
1.

2.
3.

4.
5.

I-VICS R4 Installation Document

Introduction
Pre-Installation Requirements
Target Software Platforms
Install ADE
Setup ADE home and project checkout

Sharing files between the host system and ADE
Entering the development environment
What is where inside ADE?
Cleanup

Start relevant Docker resources
Docker disk usage
Remove unused docker items

Troubleshooting
Error - "forward compatibility was attempted on non supported hw" when starting ADE

Solution
Error - "Unable to create the rendering window after 100 tries" when launching GUI application

Introduction
 The supported environments are specified in . System Dependencies and Target Environments

The recommended method for installation is through the use of , a Docker-based tool to ensure that all developers in a project have a common, ADE
consistent development environment. It comes with a pre-built version of Autoware.Auto, so that you will not need to compile it yourself if you do not want
to.

Pre-Installation Requirements
Hardware Requirements

 amd64 / x86_64 (Intel/AMD)

 arm64 / aarch64 / arm64v8 (ARM v8, 64-bit)

Software Prerequisites

Target Software Platforms

ROS Version Operating System System Dependencies

ROS2 Foxy ()active development Ubuntu 20.04 LTS REP-2000 section

ROS2 Dashing ()maintenance only Ubuntu 18.04 LTS REP-2000 section

Install ADE
ADE is a modular Docker-based tool to ensure that all developers in a project have a common, consistent development environment.

Follow the instructions, which are reproduced here for convenience: install

Verify that the requirements are fulfilled. In particular, if docker was not used before, one may need to go through the listed here docker post-
.install steps

Download the latest statically-linked binary for your platform from the page of the project Releases ade-cli
Name the binary and install it in . On Ubuntu, is recommended for system-wide installation, otherwise choose e.g. ade PATH /usr/local/bin ~/

for a local installation that doesn't require rights..local/bin sudo
Make the binary executable: chmod +x ade
Check that it is installed:

$ which ade
/path/to/ade
$ ade --version
<version>

Setup ADE home and project checkout

https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/target-environments.html
https://ade-cli.readthedocs.io/en/latest/
https://www.ros.org/reps/rep-2000.html#foxy-fitzroy-may-2020-may-2023
https://www.ros.org/reps/rep-2000.html#dashing-diademata-may-2019-may-2021
https://ade-cli.readthedocs.io/en/latest/
https://ade-cli.readthedocs.io/en/latest/install.html
https://ade-cli.readthedocs.io/en/latest/install.html#requirements
https://docs.docker.com/engine/install/linux-postinstall/
https://docs.docker.com/engine/install/linux-postinstall/
https://gitlab.com/ApexAI/ade-cli/-/releases

ADE needs a directory on the host machine which is mounted as the user's home directory within the container. The directory is populated with dotfiles,
and must be different than the user's home directory of the container. In the event ADE is used for multiple, projects it is recommended to use outside
dedicated directories for each project. adehome

ADE looks for a directory containing a file named starting with the current working directory and continuing with the parent directories to identify .adehome
the ADE home directory to be mounted.
$ mkdir -p ~/adehome
$ cd ~/adehome
$ touch .adehome

For ADE to function, it must be properly configured. Autoware.Auto provides an file which is expected to exist in the current working directory, or in .aderc
any parent directory. Additionally, default configuration values can be overridden by setting environment variables. See the output for more ade --help
information about using environment variables to define the configuration.
$ cd ~/adehome
$ git clone https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto.git

Sharing files between the host system and ADE

It might come in handy to share files such as dotfiles or utility programs from your host machine with ADE. If you only have a single directory, adehome
there is a way to do that without duplicating them: move them inside the directory, then create a symlink in the host system to their regular adehome
location. For instance,
$ cd ~
$ mv ~/.bashrc ~/ade-home/.bashrc
$ ln -s ~/ade-home/.bashrc

It will then appear as to the host system and to ADE. ~/.bashrc

Another option is to put utility programs into and symlink. The opposite direction will not work, files in a Docker container can ~/adehome/.local/bin
not be symlinks to the outside.

NoteThe programs have to be self-contained! They should not depend on loading libraries from e.g. /usr/lib.

Entering the development environment

$ cd AutowareAuto

To start the default environment:
$ ade start --update --enter

There are several preconfigured environments to choose from by specifying an ADE rc file. To see what is available, run
ls -l .aderc*

Choose one, then launch with:
ade --rc .aderc-amd64-foxy start --update --enter

Congratulations! Now you should have a terminal inside ADE:
$ade:~$

The next steps are to proceed to , or to work on the Autoware.Auto code itself as described in . Usage Contributor's guide

What is where inside ADE?
Upon entering, ADE outputs the images used to create the environment; e.g.
$ ade enter
Entering ade with following images:
ade-foxy | 8b1e0efdde07 | master | registry.gitlab.com/autowarefoundation/autoware.auto/autowareauto/amd64/ade-foxy:master
binary-foxy | 0e582f863d4c | master | registry.gitlab.com/autowarefoundation/autoware.auto/autowareauto/amd64/binary-foxy:master
foxy | 2020.06 | 2020.06 | registry.gitlab.com/autowarefoundation/autoware.auto/ade-lgsvl/foxy:2020.06

The images are mounted under : /opt
@ade:~$ ls /opt
AutowareAuto # image: binary-foxy:master
lgsvl # image: ade-lgsvl/foxy:2020.06
ros # image: ade-foxy:master

The code in is built from a particular version of the master branch of Autoware.Auto. The master branch is built multiple times a day /opt/AutowareAuto
in CI; see the . With , the latest available version of each image is downloaded. container registry ade ... --update

Cleanup

https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/blob/master/.aderc
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto.git
https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/usage.html
https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/contributors-guide.html
http://registry.gitlab.com/autowarefoundation/autoware.auto/autowareauto/amd64/ade-foxy:master
http://registry.gitlab.com/autowarefoundation/autoware.auto/autowareauto/amd64/binary-foxy:master
http://registry.gitlab.com/autowarefoundation/autoware.auto/ade-lgsvl/foxy:2020.06
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/container_registry

ADE uses Docker, and over time unused images, containers, and volumes begin to clutter the hard drive. Follow the steps below to clean the Docker file
system of stale images.

Start relevant Docker resources

First, verify that ADE is running:
$ cd ~/adehome/AutowareAuto
$ ade start

If ADE is used for more than one project, verify all ADE instances are running; the same rule applies for any other non-ADE Docker containers that should
be preserved.

NoteDocker resources that are not started/running will be removed!

Docker disk usage

To assess the disk usage situation, run the following command:
$ docker system df
TYPE TOTAL ACTIVE SIZE RECLAIMABLE
Images 13 11 14.03GB 916.9MB (6%)
Containers 11 0 2.311MB 2.311MB (100%)
Local Volumes 17 15 5.411GB 17.8MB (0%)
Build Cache 0 0 0B 0B

Remove unused docker items

Use to remove any Docker items not used for currently running containers: docker system prune
$ docker system prune -a --volumes

Troubleshooting
Here are solutions for a few specific errors:

Error - "forward compatibility was attempted on non supported hw" when starting ADE

When starting with GPU support enabled for NVIDIA graphics, you may sometimes receive the following error: ade
docker: Error response from daemon: OCI runtime create failed: container_linux.go:349: starting container process caused "process_linux.go:449:
container init caused \"process_linux.go:432: running prestart hook 0 caused \\\"error running hook: exit status 1, stdout: , stderr: nvidia-container-cli:
initialization error: cuda error: forward compatibility was attempted on non supported hw\\\\n\\\"\"": unknown.
ERROR: Command return non-zero exit code (see above): 125

This usually indicates that a new NVIDIA graphics driver has been installed (usually via) but the system has not yet been restarted. A similar message apt
may appear if the graphics driver is not available, for example because of resuming after suspend.

Solution

Restart your system after installing the new NVIDIA driver.

Error - "Unable to create the rendering window after 100 tries" when launching GUI application

If you have an NVIDIA GPU and are using the proprietary NVIDIA GPU driver, you may encounter this error when using the default or .aderc .aderc-
files. This is due to a decision that was made regarding support for users with and without NVIDIA GPUs and those with and without the proprietary arm64

NVIDIA driver. For more information you can review the discussion that lead to this decision in . this issue

To resolve this issue, simply remove the line from the file that you are using and restart wit export ADE_DISABLE_NVIDIA_DOCKER=true .aderc ade
h:
ade$ exit
$ ade stop
$ ade start --update --enter

https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/issues/502

	I-VICS R4 Installation Document

