KubeEdge BP Installation Guide

Installation

® Overview
© Pre-requisitions
" Hardware requirement
© Installation flow
" Host server OS installation
® Docker installation
® Native Kubernetes installation
= KubeEdge installation
keadm:
Cloud side (Cloudcore) installation
Edge side (edgecore) installation
® Debug
= Offloading service installation
© Verification after installation
= Android phone simulator
® Local ML inference requester

Overview

This installation will be based on a 3-host setup: One as master node, the other hosts serve as worker nodes. Kubernetes will be installed directly on bare
metal servers. Each host has Ubuntu 20.04 as the server OS.

Please see diagram below for deployment details:

Master =’ a UNH-Community -Lab
KubeEdge ‘
Cloud Side

Private IP: 10.11.20.11

R Worker2 KubeEdge
Edge Side Edge Side

Offloading

Private IP: 10.11.20.13 anate 1P: 10.11.20.12

Facial emotion detection app is installed on worker node 1.......

A cell phone is used to send inference request to edge node. The request includes original image and the model type. Request is sent in REST API
format. See reference here:......

There are xxx containers running on worker node.
Pre-requisitions

Hardware requirement
Minimum hardware system requirements can be found here: For this setup, the hardware used are as follows:

Ubunti 20.04 LTS

Intel Xeon Gold 6252 CPU @2.10GHz, 24 Cores/CPU, 4 CPUs
196GB RAM

1.8TB SSD

There are 3 servers with the same specification in the setup. This is a high-end setup from the open source community lab.

http://localhost:1313/techdoc/specifications/installation/#overview
http://localhost:1313/techdoc/specifications/installation/#font-colorredpre-requisitions-font
http://localhost:1313/techdoc/specifications/installation/#hardware-requirement
http://localhost:1313/techdoc/specifications/installation/#font-colorred-installation-flow-font
http://localhost:1313/techdoc/specifications/installation/#host-server-os-installation
http://localhost:1313/techdoc/specifications/installation/#docker-installation
http://localhost:1313/techdoc/specifications/installation/#native-kubernetes-installation
http://localhost:1313/techdoc/specifications/installation/#kubeedge-installation
http://localhost:1313/techdoc/specifications/installation/#keadm
http://localhost:1313/techdoc/specifications/installation/#cloud-side-cloudcore-installation
http://localhost:1313/techdoc/specifications/installation/#edge-side-edgecore--installation
http://localhost:1313/techdoc/specifications/installation/#debug
http://localhost:1313/techdoc/specifications/installation/#offloading-service-installation
http://localhost:1313/techdoc/specifications/installation/#font-colorredverification-after-installationfont
http://localhost:1313/techdoc/specifications/installation/#android-phone-simulator
http://localhost:1313/techdoc/specifications/installation/#local-ml-inference-requester
http://localhost:1313/techdoc/specifications/installation/KubeEdge_Deployment.png

Installation flow

Native Offloading
Kubernetes installation service
installation installation

Host server Docker KubeEdge

preparation installation

Host server OS installation

The following installation steps are required for all 3 servers have Ubuntu 20.04 installed. The OS .iso image can be downloaded from: ubuntu-20.04.1-live-
server-amd64.iso

Installation configurations take most default settings except for the following:
1. Turn off swap memory
$ sudo swapoff -a
To make the above change persistent, edit the fstab file: comment out the line starting with swap.img

$ sudo vi /etc/fstab
In fstab file, comment out the line starting with swap.img.

/etc/fstab: static file system information.

#

Use 'blkid' to print the universally unique identifier for a

device; this may be used with UUID= as a more robust way to name devices

that works even if disks are added and removed. See fstab(5).

#

<file system> <mount point> <type> <options> <dump> <pass>

/ was on /dev/ubuntu-vg/ubuntu-lv during curtin installation
/disk/by-1id/dm-uuid-LVM-LktidCWA1KiS50mvDyCmNLcP8sB@qgtyAZIIBw3FQ1ttqGdRVijhxuzBShPdCVhe / ext4 defaults @ @

/boot was on /dev/sdb2 during curtin installation
disk/by-uuid/e5d3bd11-976a-4392-989%e-67e6cf488168 /boot ext4 defaults 0 @

/boot/efi was on /dev/sdbl during curtin installation

/dev/disk/by-uuid/1BF1-8762 /boot/efi vfat defaults 0 @

#/swap.img none swap sw [}

1. Set hostnames for all 3 servers

3 servers are used as 3 kubernetes nodes. Each node should have a unique hostname. For easy identification, we use k- mast er ,k- wor ker 1 and k-
wor ker 2 as hostnames for 3 servers respectively.

On master server:

$ sudo hostnamect| set-hostnane k-naster

On worker node 1:

$ sudo hostnanect| set-hostname k-workerl

On worker node 2:

$ sudo hostnanect| set-hostnanme k-worker2
Hostname changes do not take effect in your current terminal windows. Reopen a new terminal window should show the new hostname.

1. Date and time are in sync

https://ubuntu.com/download/server/thank-you?version=20.04.1&architecture=amd64
https://ubuntu.com/download/server/thank-you?version=20.04.1&architecture=amd64
http://localhost:1313/techdoc/specifications/installation/fstab_swap.png

Make sure that all 3 servers(nodes) have accurate time and date. Otherwise you will run into trouble with invalid TLS certificates.

Docker installation

All kubernetes nodes use at least one type of container runtime. In our setup, we use Docker. To install docker on all 3 servers(nodes), run the following
on each server:

$ sudo apt update
$ sudo apt install docker.io

Grant permissions to yourself:
$sudo usernod -aG docker whoam
Verify docker is running:

$ docker --version

lishen@k-master:~$ docker --version
Pocker version 19.03.8, build afacb8b7f@

shen@k-master:~$
shen@k-master:~$

Docker installation should have automatically started docker. If not, manually start the docker by:
$ sudo systenctl start docker
Run command below to make sure that docker will automatically start after each reboot:

$ sudo systenttl enable docker

Again, please remember to run above commands on each server.

Native Kubernetes installation

KubeEdge is deployed on native Kubernetes clusters. Before installing KubeEdge, the native Kubernetes environment should be installed and configure
properly. On master node, the following modules will be installed:

kubeadm

kubectl

kube-apiserver
kube-controller-manager
kube-scheduler

1. Add Kubernetes key and repository to local apt cache

$ curl -s https://packages. cl oud. googl e. coml apt/ doc/ apt - key. gpg | sudo apt-key add
$ sudo apt-add-repository “deb http://apt.kubernetes.io/ kubernetes-xenial nain”

1. Install kubeadm, kubectl and kubelet modules.

$ sudp apt update
$ sudo apt install -qy kubeadm kubect!| kubel et

1. On master node, run following command to configure and initialize Kubernetes clusters:
$ sudo kubeadminit --pod-network.cidr=10.244.0.0/16 --apiserver-advertise-address=10.11.20. 11

Please note 10.11.20.11 should be replaced by your master node IP on interfaces where all nodes communicate over. pod-network.cidr=10.244.0.0/16 is
required by flannel. See “Pod network installation” section.

$ sudo cp -i /etc/kubernetes/adm n.conf $HOVE . kube/config
$ sudo chown id-u:5(id -g) $HOWE . kube/config

1. Pod network installation (optional) On master node, run following commands:

$ kubect| apply -f https://raw githubusercontent.conlf coreos/flannel/master/Docunentation/kube-fl annel .ymn
$ kubect! apply -f https://raw. githubusercontent.conicoreos/flannel/master/Docunent ati on/ k8s- mani f est s/ kube-
flannel -rbac. ym

KubeEdge uses websocket as its management layer network which is not open to KubeEdge users for application level network communication. It was
designed as such since the beginning of KubeEdge as many deployments prefer (10T flavored) their own network choices. However, with the expansion of
KubeEdge, a pre-packaged network layer is of interest. In this installation, we include the optional network installation for reference. Flannel is selected
based on its simplicity and popularity.

http://localhost:1313/techdoc/specifications/installation/docker_version.png

1. Verify master node installation By now, all installation on master node is completed. You can run following commands to verify:
$ kubect| get pods --all-nanmespaces
You should see the following:

j shen@- mast er: ~$ kubect!| get pods -n kube-system

NANVE READY STATUS RESTARTS AGE
cor edns- 66bf f 467f 8- 6f xr g 171 Runni ng 22d
cor edns- 66bf f 467f 8- cs2qw 1/1 Runni ng 22d
et cd- k- nast er 1/1 Runni ng 22d
kube- api server - k- mast er 171 Runni ng 22d
kube- control | er - manager - k- mast er 1/1 Runni ng 22d
kube-fl annel -ds-Izcrp 171 Runni ng 22d
kube- pr oxy- qdv9ot 1/1 Runni ng 21d
kube- proxy-rhpcq 1/1 Runni ng 22d
kube- schedul er - k- mast er 171 Runni ng 22d

j shen@- mast er: ~$
If all pods displayed with “Running” status, the master node Kubernetes native installation is completed.

1. Worker node There is no worker node installation at this stage. The KubeEdge worker node installation only requires KubeEdge components. No
native Kubernetes components are required. However, for operational convinience, kubectl etc. can be installed on worker nodes.

KubeEdge installation

KubeEdge installation consists of 2 types:“Cloud” and “Edge”. This maps well to native Kubernetes “Master” and “Worker” concept. In this installation,
“Cloud” will refer to Kubernetes For release 1.4 and after, “keadm” is an one-click KubeEdge installer which simplifies the installation process.

Before installation, please refer to “Kubernetes-compatibility” to select proper versions of Kubernetes and KubeEdge. In this installation, the following
combination is selected.

keadm:
® Inrelease 1.4, keadm only supports Ubuntu and CentOS
® keadm execution requires root privilige. In Ubuntu please use “sudo” to execute.

® On both “cloud” and “edge” nodes, download and unzip keadm (amd64 for this installation): https://github.com/kubeedge/kubeedge/releases
/download/v1.4.0/keadm-v1.4.0-linux-amd64.tar.gz

Cloud side (Cloudcore) installation

On Kubernetes master node, run

$ keadminit --advertise-address=10.11.20.11
This will install cloudcore, generate certificates and install CRDs. kubeEdge version can also be specified as a parameter.
“10.11.20.11" is the IP address for KubeEdge management network. It should be replaced by the master node management IP in your installation. This IP

should be reachable from the “Edge side” node.
Get token for “Edge side” installation:

$ keadm get t oken

You can run keadm reset to stop cloudcore service. It will not remove

Edge side (edgecore) installation

Use the token from “Cloud side” to join the cluster:

$ keadm join --cloudcore-ipport=10.11. 20.11: 10000 - -t oken=[TOKEN|

These are mandatory parameters for keadm join. The “Edge side” and “Cloud side” should have the same KubeEdge version.

Debug

Offloading service installation
Offloading service is provided via a container running on worker node 1. The offloading container is prepared separately from this installation.

First we need to create a configuration yaml file for the installation:

$ vi ke_inference_of fl oadi ng. yanm

Below is the content of the finished yaml file:

https://github.com/kubeedge/kubeedge/releases/download/v1.4.0/keadm-v1.4.0-linux-amd64.tar.gz
https://github.com/kubeedge/kubeedge/releases/download/v1.4.0/keadm-v1.4.0-linux-amd64.tar.gz

api Version: vl

ki nd: Pod
nmet adat a:
nanme: ke-nloffload
| abel s:
app: ke-nioffl oad
spec:

cont ai ners:
- nane: ke-m of fl oad
i mge: tensorflow serving:|atest

env:
- nanme: MODEL_NAME
val ue:
- nane: TF_CPP_M N_VLOG LEVEL
val ue:

vol uneMount s:
- nane: tfnodels
nount Pat h: / nodel s/ nodel _enoti on
ports:
- containerPort:
host Port :
vol unes:
- nane: tfnodels
host Pat h:
pat h: /hone/jshen/ kubeedge/ nodel s/ nodel _enoti on

Note:
® Parameters to fill in:
© mountPath: #This should be the path where model file is located
© hostPath/path: #This should be the absolute path of the model file
® All other parameters can stay unchanged.

To deploy offloading container, run the following kubectl command on master node:

$ kubect! run --inmage=

Verification after installation

There are 2 ways to verify the offloading service. One uses a local ML inference requester. The other uses an android phone simulator. Both will send an
image to offloading service for inference. The offloading service will respond with the result.

Android phone simulator

In this test setup, the android phone simulator is VPNed into a private network with worker 1. Since there aren’t too many worker nodes involved, a simple
docker network is used between workerl and the simulator.

$ docker network create testNetwork

$ docker network connect testNetwork testerContainer
$ docker network connect testNetwork ke_inference_of fl oadi ng

After the network is created and connected with 2 containers, an inspection of the testNetwork should return this:

$ docker network inspect testNetwork

[
{

Enabl el Pv6

| PAM
Driver def aul t
Opti ons
Config

Subnet 172.20.0.0/ 16
Gat eway 172.20.0.1

I nterna
Attachabl e
I ngress
Conf i gFrom
Net wor k

ConfigOnly
Cont ai ners
Opti ons

Label s

Local ML inference requester

	KubeEdge BP Installation Guide

