed in master by #80750

15 KHV027 - Kubectl
Vulnerable To CVE-2019-
11246

CVE-
2019-
11246

Yes Update your kubectl client to one of the following versions: 1.12.9, 1.13.6, 1.14.2

16 KHV028 - Kubectl
Vulnerable To CVE-2019-
1002101

CVE-
2019-
1002101

Yes The issue is resolved in kubectl v1.11.9, v1.12.7, v1.13.5, and v1.14.0.

17 KHV029 - Dashboard
Exposed

Yes Do not leave the Dashboard insecured.

18 KHV030 - Possible DNS
Spoof

Yes Consider using DNS over TLS. CoreDNS (the common DNS server for Kubernetes) supports this out of the box,
but your client applications might not.

19 KHV031 - Etcd Remote
Write Access Event

Yes Ensure your etcd is accepting connections only from the Kubernetes API, using the --trusted-ca-file etcd flag. This
is usually done by the installer, or cloud platform.

20 KHV032 - Etcd Remote
Read Access Event

Yes Ensure your etcd is accepting connections only from the Kubernetes API, using the --trusted-ca-file etcd flag. This
is usually done by the installer, or cloud platform.

21 KHV033 - Etcd Remote
version disclosure

Yes

22 KHV034 - Etcd is
accessible using insecure
connection (HTTP)

Yes Ensure your setup is exposing etcd only on an HTTPS port by using the etcd flags --key-file and --cert-file.

23 KHV036 - Anonymous
Authentication

Yes Ensure kubelet is protected using --anonymous-auth=false kubelet flag. Allow only legitimate users using --client-ca-
file or --authentication-token-webhook kubelet flags. This is usually done by the installer or cloud provider.

24 KHV037 - Exposed
Container Logs

Yes Disable --enable-debugging-handlers kubelet flag.

25 KHV038 - Exposed
Running Pods

Yes Disable --enable-debugging-handlers kubelet flag.

26 KHV039 - Exposed Exec
On Container

Yes Disable --enable-debugging-handlers kubelet flag.

27 KHV040 - Exposed Run
Inside Container

Yes Disable --enable-debugging-handlers kubelet flag.

28 KHV041 - Exposed Port
Forward

Yes Disable --enable-debugging-handlers kubelet flag.

29 KHV042 - Exposed
Attaching To Container

Yes Disable --enable-debugging-handlers kubelet flag.

30 KHV043 - Cluster Health
Disclosure

Yes Disable --enable-debugging-handlers kubelet flag.

31 KHV044 - Privileged
Container

Yes Minimize the use of privileged containers. Use Pod Security Policies to enforce using privileged: false policy.

32 KHV045 - Exposed
System Logs

Yes Disable --enable-debugging-handlers kubelet flag.

33 KHV046 - Exposed
Kubelet Cmdline

Yes Disable --enable-debugging-handlers kubelet flag.

34 KHV047 - Pod With Mount
To /var/log

Yes Consider disallowing running as root: Using Kubernetes Pod Security Policies with MustRunAsNonRoot policy.

Consider disallowing writable host mounts to /var/log: Using Kubernetes Pod Security Policies with
AllowedHostPaths policy.

35 KHV049 - kubectl proxy
Exposed

Ye Expose your applications in a permanent, legitimate way, such as via Ingress.

Close open proxies immediately after use.

36 KHV050 - Read access to
Pod service account token

Yes It is recommended to explicitly specify a Service Account for all of your workloads (serviceAccountName in Pod.
Spec), and manage their permissions according to the least privilege principle.

Consider opting out automatic mounting of SA token using automountServiceAccountToken: false on
ServiceAccount resource or Pod.spec.

37 Access to pod's secrets Yes https://blog.aquasec.com/managing-kubernetes-secrets

Securing etcd—secret data is stored in etcd. By default, etcd data is not encrypted and neither are your secrets.
You should enable encryption at rest, limit access to etcd to admin users only, and safely dispose of disks where
etcd data was formerly stored

Use SSL/TLS—when running etcd in a cluster, you must use secure peer-to-peer communication.

38 CAP_NET_RAW Enabled Yes -
If
applic
able

CAP_NET_RAW is used to open a raw socket and is used by ping. If this is not required CAP_NET_RAW MUST
be removed.

https://www.suse.com/c/demystifying-containers-part-iv-container-security/

https://blog.aquasec.com/managing-kubernetes-secrets
https://www.suse.com/c/demystifying-containers-part-iv-container-security/

The cluster.log and pod.log output files and exception requests for any of the items listed above that cannot be fixed must be sent to the security sub-
committee.

Security Scan Additional Information and Tips

How To Create Security Logs

Copy their log directory to $WORKSPACE/archives in their local server, and then use this command to upload files.

lftools deploy archives -p '**/*.log' $NEXUS_URL $NEXUS_PATH $WORKSPACE

Below are commands to zip the results into a folder and push this results.zip file using lftools:

zip -r results.zip <results_folder_path>

lftools deploy nexus-zip $NEXUS_URL logs $NEXUS_PATH results.zip

Jira tickets tracking integration with Bluval:

https://jira.akraino.org/secure/RapidBoard.jspa?rapidView=5&projectKey=VAL&view=detail&selectedIssue=VAL-79

https://jira.akraino.org/secure/RapidBoard.jspa?rapidView=5&projectKey=VAL&view=detail&selectedIssue=VAL-80

Sample results sheet comprising of combined results and vulnerabilities of all security tools (EALT-EDGE Blueprint):

https://jira.akraino.org/secure/RapidBoard.jspa?rapidView=5&projectKey=VAL&view=detail&selectedIssue=VAL-79
https://jira.akraino.org/secure/RapidBoard.jspa?rapidView=5&projectKey=VAL&view=detail&selectedIssue=VAL-80

	Steps To Implement Security Scan Requirements

