
KubeEdge BP Installation Guide

Installation

Overview
Pre-requisitions

Hardware requirement
Installation flow

Host server OS installation
Docker installation
Native Kubernetes installation
KubeEdge installation

keadm:
Cloud side (Cloudcore) installation
Edge side (edgecore) installation
Debug

Offloading service installation
Verification after installation

Android phone simulator
Local ML inference requester

Overview
This installation will be based on a 3-host setup: One as master node, the other hosts serve as worker nodes. Kubernetes will be installed directly on bare
metal servers. Each host has Ubuntu 20.04 as the server OS.

Please see diagram below for deployment details:

Facial emotion detection app is installed on worker node 1…….

A cell phone is used to send inference request to edge node. The request includes original image and the model type. Request is sent in REST API
format. See reference here:……

There are xxx containers running on worker node.

Pre-requisitions

Hardware requirement

Minimum hardware system requirements can be found here: For this setup, the hardware used are as follows:

Ubunti 20.04 LTS
Intel Xeon Gold 6252 CPU @2.10GHz, 24 Cores/CPU, 4 CPUs
196GB RAM
1.8TB SSD

There are 3 servers with the same specification in the setup. This is a high-end setup from the open source community lab.

http://localhost:1313/techdoc/specifications/installation/#overview
http://localhost:1313/techdoc/specifications/installation/#font-colorredpre-requisitions-font
http://localhost:1313/techdoc/specifications/installation/#hardware-requirement
http://localhost:1313/techdoc/specifications/installation/#font-colorred-installation-flow-font
http://localhost:1313/techdoc/specifications/installation/#host-server-os-installation
http://localhost:1313/techdoc/specifications/installation/#docker-installation
http://localhost:1313/techdoc/specifications/installation/#native-kubernetes-installation
http://localhost:1313/techdoc/specifications/installation/#kubeedge-installation
http://localhost:1313/techdoc/specifications/installation/#keadm
http://localhost:1313/techdoc/specifications/installation/#cloud-side-cloudcore-installation
http://localhost:1313/techdoc/specifications/installation/#edge-side-edgecore--installation
http://localhost:1313/techdoc/specifications/installation/#debug
http://localhost:1313/techdoc/specifications/installation/#offloading-service-installation
http://localhost:1313/techdoc/specifications/installation/#font-colorredverification-after-installationfont
http://localhost:1313/techdoc/specifications/installation/#android-phone-simulator
http://localhost:1313/techdoc/specifications/installation/#local-ml-inference-requester
http://localhost:1313/techdoc/specifications/installation/KubeEdge_Deployment.png

1.

1.

1.

Installation flow

Host server OS installation

The following installation steps are required for all 3 servers have Ubuntu 20.04 installed. The OS .iso image can be downloaded from: ubuntu-20.04.1-live-
server-amd64.iso

Installation configurations take most default settings except for the following:

Turn off swap memory

$ sudo swapoff -a

To make the above change persistent, edit the fstab file: comment out the line starting with swap.img

$ sudo vi /etc/fstab

In fstab file, comment out the line starting with swap.img.

Set hostnames for all 3 servers

3 servers are used as 3 kubernetes nodes. Each node should have a unique hostname. For easy identification, we use , and k-master k-worker1 k-
as hostnames for 3 servers respectively.worker2

On master server:

$ sudo hostnamectl set-hostname k-master

On worker node 1:

$ sudo hostnamectl set-hostname k-worker1

On worker node 2:

$ sudo hostnamectl set-hostname k-worker2

Hostname changes do not take effect in your current terminal windows. Reopen a new terminal window should show the new hostname.

Date and time are in sync

https://ubuntu.com/download/server/thank-you?version=20.04.1&architecture=amd64
https://ubuntu.com/download/server/thank-you?version=20.04.1&architecture=amd64
http://localhost:1313/techdoc/specifications/installation/fstab_swap.png

1.

1.

1.

1.

Make sure that all 3 servers(nodes) have accurate time and date. Otherwise you will run into trouble with invalid TLS certificates.

Docker installation

All kubernetes nodes use at least one type of container runtime. In our setup, we use Docker. To install docker on all 3 servers(nodes), run the following
on each server:

$ sudo apt update
$ sudo apt install docker.io

Grant permissions to yourself:

$sudo usermod -aG docker whoami$()

Verify docker is running:

$ docker --version

Docker installation should have automatically started docker. If not, manually start the docker by:

$ sudo systemctl start docker

Run command below to make sure that docker will automatically start after each reboot:

$ sudo systemctl enable docker

Again, please remember to run above commands on each server.

Native Kubernetes installation

KubeEdge is deployed on native Kubernetes clusters. Before installing KubeEdge, the native Kubernetes environment should be installed and configure
properly. On master node, the following modules will be installed:

kubeadm
kubectl
kube-apiserver
kube-controller-manager
kube-scheduler

Add Kubernetes key and repository to local apt cache

$ curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add
$ sudo apt-add-repository “deb http://apt.kubernetes.io/ kubernetes-xenial main”

Install kubeadm, kubectl and kubelet modules.

$ sudp apt update
$ sudo apt install -qy kubeadm kubectl kubelet

On master node, run following command to configure and initialize Kubernetes clusters:

$ sudo kubeadm init --pod-network.cidr 10.244.0.0/16 --apiserver-advertise-address 10.11.20.11= =

Please note 10.11.20.11 should be replaced by your master node IP on interfaces where all nodes communicate over. pod-network.cidr=10.244.0.0/16 is
required by flannel. See “Pod network installation” section.

$ sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
$ sudo chown id -u : id -g $HOME/.kube/config$() $()

Pod network installation (optional) On master node, run following commands:

$ kubectl apply -f https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml
$ kubectl apply -f https://raw.githubusercontent.com/coreos/flannel/master/Documentation/k8s-manifests/kube-
flannel-rbac.yml

KubeEdge uses websocket as its management layer network which is not open to KubeEdge users for application level network communication. It was
designed as such since the beginning of KubeEdge as many deployments prefer (IoT flavored) their own network choices. However, with the expansion of
KubeEdge, a pre-packaged network layer is of interest. In this installation, we include the optional network installation for reference. Flannel is selected
based on its simplicity and popularity.

http://localhost:1313/techdoc/specifications/installation/docker_version.png

1.

1.

Verify master node installation By now, all installation on master node is completed. You can run following commands to verify:

$ kubectl get pods --all-namespaces

You should see the following:

jshen@k-master:~$ kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
coredns-66bff467f8-6fxrq 1/1 Running 22d0
coredns-66bff467f8-cs2qw 1/1 Running 22d0
etcd-k-master 1/1 Running 22d0
kube-apiserver-k-master 1/1 Running 22d0
kube-controller-manager-k-master 1/1 Running 22d0
kube-flannel-ds-lzcrp 1/1 Running 22d0
kube-proxy-qdv9t 1/1 Running 21d0
kube-proxy-rhpcq 1/1 Running 22d0
kube-scheduler-k-master 1/1 Running 22d0
jshen@k-master:~$

If all pods displayed with “Running” status, the master node Kubernetes native installation is completed.

Worker node There is no worker node installation at this stage. The KubeEdge worker node installation only requires KubeEdge components. No
native Kubernetes components are required. However, for operational convinience, kubectl etc. can be installed on worker nodes.

KubeEdge installation

KubeEdge installation consists of 2 types:“Cloud” and “Edge”. This maps well to native Kubernetes “Master” and “Worker” concept. In this installation,
“Cloud” will refer to Kubernetes For release 1.4 and after, “keadm” is an one-click KubeEdge installer which simplifies the installation process.

Before installation, please refer to “Kubernetes-compatibility” to select proper versions of Kubernetes and KubeEdge. In this installation, the following
combination is selected.

keadm:

In release 1.4, keadm only supports Ubuntu and CentOS
keadm execution requires root privilige. In Ubuntu please use “sudo” to execute.
On both “cloud” and “edge” nodes, download and unzip keadm (amd64 for this installation): https://github.com/kubeedge/kubeedge/releases
/download/v1.4.0/keadm-v1.4.0-linux-amd64.tar.gz

Cloud side (Cloudcore) installation

On Kubernetes master node, run

$ keadm init --advertise-address 10.11.20.11=

This will install cloudcore, generate certificates and install CRDs. kubeEdge version can also be specified as a parameter.
“10.11.20.11” is the IP address for KubeEdge management network. It should be replaced by the master node management IP in your installation. This IP
should be reachable from the “Edge side” node.
Get token for “Edge side” installation:

$ keadm gettoken

You can run keadm reset to stop cloudcore service. It will not remove

Edge side (edgecore) installation

Use the token from “Cloud side” to join the cluster:

$ keadm join --cloudcore-ipport 10.11.20.11:10000 --token TOKEN= =[]

These are mandatory parameters for keadm join. The “Edge side” and “Cloud side” should have the same KubeEdge version.

Debug

Offloading service installation

Offloading service is provided via a container running on worker node 1. The offloading container is prepared separately from this installation.

First we need to create a configuration yaml file for the installation:

$ vi ke_inference_offloading.yaml

Below is the content of the finished yaml file:

https://github.com/kubeedge/kubeedge/releases/download/v1.4.0/keadm-v1.4.0-linux-amd64.tar.gz
https://github.com/kubeedge/kubeedge/releases/download/v1.4.0/keadm-v1.4.0-linux-amd64.tar.gz

apiVersion: v1
kind: Pod
metadata:
 name: ke-mloffload
 labels:
 app: ke-mloffload
spec:
 containers:
 - name: ke-mloffload
 image: tensorflow/serving:latest
 env:
 - name: MODEL_NAME
 value: "model_emotion"
 - name: TF_CPP_MIN_VLOG_LEVEL
 value: "3"
 volumeMounts:
 - name: tfmodels
 mountPath: /models/model_emotion
 ports:
 - containerPort: 8501
 hostPort: 8501
 volumes:
 - name: tfmodels
 hostPath:
 path: /home/jshen/kubeedge/models/model_emotion

Note:

Parameters to fill in:
mountPath: #This should be the path where model file is located
hostPath/path: #This should be the absolute path of the model file

All other parameters can stay unchanged.

To deploy offloading container, run the following kubectl command on master node:

$ kubectl run --image=

Verification after installation

There are 2 ways to verify the offloading service. One uses a local ML inference requester. The other uses an android phone simulator. Both will send an
image to offloading service for inference. The offloading service will respond with the result.

Android phone simulator

In this test setup, the android phone simulator is VPNed into a private network with worker 1. Since there aren’t too many worker nodes involved, a simple
docker network is used between worker1 and the simulator.

$ docker network create testNetwork
$ docker network connect testNetwork testerContainer
$ docker network connect testNetwork ke_inference_offloading

After the network is created and connected with 2 containers, an inspection of the testNetwork should return this:

$ docker network inspect testNetwork
[
 {
 : ,"Name" "testNetwork"
 : ,"Id" "103b9ba8c59b2c621e24e6135a5abdaeeb80fcba1fb123b4a79e6e603185ee7c"
 : ,"Created" "2020-10-01T23:31:53.8374055Z"
 : ,"Scope" "local"
 : ,ml"Driver" "bridge" " 25L,
514C 10,36 All

EnableIPv6 " ": false,
IPAM " ": {

Driver default " ": " ",
Options " ": {},
Config " ": [

 {
Subnet 172.20.0.0/16 " ": " ",
Gateway 172.20.0.1 " ": " "

 }
]
 },

Internal " ": false,
Attachable " ": false,
Ingress " ": false,
ConfigFrom " ": {

Network " ": ""
 },

ConfigOnly " ": false,
Containers " ": {},
Options " ": {},
Labels " ": {}

 }
]

Local ML inference requester

	KubeEdge BP Installation Guide

