
Sdewan CRD Controller

Goal
Sdwan Design Principle
Architecture
CNF Deployment
Sdewan rule CRs
CNF Service CR
Sdewan rule CRD Reconcile Logic
Unsual Cases
Admission Webhook Usage
Sdewan rule CR type level Permission Implementation
ServiceRule controller (For next release)
References

Goal
Sdewan CRD Controller (config agent) is the controller of Sdewan CRDs. With the CRD Controller, we are able to deploy Sdewan CRs to configure CNF
rules. In this page, we have the following terms, let's define them here.

CNF Deployment: A deployment running network function process(openWRT)
Sdewan rule: The rule defines the CNF behaves. We have 3 classes of rules: mwan3, firewall, ipsec. Each class includes several kinds of rules.
For example, mwan3 has 2 kinds: mwan3_policy and mwan3_rule. Firewall has 5 kinds: firewall_zone, firewall_snat, firewall_dnat,
firewall_forwarding, firewall_rule. Ipsec has xx(ruoyu) kinds: xx, xx.
Sdewan rule CRD: The CRD defines each kind of sdewan rule. For each kind of Sdewan rule, we have a Sdewan rule CRD. Sdewan rule CRD
is namespaced resource.
Sdewan rule CR: Instance of Sdewan rule CRD.
Sdewan controller: The controller watching Sdewan rule CRs.
CNF: A network function running in container.

To deploy a CNF, user needs to create one CNF deployment and some Sdewan rule CRs. In a Kubernetes namespace, there could be more than one
CNF deployment and many Sdewan rule CRs. We use label to correlate one CNF with some Sdewan rule CRs. The Sdewan controller watches Sdewan
rule CRs and applies them onto the correlated CNF by calling CNF REST api.

Sdwan Design Principle
There could be multiple tenants/namespaces in a Kubernetes cluster. User may deploy multiple CNFs in any one or more tenants.
The replica of CNF deployment could be more than one for active/backup purpose. We should apply rules for all the pods under CNF deployment.
(This release doesn't implement VRRP between pods)
CNF deployment and Sdewan rule CRs can be created/updated/deleted in any order
The Sdewan controller and CNF process could be crash/restart at anytime for some reasons. We need to handle these scenarios
Each Sdewan rule CR has labels to identify the type it belongs to. 3 types are available at this time: , and . basic app-intent k8s-service
We extend k8s user role permission so that we can set user permission at type level of Sdewan rule CR
Sdewan rule CR dependencies are checked on creating/updating/deleting. For example, if we create a mwan3_rule CR which uses policy policy

, but no mwan3_policy CR named exists. Then we block the request-x policy-x

Architecture

SDEWAN CRD Controller internally calls SDEWAN Restful API to do CNF configuration. And a remote client (e.g. SDEWAN Overlay Controller) can
manage SDEWAN CNF configuration through creating/updating/deleting SDEWAN CRs. It includes below components:

MWAN3 Controller: monitor mwan3 related CR change then do mwan3 configuration in SDEWAN CNF
Firewall Controller: monitor firewall related CR change then do firewall configuration in SDEWAN CNF
IpSec Controller: monitor ipsec related CR change then do ipsec configuration in SDEWAN CNF
Service/Application Controller: configure firewall/NAT rule for in-cluster service and application
Runtime controller: collect runtime information of CNF include IPSec, IKE, firewall/NAT connections, DHCP leases, DNS entries, ARP entries etc..
BucketPerssion/LabelValidateWebhook: do sdewan CR request permission check based on CR label and user

CNF Deployment
In this section we describe what the CNF deployment should be like, as well as the pod under the deployment.

CNF pod should has multiple network interfaces attached. We use multus and ovn4nfv CNIs to enable multiple interfaces. So in the CNF pod
yaml, we set annotations: , . k8s.v1.cni.cncf.io/networks k8s.plugin.opnfv.org/nfn-network
When user deploys a CNF, she/he most likely want to deploy the CNF on a specified node instead of a random node. Because some nodes may
don't have provider network connected. So we set for pod spec.nodeSelector
CNF pod runs Sdewan CNF (based on openWRT in ICN). We use image integratedcloudnative/openwrt:dev
CNF pod should setup with rediness probe. Sdewan controller would check pod readiness before calling CNF REST api.

CNF pod

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: cnf-1
 namespace: default
 labels:
 sdewanPurpose: cnf-1
spec:
 replicas: 1
 strategy:
 rollingUpdate:
 maxSurge: 25%
 maxUnavailable: 25%
 type: RollingUpdate
 template:
 metadata:
 annotations:
 k8s.plugin.opnfv.org/nfn-network: |-
 { "type": "ovn4nfv", "interface": [
 {
 "defaultGateway": "false",
 "interface": "net0",
 "name": "ovn-priv-net"
 },
 {
 "defaultGateway": "false",
 "interface": "net1",
 "name": "ovn-provider-net1"
 },
 {
 "defaultGateway": "false",
 "interface": "net2",
 "name": "ovn-provider-net2"
 }
]}
 k8s.v1.cni.cncf.io/networks: '[{ "name": "ovn-networkobj"}]'
 spec:
 containers:
 - command:
 - /bin/sh
 - /tmp/sdewan/entrypoint.sh
 image: integratedcloudnative/openwrt:dev
 name: sdewan
 readinessProbe:
 failureThreshold: 5
 httpGet:
 path: /
 port: 80
 scheme: HTTP
 initialDelaySeconds: 5
 periodSeconds: 5
 successThreshold: 1
 timeoutSeconds: 1
 securityContext:
 privileged: true
 procMount: Default
 volumeMounts:
 - mountPath: /tmp/sdewan
 name: example-sdewan
 readOnly: true
 nodeSelector:
 kubernetes.io/hostname: ubuntu18

Sdewan rule CRs
CRD defines all properties of a resource, but it's not human friendly. So we paste Sdewan rule CR samples instead of CRDs.

Each Sdewan rule CR has a label named to indicate which CNF should the rule be applied onto sdewanPurpose
Each Sdewan rule CR has the field which indicates if the latest rule is applied and when it's applied status
Mwan3Policy.spec.members[].network should match the networks defined in CNF pod annotation k8s.plugin.opnfv.org/nfn-

. As well asnetwork FirewallZone.spec[].network

CR samples of Mwan3 type:

Mwan3Policy CR

apiVersion: batch.sdewan.akraino.org/v1alpha1
kind: Mwan3Policy
metadata:
 name: balance1
 namespace: default
 labels:
 sdewanPurpose: cnf-1
spec:
 members:
 - network: ovn-net1
 weight: 2
 metric: 2
 - network: ovn-net2
 weight: 3
 metric: 3
status:
 appliedVersion: "2"
 appliedTime: "2020-03-29T04:21:48Z"
 inSync: True

Mwan3Rule CR

apiVersion: batch.sdewan.akraino.org/v1alpha1
kind: Mwan3Rule
metadata:
 name: http_rule
 namespace: default
 labels:
 sdewanPurpose: cnf-1
spec:
 policy: balance1
 src_ip: 192.168.1.2
 dest_ip: 0.0.0.0/0
 dest_port: 80
 proto: tcp
status:
 appliedVersion: "2"
 appliedTime: "2020-03-29T04:21:48Z"
 inSync: True

:CR samples of Firewall type

apiVersion: batch.sdewan.akraino.org/v1alpha1
kind: FirewallZone
metadata:
 name: lan1
 namespace: default
 labels:
 sdewanPurpose: cnf-1
spec:
 newtork:
 - ovn-net1
 input: ACCEPT
 output: ACCEPT
status:
 appliedVersion: "2"
 appliedTime: "2020-03-29T04:21:48Z"
 inSync: True

apiVersion: batch.sdewan.akraino.org/v1alpha1
kind: FirewallRule
metadata:
 name: reject_80
 namespace: default
 labels:
 sdewanPurpose: cnf-1
spec:
 src: lan1
 src_ip: 192.168.1.2
 src_port: 80
 proto: tcp
 target: REJECT
status:
 appliedVersion: "2"
 appliedTime: "2020-03-29T04:21:48Z"
 inSync: True

apiVersion: batch.sdewan.akraino.org/v1alpha1
kind: FirewallSNAT
metadata:
 name: snat_lan1
 namespace: default
 labels:
 sdewanPurpose: cnf-1
spec:
 src: lan1
 src_ip: 192.168.1.2
 src_dip: 1.2.3.4
 dest: wan1
 proto: icmp
status:
 appliedVersion: "2"
 appliedTime: "2020-03-29T04:21:48Z"
 inSync: True

apiVersion: batch.sdewan.akraino.org/v1alpha1
kind: FirewallDNAT
metadata:
 name: dnat_wan1
 namespace: default
 labels:
 sdewanPurpose: cnf-1
spec:
 src: wan1
 src_dport: 19900
 dest: lan1
 dest_ip: 192.168.1.1
 dest_port: 22
 proto: tcp
status:
 appliedVersion: "2"
 appliedTime: "2020-03-29T04:21:48Z"
 inSync: True

apiVersion: batch.sdewan.akraino.org/v1alpha1
kind: FirewallForwarding
metadata:
 name: forwarding_lan_to_wan
 namespace: default
 labels:
 sdewanPurpose: cnf-1
spec:
 src: lan1
 dest: wan1
status:
 appliedVersion: "2"
 appliedTime: "2020-03-29T04:21:48Z"
 inSync: True

CR samples of IPSec type(ruoyu):

IPSec Proposal CR

apiVersion: sdewan.akraino.org/v1alpha1
kind: IpsecProposal
metadata:
 name: test_proposal_1
 namespace: default
 labels:
 sdewanPurpose: cnf-1
spec:
 encryption_algorithm: aes128
 hash_algorithm: sha256
 dh_group: modp3072
status:
 appliedVersion: "1"
 appliedTime: "2020-04-12T09:28:38Z"
 inSync: True

IPSec Site CR

apiVersion: sdewan.akraino.org/v1alpha1
kind: IpsecSite
metadata:
 name: ipsecsite-sample
 namespace: default
 labels:
 sdewanPurpose: cnf-1
spec:
 remote: xx.xx.xx.xx
 authentication_method: psk
 pre_shared_key: xxx
 local_public_cert:
 local_private_cert:
 shared_ca:
 local_identifier:
 remote_identifier:
 crypto_proposal:
 - test_proposal_1
 connections:
 - connection_name: connection_A
 type: tunnel
 mode: start
 local_subnet: 172.12.0.0/24, 10.239.160.22
 remote_sourceip: 172.12.0.30-172.12.0.45
 remote_subnet:
 crypto_proposal:
 - test_proposal_1
status:
 appliedVersion: "1"
 appliedTime: "2020-04-12T09:28:38Z"
 inSync: True

IPSec Host CR

apiVersion: sdewan.akraino.org/v1alpha1
kind: IpsecHost
metadata:
 name: ipsechost-sample
 namespace: default
 labels:
 sdewanPurpose: cnf-1
spec:
 remote: xx.xx.xx.xx/%any
 authentication_method: psk
 pre_shared_key: xxx
 local_public_cert:
 local_private_cert:
 shared_ca:
 local_identifier:
 remote_identifier:
 crypto_proposal:
 - test_proposal_1
 connections:
 - connection_name: connection_A
 type: tunnel
 mode: start
 local_sourceip: %config
 remote_sourceip: xx.xx.xx.xx
 remote_subnet: xx.xx.xx.xx/xx
 crypto_proposal:
 - test_proposal_1
status:
 appliedVersion: "1"
 appliedTime: "2020-04-12T09:28:38Z"
 inSync: True

CNF Service CR
.spec.fullname - The full name of the target service, with which we can get the service IP

.spec.port - The port exposed by CNF, we will do DNAT for the requests accessing this port of CNF

.spec.dport - The port exposed by target service

CNF Service CR

apiVersion: batch.sdewan.akraino.org/v1alpha1
kind: CNFService
metadata:
 name: cnfservice-sample
 namespace: default
 labels:
 sdewanPurpose: cnf1
spec:
 fullname: httpd-svc.default.svc.cluster.local
 port: "2288"
 dport: "8080"

Sdewan rule CRD Reconcile Logic
As we have many kinds of CRDs, they have almost the same reconcile logic. So we only describe the Mwan3Rule logic.

Mwan3Rule Reconcile could be triggered by the following cases:

Create/Update/Delete Mwan3Rule CR
CNF deployment ready status change (With , we can only watch CNF deployment readiness status. With predicate feature enqueueRequestsFrom

, we can enqueue all Mwan3Rule CRs with specified , if CNF deployment's ready status changes)MapFunc labels.sdewanPurpose
CNF becomes ready after creating
CNF becomes ready after restart
CNF becomes not-ready after crash

Mwan3Rule Reconcile flow:

def Mwan3RuleReconciler.Reconcile(req ctrl.Request):
 rule_cr = k8sClient.get(req.NamespacedName)
 cnf_deployment = k8sClient.get_deployment_with_label(rule_cr.labels.sdewanPurpose)
 if rule_cr DeletionTimestamp exists:
 # The CR is being deleted. finalizer on the CR
 if cnf_deployment exists:
 if cnf_deployment is ready:
 for cnf_pod in cnf_deployment:
 err = openwrt_client.delete_rule(cnf_pod_ip, rule_cr)
 if err:
 return "re-queue req"
 rule_cr.finalizer = nil
 return "ok"
 else:
 return "re-queue req"
 else:
 # Just remove finalizer, because no CNF pod exists
 rule_cr.finalizer = nil
 return "ok"
 else:
 # The CR is not being deleted
 if cnf_deployment not exist:
 return "ok"
 else:
 if cnf_deployment not ready:
 # set appliedVersion = nil if cnf_deployment get into not_ready status
 rule_cr.status.appliedVersion = nil
 return "re-queue req"
 else:
 for cnf_pod in cnf_deployment:
 runtime_cr = openwrt_client.get_rule(cnf_pod_ip)
 if runtime_cr != rule_cr:
 err = openwrt_client.add_or_update_rule(cnf_pod_ip, rule_cr)
 if err:
 # err could be caused by dependencies not-applied or other reason
 return "re-queue req"
 # set appliedVerson only when it's applied for all the cnf pods
 rule_cr.finalizer = cnf_finalizer
 rule_cr.status.appliedVersion = rule_cr.resourceVersion
 rule_cr.status.inSync = True
 return "ok"

Unsual Cases
In the following cases, when we say "call CNF api to create/update/delte rule", it means the logic below:

https://godoc.org/sigs.k8s.io/controller-runtime/pkg/predicate#example-Funcs
https://godoc.org/sigs.k8s.io/controller-runtime/pkg/handler#example-EnqueueRequestsFromMapFunc
https://godoc.org/sigs.k8s.io/controller-runtime/pkg/handler#example-EnqueueRequestsFromMapFunc

def create_or_update_rule(rule):
 runtime_rule = openwrt_client.get_rule(rule.name)
 if runtime_rule exist:
 if runtime_rule equal rule:
 return
 else:
 openwrt_client.update_rule(rule)
 else:
 openwrt_client.add_rule(rule)

def delete_rule(rule):
 runtime_rule = openwrt_client.get_rule(rule.name)
 if runtime_rule exist:
 openwrt_client.del_rule(rule)

Case 1:

A deployment(CNF) for a given purpose has two pod replicas (CNF-pod-1 and CNF-pod-2)
Controller is also brought yup.
CNF-pod-1 and CNF-pod-2 are both running with no/default configuration.
MWAN3 policy 1 is added
MWAN3 rule 1 and Rule 2 are added to use MWAN3 Policy1.
Since all controller, CNF-pod-1 and CNF-pod-2 are running, CNF-pod-1 and CNF-pod-2 has configuration MWAN3 Policy1, rule1 and rule2.
Now CNF-pod-1 is stopped.

MWAN3 rule 1 is deleted.

MWAN3 rule 3 added

MWAN3 rule 2 is updated.

CNF-pod-1 is brought back up after 10 minutes (more than 5 minutes)

Ensure that both CNF-pod-1 and CNF-pod-2 have latest configuration.

Case 2:

A deployment(CNF) for a given purpose has two pod replicas (CNF-pod-1 and CNF-pod-2)

Mwan3Policy controller and Mwan3Rule controller receives a CNF event. Mwan3Policy addes all the related mwan3Policy CRs to reconcile
queue. Mwan3Rule addes all the related mwan3Rule CRs to reconcile queue. In the reconicle, it finds that the CNF is not ready, so CR
status.appliedVersion is set nil. The CRs are re-queued with time delay.

As every CR has finalizer, rule 1 CR is not deleted from etcd directly. Instead, deleteTimestap field is added to the rule 1 CR. The
mwan3Rule controller receives an event. In the reconcile, controller detects the CNF is not ready, so it re-queues the CR with delay.

Mwan3Rule controller receives an event. In the reconcile, controller detects the CNF is not ready, so it re-queues the CR with delay.

Mwan3Rule controller receives an event. In the reconcile, controller detects the CNF is not ready, so it re-queues the CR with delay.

As pod restart, CNF-pod-1 is running with no/default configuration. In Mwan3Rule reconcile queue, there are 3 CRs: rule1, rule2, rule3. The
controller reconcile them, and do the right things. For rule1, controller calls cnf api to delete rule1 from both CNF-pod-1 and CNF-pod-2.
Then controller removes finalizer from the rule1 CR, then rule1 CR is deleted from etcd by k8s. For rule2, controller calls cnf api to update
rul2 for both CNF-pod-1 and CNF-pod-2. Then set rule2 status.appliedVersion=<current-version> and status.appliedTime=<now-time> and
status.inSync=true. For rule3, controller calls cnf api to add rul3 for both CNF-pod-1 and CNF-pod-2. Then set rule3 finalizer. Also set rule3
status.appliedVersion=<current-version> and status.appliedTime=<now-time> and status.inSync=true.

Once the reconcile finish, both CNF-pod-1 and CNF-pod-2 have latest configuration.

Controller is also brought yup.
CNF-pod-1 and CNF-pod-2 are both running with no/default configuration.
MWAN3 policy 1 is added
MWAN3 rule 1 and Rule 2 are added to use MWAN3 Policy1.
Since all controller, CNF-pod-1 and CNF-pod-2 are running, CNF-pod-1 and CNF-pod-2 has configuration MWAN3 Policy1, rule1 and rule2.
Now CNF-pod-1 is disconnected, but still running.

MWAN3 rule 1 is deleted.

MWAN3 rule 3 added

MWAN3 rule 2 is updated.

CNF-pod-1 is brought back up after 10 minutes (more than 5 minutes)

Ensure that both CNF-pod-1 and CNF-pod-2 have latest configuration.

Case 3:

A deployment(CNF) for a given purpose has two pod replicas (CNF-pod-1 and CNF-pod-2)
Controller is also brought yup.
CNF-pod-1 and CNF-pod-2 are both running with no/default configuration.
MWAN3 policy 1 is added
MWAN3 rule 1 and Rule 2 are added to use MWAN3 Policy1.
Since all controller, CNF-pod-1 and CNF-pod-2 are running, CNF-pod-1 and CNF-pod-2 has configuration MWAN3 Policy1, rule1 and rule2.
Controller is down for 10 minutes.
MWAN3 rule 1 is deleted.

MWAN3 rule 3 added

MWAN3 rule 2 is updated.

We have the API rediness check for CNF pod, when it is disconnected. The CNF-pod-1 becomes not-ready. Mwan3Policy controller
and Mwan3Rule controller receives a CNF event. Mwan3Policy addes all the related mwan3Policy CRs to reconcile queue.
Mwan3Rule addes all the related mwan3Rule CRs to reconcile queue. In the reconicle, it finds that the CNF is not ready, so CR status.
appliedVersion is set nil. The CRs are re-queued with time delay.

As every CR has finalizer, rule 1 CR is not deleted from etcd directly. Instead, deleteTimestap field is added to the rule 1 CR. The
mwan3Rule controller receives an event. In the reconcile, controller detects the CNF is not ready, so it re-queues the CR with delay.

Mwan3Rule controller receives an event. In the reconcile, controller detects the CNF is not ready, so it re-queues the CR with delay.

Mwan3Rule controller receives an event. In the reconcile, controller detects the CNF is not ready, so it re-queues the CR with delay.

As pod restart, CNF-pod-1 is running with no/default configuration. In Mwan3Rule reconcile queue, there are 3 CRs: rule1, rule2, rule3.
The controller reconcile them, and do the right things. For rule1, controller calls cnf api to delete rule1 from both CNF-pod-1 and CNF-
pod-2. Then controller removes finalizer from the rule1 CR, then rule1 CR is deleted from etcd by k8s. For rule2, controller calls cnf api
to update rul2 for both CNF-pod-1 and CNF-pod-2. Then set rule2 status.appliedVersion=<current-version> and status.
appliedTime=<now-time> and status.inSync=true. For rule3, controller calls cnf api to add rul3 for both CNF-pod-1 and CNF-pod-2.
Then set rule3 finalizer. Also set rule3 status.appliedVersion=<current-version> and status.appliedTime=<now-time> and status.
inSync=true.

Once the reconcile finish, both CNF-pod-1 and CNF-pod-2 have latest configuration.

As controller is down, so no event, no reconcile. rule1 CR is not deleted from etcd because of finalizer. Instead, DeleteTimestamp is
added to rule1 CR by k8s

As controller is down, no event no reconcile. rule3 CR is added to etcd, but not applied onto CNF. rule3 status.appliedVersion and
status.appliedTime and status.inSync are nil/default value.

As controller is down, no event no reconcile. rule2 CR is updated to etcd, but not applied onto CNF. rule3 status.appliedVersion and
status.appliedTime and status.inSync are the value before controller goes down.

1.
2.
3.

Controller is up.

Ensure that CNF-pod-1 and CNF-pod-2 have latest configuration and there is no duplicate information.

Case 4:

A deployment(CNF) for a given purpose has two pod replicas (CNF-pod-1 and CNF-pod-2)
Controller is also brought yup.
CNF-pod-1 and CNF-pod-2 are both running with no/default configuration.
MWAN3 policy 1 is added
MWAN3 rule 1 and Rule 2 are added to use MWAN3 Policy1.
Since all controller, CNF-pod-1 and CNF-pod-2 are running, CNF-pod-1 and CNF-pod-2 has configuration MWAN3 Policy1, rule1 and rule2.
Controller is down for 10 minutes.
After controller goes down, CNF-pod-1 is down

MWAN3 rule 1 is deleted.

MWAN3 rule 3 added

For MWAN3 rule 2, we don't make any change
CNF-pod-1 is up

Controller is up.

Ensure that CNF-pod-1 and CNF-pod-2 have latest configuration and there is no duplicate information.

Admission Webhook Usage
We use admission webhook to implemention several features.

Prevent creating more than one CNF of the same lable and the same namespace
Validate CR dependencies. For example, mwan3 rule depends on mwan3 policy
Extend user permission to control the operations on rule CRs. For example, we can control that ONAP can't update/delete rule CRs created by
platform.

Controller reconciles for all CRs. For rule1 CR, controller calls cnf api to delete rule1 from both CNF-pod-1 and CNF-pod-2. Then
controller removes finalizer from the rule1 CR, then rule1 CR is deleted from etcd by k8s. For rule2, controller calls cnf api to update
rul2 for both CNF-pod-1 and CNF-pod-2. Then set rule2 status.appliedVersion=<current-version> and status.appliedTime=<now-time>
and status.inSync=true. For rule3, controller calls cnf api to add rul3 for both CNF-pod-1 and CNF-pod-2. Then set rule3 finalizer. Also
set rule3 status.appliedVersion=<current-version> and status.appliedTime=<now-time> and status.inSync=true.

Once the reconcile finish, both CNF-pod-1 and CNF-pod-2 have latest configuration.

As controller is down, so no event, no reconcile.

As controller is down, so no event, no reconcile. rule1 CR is not deleted from etcd because of finalizer. Instead, DeleteTimestamp is
added to rule1 CR by k8s

As controller is down, no event no reconcile. rule3 CR is added to etcd, but not applied onto CNF. rule3 status.appliedVersion and
status.appliedTime and status.inSync are nil/default value.

As controller is down, so no event, no reconcile. As pod restart, CNF-pod-1 is running with no/default configuration.

Controller reconciles for all CRs. For rule1 CR, controller calls cnf api to delete rule1 from both CNF-pod-1 and CNF-pod-2. Then
controller removes finalizer from the rule1 CR, then rule1 CR is deleted from etcd by k8s. For rule2, controller calls cnf api to update
rul2 for both CNF-pod-1 and CNF-pod-2. Then set rule2 status.appliedVersion=<current-version> and status.appliedTime=<now-time>
and status.inSync=true. For rule3, controller calls cnf api to add rul3 for both CNF-pod-1 and CNF-pod-2. Then set rule3 finalizer. Also
set rule3 status.appliedVersion=<current-version> and status.appliedTime=<now-time> and status.inSync=true.

Once the reconcile finish, both CNF-pod-1 and CNF-pod-2 have latest configuration.

Sdewan rule CR type level Permission Implementation
8s support permission control on namespace level. For example, user1 may be able to create/update/delete one kind of resource(e.g. pod) in namespace
ns1, but not namespace ns2. For Sdewan, this can't fit our requirement. We want label level control of Sdewan rule CRs. For example, user_onap can
create/update/delete Mwan3Rule CR of label , but not label . sdewan-bucket-type=app-intent sdewan-bucket-type=basic

Let me first describe the extended permission system and then explain how we implement it. In k8s, user or serviceAccount could be bonded to one or
more roles. The roles defines the permissions, for example the following role defines that role can create/update Mwan3Rule CRs in sdewan-test defau

namespace. Also role can get Mwan3Policy CRs.lt sdewan-test

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 annotations:
 name: sdewan-test
 namespace: default
rules:
- apiGroups:
 - ""
 resources:
 - mwan3rules
 verbs:
 - create
 - update
- apiGroups:
 - ""
 resources:
 - mwan3policies
 verbs:
 - get

We extend the Role with annotations. In the annotation, we can define labled based permissions. For example, the following role extends ro sdewan-test
le permission: can only create/update Mwan3Rule CRs with label or sdewan-test sdewan-bucket-type=app-intent sdewan-bucket-type=k8s-

. Also it can only get Mwan3Policy CR with label .service sdewan-bucket-type=app-intent

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 annotations:
 sdewan-bucket-type-permission: |-
 { "mwan3rules": ["app-intent", "k8s-service"],
 "mwan3policies": ["app-intent"] }
 name: sdewan-test
 namespace: default
rules:
- apiGroups:
 - ""
 resources:
 - mwan3rules
 verbs:
 - create
 - update
- apiGroups:
 - ""
 resources:
 - mwan3policies
 verbs:
 - get

We use admission webhook to implement the type level permission control. Let me describe how admission webhook in simple words. When k8s api
receives a request, kube-api call webhook API before save the object into etcd. If the webhook returns , kube-api continues to persistent allowed=true
the object into etcd. Otherwise, kube-api reject the request. The webhook can optional tell kube-api to update the object together with retur allowed=true
ned. Webhook request body has a field named , it indicates who is making the k8s api request. With this field, we can implement the extended userInfo
permission in webhook.

https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/#webhook-request-and-response

def mwan3rule_webhook_handle_permission(req admission.Request):
 userinfo = req["userInfo]
 mwan3rule_cr = decode(req)
 roles = k8s_client.get_role_from_user(userinfo)
 for role in roles:
 if mwan3rule_cr.labels.sdewan-bucket-type in role.annotation.sdewan-bucket-type-permission.mwan3rules:
 return {"allowd": True}
 return {"allowd": False}

ServiceRule controller (For next release)
We create a controller watches the services created in the cluster. For each service, it creates a FirewallDNAT CR. On controller startup, it makes a
syncup to remove unused CRs.

References
https://github.com/kubernetes-sigs/controller-runtime/blob/master/pkg/doc.go
https://book.kubebuilder.io/reference/using-finalizers.html
https://godoc.org/sigs.k8s.io/controller-runtime/pkg/predicate#example-Funcs
https://godoc.org/sigs.k8s.io/controller-runtime/pkg/handler#example-EnqueueRequestsFromMapFunc

https://github.com/kubernetes-sigs/controller-runtime/blob/master/pkg/doc.go
https://book.kubebuilder.io/reference/using-finalizers.html
https://godoc.org/sigs.k8s.io/controller-runtime/pkg/predicate#example-Funcs
https://godoc.org/sigs.k8s.io/controller-runtime/pkg/handler#example-EnqueueRequestsFromMapFunc

	Sdewan CRD Controller

