PCEI Use Case Development

- User Plane Function Distribution and Local Break-Out
 - O UPF Interconnection Scenario
 - UPF Placement Scenario
 - UPF Placement Options
 - API Structure
 - UPF Interconnect Options
 - UPF Hardware Selection / Orchestration
 - UPF Configuration Orchestration Local Break-Out Options
 - 3PE/PCE Workload Instance Distribution
- Location Services
- Azure IoT Edge
 - PCEI Enabler IoT Edge Deployer Functions
 - PCEI Enabler IoT Edge Interconnect Functions
 - PCEI Enabler IoT Edge Software Distribution Functions
 - PCEI Enabler for Azure IoT Edge Implementation
 - Architecture and Interfaces
 - PCEI Enabler Structure
 - PCEI for Azure IoT Edge Call Flow (High-level)
 - Openstack HEAT Example
 - HEAT Template and Environment Files
 - Openstack HEAT Command

User Plane Function Distribution and Local Break-Out

- UPF Distribution/Shunting capability -- distributing User Plane Functions in the appropriate Data Center Facilities with qualified compute hardware
 for routing the traffic to desired applications and network/processing functions/applications.
- Local Break-Out (LBO) Examples: video traffic offload, low latency services, roaming optimization.

The UPF Distribution use case distinguishes between two scenarios:

- UPF Interconnection. The UPF/SPGW-U is located in the MNO network and needs to be interconnected on the N6/SGi interface to 3PE and/or PCE/PCC.
- UPF Placement. The MNO wants to instantiate a UPF/SPGW-U in a location that is different from their network (e.g. Customer Premises, 3rd Party Data Center)

UPF Interconnection Scenario

Assumptions:

- MNO hosts UPF/SPGW-U in their network.
- MNO provisions all UPF functions.
- MNO may request UPF Interconnection for Sgi/N6 interface in a required Metro to 3PE/PCE via APIs (on P2)
- Bare Metal Orchestration Provider and Interconnect Provider expose Data Center Location / Metro to PCEI Énabler via APIs (on P3 and P4)
- 3PE and PCE providers expose Data Center Location / Metro to PCEI Enabler via APIs (on P5 and P8/P7)
- PCEI Enabler may request Bare Metal Orchestration for Distributed UPF via APIs (on P3)
- PCEI Enabler may request Interconnect for MNO UPF (L2/L3) via APIs (on P4)
- PCEI Enabler may request PCC/PCE and/or 3PE Controller to instantiate workload instances for LBO processing via APIs (on P8/P5)

Notes:

- Does not include interconnect to 3PE/PCE/PCC to be added
- Does not include 3PE HW Orchestration to be added
- Does not include UPF LBO Orchestration to be added
- Does not include 3PE/PCE Workload Orchestration to be added

PCEI Facilitated UPF Interconnection on N6/SGi Interface

UPF Placement Scenario

Assumptions:

- MNO supports CUPS (5G NSA) and/or UPF (5G SA).
- MNO may request UPF Placement / Metro, and 3PE/PCE Access / Metro, via APIs (on P2)
- Bare Metal Orchestration Provider and Interconnect Provider expose Data Center Location / Metro to PCEI Enabler via APIs (on P3 and P4)
- 3PE and PCE providers expose Data Center Location / Metro to PCEI Enabler via APIs (on P5 and P8/P7)
- PCEI Enabler may request Bare Metal Orchestration for Distributed UPF via APIs (on P3)
- PCEI Enabler may request Bare Metal Orchestration for 3PE via APIs (on P3)
- PCEI Enabler may request Interconnect for Distributed UPF N3/S1 and N6/SGi traffic (L2/L3) via APIs (on P4)
- PCEI Enabler may expose UPF management access to MNO
- MNO may provision the Distributed UPF over management access
- PCEI Enabler may provision UPF connectivity and LBO configuration (based on the UPF provisioning model) over P2' using appropriate protocols
- PCEI Enabler may request PCC/PCE and/or 3PE Controller to instantiate workload instances for LBO processing via APIs (on P8/P5)

UPF Placement Call Flow Sketch

Notes:

- Does not include interconnect to 3PE/PCE/PCC to be added
- Does not include 3PE HW Orchestration to be added
- Does not include UPF LBO Orchestration to be added
- Does not include 3PE/PCE Workload Orchestration to be added

PCEI Facilitated UPF Placement with N3(S1) Interconnect

API Structure

To be added

UPF Interconnect Options

UPF Hardware Selection / Orchestration

UPF Configuration Orchestration - Local Break-Out Options

3PE/PCE Workload Instance Distribution

To be added

Location Services

 Location Services -- location of a specific UE, or identification of UEs within a geographical area, facilitation of server-side application workload distribution based on UE and infrastructure resource location.

Assumptions:

- MNO provides a Location Service (LS) compliant with OMA Zonal Presence API (OMA-TS-REST_NetAPI_ZonalPresence)
- MNO may expose the Location Service via the Network Exposure Function (NEF)
- · A Public Cloud Edge (PCE) instance is associated with a Zone (collection of Access Points such as small cells) provided by an MNO
- A 3rd-Party Edge (3PE) instance is associated with a Zone (collection of Access Points such as small cells) provided by an MNO
- An application/workload in the PCE requires Location Information (e.g. coordinates of the Access Point) for the UE/subscriber
- · An application/workload in the 3PE requires Location Information (e.g. coordinates of the Access Point) for the UE/subscriber
- PCEI Enabler facilitates Zonal Presence API Request/Response routing between PCE and the MNO LS and between the 3PE and the MNO LS

Azure IoT Edge

Assumptions:

- MNO hosts UPF/SPGW-U in their network.
- MNO provisions all UPF functions.
- MNO may request Deployment of IoT Edge on Bare Metal or NFVi via APIs (on P2)
- PCEI Enabler IoT Edge Deployer may request HW or Virtual resources (e.g. VM/Container) (on P3)
- PCEI Enabler IoT Edge Deployer may provision IoT Edge (install runtime, deploy standard modules, register with IoT Hub) via APIs/Deployer Code (on P8/P5)
- PCEI Enabler may request Interconnect for IoT Edge between MNO and Azure (L2/L3) via APIs (on P4)
- PCEI Enabler may request UPF LBO for MNO to direct customer traffic to IoT Edge (on P2/P2')
- PCEI Enabler may facilitate deployment of custom IoT Edge modules

PCEI Enabler IoT Edge Deployer Functions

- Deploy a base Ubuntu VM
- Download and Install Microsoft GPG public key to apt config
- Install moby engine and cli
- Install azure iot edge
- Modify iot edge config file using customer defined parameters (azure hub url, keys, scope id, etc)
- Deploy iot edge agent
- Deploy iot edge hub module
- · Install certificates if edge is used as a gateway
- · Restart iot edge

PCEI Enabler IoT Edge Interconnect Functions

- Request virtual connectivity to MNO
- Request virtual connectivity to Azure (e.g. ExpressRoute)

PCEI Enabler IoT Edge Software Distribution Functions

PCEI Enabler for Azure IoT Edge Implementation

Architecture and Interfaces

PCEI Enabler Structure

PCEI for Azure IoT Edge Call Flow (High-level)

Openstack HEAT Example

HEAT Template and Environment Files

Template (pcei_base.yaml) ##### heat_template_version: 2013-05-23 description: Heat template that deploys PCEI IoT Edge VM in Openstack ################ # PARAMETERS # ## ################# parameters: pcei_image_name: type: string label: Image name or ID description: Image to be used for compute instance pcei_flavor_name: type: string label: Flavor description: Type of instance (flavor) to be used os_private_net_id: type: string label: os management network name or ID description: Private network that connects os components and the VNF os_private_subnet_id: type: string label: os management sub-network name or ID description: Private sub-network that connects os components and the VNF os_private_net_cidr: type: string label: os private network CIDR description: The CIDR of the protected private network pcei_private_ip_0: type: string label: VNF IP Address description: IP address that is assigned to the IoT Edge pcei_name_0: type: string label: VNF name description: Name of the vPacketGenerator key_name: type: string label: Key pair name description: Public/Private key pair name pub_key: type: string label: Public key description: Public key to be installed on the compute instance ############## ## # RESOURCES # ############## resources: random-str: type: OS::Heat::RandomString properties: length: 4 my_keypair: type: OS::Nova::KeyPair properties: name: str_replace: template: base_rand params: base: { get_param: key_name } rand: { get_resource: random-str } public_key: { get_param: pub_key }
save_private_key: false

```
# Instance behing vRouter
pcei_private_0_port:
type: OS::Neutron::Port
properties:
network: { get_param: os_private_net_id }
fixed_ips: [{"subnet": { get_param: os_private_subnet_id }, "ip_address": { get_param: pcei_private_ip_0 }}]
pcei_0:
type: OS::Nova::Server
properties:
image: { get_param: pcei_image_name }
flavor: { get_param: pcei_flavor_name }
name: { get_param: pcei_name_0 }
key_name: { get_resource: my_keypair }
networks:
# - network: { get_param: os_private_net_id }
- port: { get_resource: pcei_private_0_port }
user_data_format: RAW
user_data: |
#cloud-config
password: pcei
chpasswd: { expire: False }
ssh_pwauth: True
- [ sh, -xc, "sed -i 's,#UseDNS yes,UseDNS no,' /etc/ssh/sshd_config" ]
- systemctl restart sshd.service
Environment (pcei_base.env)
#########
parameters:
pcei_image_name: ubuntu1604
pcei_flavor_name: I3
os_private_net_id: provider
os_private_subnet_id: provider
os_private_net_cidr: 10.121.11.0/24
pcei_private_ip_0: 10.121.11.91
pcei_name_0: PCEI-IOT-EDGE
key_name: maskey1
pub_key: ssh-rsa AAAAB3NzaC1y
```

Openstack HEAT Command

openstack stack create -t pcei_base.yaml -e pcei_base.env