
SDEWAN Central Controller

System Architecture
System Design

Assumption
Environment Setup (Pre-condition)
Restful API definition and Back-End flow
Error handling

DB Schema
Module Design
Task Breakdowns

SDEWAN central controller provides central control of SDEWAN overlay networks by automatically configuring the SDEWAN CNFs located in edge 
location clusters and hub clusters:

To create secure overlays where each overlay connects application and hub clusters together.
To allow application connectivity with external entities and entities of other clusters.

System Architecture

The system includes the following micro-services as showed in below diagram:

SDEWAN Central Controller:
API Router: provides REST API router for SDEWAN Central Controller
OverlayObjectManager: overlay registration, generate overlay root cert
HubObjectManager: hub registration and setup hub connection mesh
DeviceObjectManager: device/cluster registration and setup device connection mesh (if device has public IP)
HubDeviceObjectManager: setup connection between hub and device
IPRangeObjectManager: ip range registration and allocate/free overlay ip for device
ProposalObjectManager: proposal registration
DeviceConnManager: only support GET, query connection status of device
HubConnObjectManager: only support GET, query connection status of hub
Observability framework: system status monitoring, including connection status, CNF status etc.

Rsync: a daemon service which accepts request from SDEWAN Central Controller (through RPC) then deploy relevant K8s CRs of SD-EWAN 
CNFs of various hubs and edges to establish the tunnels.
Mongo DB: a database to store information such as edge clusters, hubs, overlays, ip addresses, application/services etc.
Etcd: a metadata database to exchange configuration information between SDEWAN Central Controller and Rsync

System Design

Assumption



IP

Central Cloud has public IP as CIP
Traffic Hub has public IP as HIP1 HIP2, ...
Edge Location (Device) may have public IP in one edge node as EIP1, ... or don't have public IP (behind a gateway as EGIP1, ...)

Connection for control plane (e.g. central cloud to k8s API server): 

Central Cloud to Traffic Hub: Direct connection through Hub's public IP
Central Cloud to Edge Location:

Edge location has public IP: Direct connection through Edge Location's public IP
Edge location does not have public IP: Using Edge Location owned hub's SDEWAN CNF as proxy

IPSec Tunnel mode for data plane (for data traffic)

Edge to Edge: Host to host
Edge to Hub: Host (edge) to Site (Hub, using edge's subnet as rightsubnet)
Hub to Hub: Host to Host

Environment Setup (Pre-condition)

Central Cloud:

K8s cluster is setup (by Kud)
Web UI (Optional), API Server, Rsync backend, DB service are deployed (manually or through EMCO)

Traffic Hub:

K8s cluster is setup (by Kud)
Hub SDEWAN CRD Controller and CNF are deployed (through EMCO) with initial configuration (e.g. NAT: enable DNAT for k8s API service and 
Istio Ingress service).

Edge Location (With Public IP):

K8s cluster is setup (by Kud)
Edge SDEWAN CRD Controller and CNF are deployed (through EMCO) with initial configuration (e.g. NAT: enable DNAT for k8s API service and 
Istio Ingress service).

Edge Location (With Private IP):

K8s cluster is setup (by Kud)
Edge SDEWAN CRD Controller and CNF are deployed (through EMCO) with initial configuration (e.g. NAT: enable DNAT for k8s API service and 
Istio Ingress service; IPSec: as Initiator for Control plane - left: %any, leftsourceip:%config, right: Owned Hub's HIP, rightsubnet:0.0.0.0/0).

Restful API definition and Back-End flow

Resource Description URL Fields Back-End flow

Overlay Define a group of edge location clusters (devices) and hubs, a overlay is usually 
owned by one customer and full mesh connections are setup automacally 
between hub-hub and device-device (with public IPs)

/scc/v1/overlays
na
me
des
cript
ion
caid

Registration:

SCC requests a CA from cert-manager, the CA is used as root CA 
for this overlay
SCC save the caid in DB

Proposal Define proposals which can be used for IPsec tunnel in this overlay /scc/v1/overlays/{overlay-
name}/proposals na

me
des
cript
ion
enc
rypti
on
hash
dhg
roup

Registration:

SCC saves the proposals information in DB

Hub Define a traffic Hub in an overlay /scc/v1/overlays/{overlay-
name)/hubs na

me
des
cript
ion
publ
icIps
certi
ficat
eId
kub
eCo
nfig

Registration:

SCC checks hub's k8s API server access with kubeConfig for 
each ip in publicIps
For each registered hub in this overlay

SCC requests cert-manager to generate a public/private 
key pair based on overlay CA
SCC generates the IPsec CR for new hub and registered 
hub then call rsync to deploy CR to setup route based host-
host IPsec tunnel (with BGP/OSPF enabled):

All proposals in this Overlay will be used as 
candidate proposals for IPsec configuration
Use the public/privite key pair generated in previous 
step as IPsec cert

SCC saves hub information in DB



IPRange Define the overlay IPrange which will be used as OIP of devices /scc/v1/overlays/{overlay-
name}/ipranges na

me
des
cript
ion
sub
net
minIp
max
Ip

Registration:

SCC save ip range information in DB

Device Define a edge location device information which may be a CNF, VNF or PNF /scc/v1/overlays/{overlay-
name}/devices na

me
des
cript
ion
publ
icIps
forc
eHu
bCo
nne
ctivi
ty
pro
xyH
ub
pro
xyH
ubP
ort
use
Hub
4Int
ern
et
dedi
dat
edS
FC
certi
cate
dId
kub
eCo
nfig

Registration:

If has publicIps and forceHubConnection==false:

SCC checks device's k8s API server access with 
kubeConfig for each ip in publicIps
For each registered device of this overlay:

SCC requests cert-manager to generate a public
/private key pair based on overlay CA
SCC generates the IPsec CR for new device and 
registered device then call rsync to deploy CR to 
setup host-host IPsec tunnel:

All proposals in this Overlay will be used as 
candidate proposals for IPsec configuration
Use the public/privite key pair generated in 
previous step as IPsec cert

else
(Assumption) Kud configures device as Initiator to proxyHub
SCC find 1 available OIP from overlay's IPRange, 
configure then deploy (through rsync) IPsec CR for 
proxyHub as Responder with OIP as the only 1 candidate 
ip for Initiator

Expectation: the IPsec tunnel between proxyHub 
and device should setup up and the device will get 
the assigned OIP

SCC creates DNAT CR (dst: HIP, dst_port: proxyHubPort 
change to dst: OIP, dst_port: 6443) then deploy to 
proxyHub (SCC will auto geterate a proxyHubPort if not 
provided)
SCC checks device's k8s API server access with 
kubeConfig for proxyHub:proxyHubPort
For each registered device with public ip and 
forceHubConnection==false:

SCC requests cert-manager to generate a public
/private key pair based on overlay CA
SCC generates the IPsec CR for new device and 
registered device (with public IP) then call rsync to 
deploy CR to setup host-host IPsec tunnel:

All proposals in this Overlay will be used as 
candidate proposals for IPsec configuration
Use the public/privite key pair generated in 
previous step as IPsec cert

SCC saves device information in DB

Hub-device 
connection

Define a connection between hub and device /scc/v1/overlays/{overlay-
name}/hubs/{hub-name}
/devices/{device-name}

N/A
Create:

SCC find 1 available OIP from overlay's IPRange, configure then 
deploy (through rsync) IPsec CR for hub as Responder with OIP 
as the only 1 candidate ip for Initiator
SCC configure the deploy IPsec CR as Initiator to Hub for device

Expectation: the IPsec tunnel between hub and device 
should setup up and the device will get the assigned OIP

Todo: Confirm "ip route" rule for OIP in this hub and all other hub are 
setup automatically or need new CR to execute linux shell in host

Error handling

DB Schema

Module Design

Task Breakdowns

Tasks Due Own
er

Status Description

Scheduler Manager

-- Overlay: Setup tunnels for hubs and 
edges

Generates relevant K8s CRs of SD-EWAN CNFs of various hubs and edges to establish the tunnels

-- IP Address manager Assigns/frees IP addresses from "overlay IP ranges" and dedicates them to that cluster

-- Application connectivity scheduler Creates K8s resources required to be pushed into the edges and corresponding traffic hubs to facilitate 
the connectivity

-- Resource Synchronizer

-- CNF

API Server

-- Rest API Backend Rest API server framework



-- DB Backend Proxy to DB

-- Application Cluster management

-- Hub management

-- Overlay management

-- Status monitoring management

-- logging

Web UI

-- Web UI framework

-- Application Cluster Registration

-- Hub Registration

-- Overlay

-- Application/Service Registration

-- Status tracking

EMCO plugin for SDEWAN

E2E Integration Integration test of overall system


	SDEWAN Central Controller

