
Federated Learning

Motivation

For edge AI, data is naturally generated at the edge. based on these assumptions:

Users are unwilling to upload raw data to the cloud because of data privacy.
Users do not want to purchase new devices for centralized training at the edge.
The sample size at the edge is usually small, and it is often difficult to train a good model at a single edge node.

Therefore, we propose a edge cloud federated learning framework to help to train a model , and and without uploading raw data higher precision less
are also benefits.convergence time

Goals

The framework can combine data on multiple edge nodes to complete training.
The framework provides the functions of querying the training status and result.
The framework integrates some common aggregation algorithms, FedAvg and so on.
The framework integrates some common weight/gradient compression algorithm to reduce the cloud-edge traffic required for aggregation
operations.
The framework integrates some common multi-task migration algorithms to resolve the problem of low precision caused by small size samples.

Proposal

We propose using Kubernetes Custom Resource Definitions (CRDs) to describe the federated learning specification/status and a controller to synchronize
these updates between edge and cloud.

Use Cases

User can create a federated learning task, with providing a training script, specifying the aggregation algorithm, configuring training
hyperparameters, configuring training datasets.
Users can get the federated learning status, including the nodes participating in training, current training status, samples size of each node,
current iteration times, and current aggregation times.
Users can get the saved aggregated model. The model file can be stored on the cloud or edge node.

Design Details

CRD API Group and Version

The CRD will be namespace-scoped. The tables below summarize the group, kind and API version details for the CRD. FederatedLearningTask

FederatedLearningTask

Field Description

Group edgeai.io

http://edgeai.io

1.
2.

3.

APIVersion v1alpha1

Kind FederatedLearningTask

Federated learning CRD

Notes:

We use to represent the worker runtime config which all EdgeAI features use. WorkerSpec
Currently limits to the code directory on host path or s3-like storage. We will extend it to the support with like k8s WorkerSpec pod template
deployment.
We will add the support in the future. resources

Below is the CustomResourceDefinition yaml for : FederatedLearningTask

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
 name: federatedlearningtasks.edgeai.io
spec:
 group: edgeai.io
 names:
 kind: FederatedLearningTask
 plural: federatedlearningtasks
 shortNames:
 - federatedtask
 - ft
 scope: Namespaced
 versions:
 - name: v1alpha1
 subresources:
 # status enables the status subresource.
 status: {}
 served: true
 storage: true
 schema:
 openAPIV3Schema:
 type: object
 properties:
 spec:
 type: object
 properties:
 aggregationWorker:
 type: object

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

 properties:
 name:
 type: string
 model:
 type: object
 properties:
 name:
 type: string
 nodeName:
 type: string
 workerSpec:
 type: object
 properties:
 scriptDir:
 type: string
 scriptBootFile:
 type: string
 frameworkType:
 type: string
 frameworkVersion:
 type: string
 parameters:
 type: array
 items:
 type: object
 required:
 - key
 - value
 properties:
 key:
 type: string
 value:
 type: string
 trainingWorkers:
 type: array
 items:
 type: object
 properties:
 name:
 type: string
 model:
 type: object
 properties:
 name:
 type: string
 nodeName:
 type: string
 workerSpec:
 type: object
 properties:
 dataset:
 type: object
 properties:
 name:
 type: string
 scriptDir:
 type: string
 scriptBootFile:
 type: string
 frameworkType:
 type: string
 frameworkVersion:
 type: string
 parameters:
 type: array
 items:
 type: object
 required:
 - key
 - value

 properties:
 key:
 type: string
 value:
 type: string
 status:
 type: object
 properties:
 conditions:
 type: array
 items:
 type: object
 properties:

 type:
 type: string
 status:
 type: string
 lastProbeTime:
 type: string
 format: date-time
 lastTransitionTime:
 type: string
 format: date-time
 reason:
 type: string
 message:
 type: string
 startTime:
 type: string
 format: date-time
 completionTime:
 type: string
 format: date-time
 active:
 type: integer
 succeeded:
 type: integer
 failed:
 type: integer
 phase:
 type: string

 additionalPrinterColumns:
 - name: status
 type: string
 description: The status of the federated learning task
 jsonPath: ".status.phase"
 - name: Age
 type: date
 jsonPath: .metadata.creationTimestamp

Federated learning type definition

// +genclient
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// FederatedLearningTask defines the federatedlearning task which describes the
// federated learning task
type FederatedLearningTask struct {
 metav1.TypeMeta `json:",inline"`

 metav1.ObjectMeta `json:"metadata,omitempty"`

 Spec FederatedLearningTaskSpec `json:"spec"`
 Status FederatedLearningTaskStatus `json:"status,omitempty"`
}

// FederatedLearningTaskSpec describes the details configuration of federatedlearningtask
type FederatedLearningTaskSpec struct {
 AggregationWorker AggregationWorker `json:"aggregationWorker"`
 TrainingWorkers []TrainingWorker `json:"trainingWorkers"`
}

// AggregationWorker describes the aggregation worker
type AggregationWorker struct {
 Name string `json:"name"`
 Model modelRefer `json:"model"`
 NodeName string `json:"nodeName"`
 WorkerSpec AggregationWorkerSpec `json:"workerSpec"`
}

// TrrainingWorker describes the training worker of each node
type TrainingWorker struct {
 Name string `json:"name"`
 NodeName string `json:"nodeName"`
 Dataset datasetRefer `json:"dataset"`
 WorkerSpec TrainingWorkerSpec `json:"workerSpec"`
}

type AggregationWorkerSpec struct {
 ScriptDir string `json:"scriptDir"`
 ScriptBootFile string `json:"scriptBootFile"`
 FrameworkType string `json:"frameworkType"`
 FrameworkVersion string `json:"frameworkVersion"`
 Parameters []ParaSpec `json:"parameters"`
}

type TrainingWorkerSpec struct {
 ScriptDir string `json:"scriptDir"`
 ScriptBootFile string `json:"scriptBootFile"`
 FrameworkType string `json:"frameworkType"`
 FrameworkVersion string `json:"frameworkVersion"`
 Parameters []ParaSpec `json:"parameters"`
}

type ParaSpec struct {
 Key string `json:"key"`
 Value string `json:"value"`
}

type datasetRefer struct {
 Name string `json:"name"`
}

type modelRefer struct {
 Name string `json:"name"`
}

// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object

// FederatedLearningTaskList is a list of federated learning tasks.
type FederatedLearningTaskList struct {
 metav1.TypeMeta `json:",inline"`
 metav1.ListMeta `json:"metadata"`
 Items []FederatedLearningTask `json:"items"`
}

// FederatedLearningTaskStatus represents the current state of a federated learning task.
type FederatedLearningTaskStatus struct {

 // The latest available observations of a federated learning task's current state.
 // +optional
 Conditions []FederatedLearningTaskCondition `json:"conditions,omitempty"`

 // Represents time when the task was acknowledged by the task controller.
 // It is not guaranteed to be set in happens-before order across separate operations.
 // It is represented in RFC3339 form and is in UTC.
 // +optional
 StartTime *metav1.Time `json:"startTime,omitempty"`

 // Represents time when the task was completed. It is not guaranteed to
 // be set in happens-before order across separate operations.
 // It is represented in RFC3339 form and is in UTC.
 // +optional
 CompletionTime *metav1.Time `json:"completionTime,omitempty"`

 // The number of actively running pods.
 // +optional
 Active int32 `json:"active,omitempty"`

 // The number of pods which reached phase Succeeded.
 // +optional
 Succeeded int32 `json:"succeeded,omitempty"`

 // The number of pods which reached phase Failed.
 // +optional
 Failed int32 `json:"failed,omitempty"`

 // The phase of the federated learning task.
 // +optional
 Phase FederatedLearningTaskPhase `json:"phase,omitempty"`
}

type FederatedLearningTaskConditionType string

// These are valid conditions of a task.
const (
 // FederatedLearningTaskComplete means the task has completed its execution.
 FederatedLearningTaskCondComplete FederatedLearningTaskConditionType = "Complete"
 // FederatedLearningTaskFailed means the task has failed its execution.
 FederatedLearningTaskCondFailed FederatedLearningTaskConditionType = "Failed"
 // FederatedLearningTaskTraining means the task has been training.
 FederatedLearningTaskCondTraining FederatedLearningTaskConditionType = "Training"
)

// FederatedLearningTaskCondition describes current state of a task.
type FederatedLearningTaskCondition struct {
 // Type of task condition, Complete or Failed.
 Type FederatedLearningTaskConditionType `json:"type"`
 // Status of the condition, one of True, False, Unknown.

1.
2.
3.

 Status v1.ConditionStatus `json:"status"`
 // Last time the condition was checked.
 // +optional
 LastProbeTime metav1.Time `json:"lastProbeTime,omitempty"`
 // Last time the condition transit from one status to another.
 // +optional
 LastTransitionTime metav1.Time `json:"lastTransitionTime,omitempty"`
 // (brief) reason for the condition's last transition.
 // +optional
 Reason string `json:"reason,omitempty"`
 // Human readable message indicating details about last transition.
 // +optional
 Message string `json:"message,omitempty"`
}

// FederatedLearningTaskPhase is a label for the condition of a task at the current time.
type FederatedLearningTaskPhase string

// These are the valid statuses of tasks.
const (
 // FederatedLearningTaskPending means the task has been accepted by the system, but one or more of the
pods
 // has not been started. This includes time before being bound to a node, as well as time spent
 // pulling images onto the host.
 FederatedLearningTaskPending FederatedLearningTaskPhase = "Pending"
 // FederatedLearningTaskRunning means the task has been bound to a node and all of the pods have been
started.
 // At least one container is still running or is in the process of being restarted.
 FederatedLearningTaskRunning FederatedLearningTaskPhase = "Running"
 // FederatedLearningTaskSucceeded means that all pods in the task have voluntarily terminated
 // with a container exit code of 0, and the system is not going to restart any of these pods.
 FederatedLearningTaskSucceeded FederatedLearningTaskPhase = "Succeeded"
 // FederatedLearningTaskFailed means that all pods in the task have terminated, and at least one
container has
 // terminated in a failure (exited with a non-zero exit code or was stopped by the system).
 FederatedLearningTaskFailed FederatedLearningTaskPhase = "Failed"
)

Validation

Open API v3 Schema based validation can be used to guard against bad requests. Invalid values for fields (example string value for a boolean field etc)
can be validated using this.

Here is a list of validations we need to support :

The specified in the crd should exist in k8s. dataset
The specified in the crd should exist in k8s. model
The edgenode name specified in the crd should exist in k8s.

federated learning sample

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/#validation

apiVersion: edgeai.io/v1alpha1
kind: FederatedLearningTask
metadata:
 name: magnetic-tile-defect-detection
spec:
 aggregationWorker:
 name: "aggregationworker"
 model:
 name: "model-demo1"
 nodeName: "solar-corona-cloud"
 workerSpec:
 scriptDir: "/code"
 scriptBootFile: "aggregate.py"
 frameworkType: "tensorflow"
 frameworkVersion: "1.18"
 parameters:
 - key: "exit_round"
 value: "3"
 trainingWorkers:
 - name: "work0"
 nodeName: "edge0"
 workerSpec:
 dataset:
 name: "dataset-demo0"
 scriptDir: "/code"
 scriptBootFile: "train.py"
 frameworkType: "tensorflow"
 frameworkVersion: "1.18"
 parameters:
 - key: "batch_size"
 value: "32"
 - key: "learning_rate"
 value: "0.001"
 - key: "epochs"
 value: "1"
 - name: "work1"
 nodeName: "edge1"
 workerSpec:
 dataset:
 name: "dataset-demo1"
 scriptDir: "/code"
 scriptBootFile: "train.py"
 frameworkType: "tensorflow"
 frameworkVersion: "1.18"
 parameters:
 - key: "batch_size"
 value: "32"
 - key: "learning_rate"
 value: "0.001"
 - key: "epochs"
 value: "1"
 - key: "min_sample_number_per"
 value: "500"
 - key: "min_node_number"
 value: "3"
 - key: "rounds_between_valida"
 value: "3"

 - name: "work2"
 nodeName: "edge2"
 workerSpec:
 dataset:
 name: "dataset-demo2"
 scriptDir: "/code"
 scriptBootFile: "train.py"
 frameworkType: "tensorflow"
 frameworkVersion: "1.18"
 parameters:
 - key: "batch_size"
 value: "32"
 - key: "learning_rate"
 value: "0.001"
 - key: "epochs"
 value: "1"
 - key: "min_sample_number_per"
 value: "500"
 - key: "min_node_number"
 value: "3"
 - key: "rounds_between_valida"
 value: "3"

Creation of the federated learning task

Controller Design

The federated learning controller starts three separate goroutines called , and controller. These are not upstream downstream federated-learning
separate controllers as such but named here for clarity.

federated learning: watch the updates of federated-learning-task crds, and create the workers to complete the task.
downstream: synchronize the federated-learning updates from the cloud to the edge node.
upstream: synchronize the federated-learning updates from the edge to the cloud node.

Federated Learning Controller

The federated-learning controller watches for the updates of federated-learning tasks and the corresponding pods against the K8S API server.
Updates are categorized below along with the possible actions:

Update Type Action

New Federated-learning-task Created Create the aggregation worker and these local-training workers

Federated-learning-task Deleted NA. These workers will be deleted by . k8s gc

The corresponding pod created/running/completed/failed Update the status of federated-learning task.

Downstream Controller

https://kubernetes.io/docs/concepts/workloads/controllers/garbage-collection/

The downstream controller watches for federated-learning updates against the K8S API server.
Updates are categorized below along with the possible actions that the downstream controller can take:

Update Type Action

New Federated-learning-task Created Sends the task information to LCs.

Federated-learning-task Deleted The controller sends the delete event to LCs.

Upstream Controller

1.

2.

The upstream controller watches for federated-learning-task updates from the edge node and applies these updates against the API server in the cloud.
Updates are categorized below along with the possible actions that the upstream controller can take:

Update Type Action

Federated-learning-task Reported State Updated The controller appends the reported status of the Federated-learning-task in the cloud.

Details of api between GC(cloud) and LC(edge)

GC(downstream controller) syncs the task info to LC:

// POST <namespace>/federatedlearningtasks/<job-name>
// body same to the task crd of k8s api, omitted here.

LC uploads the task status which reported by the worker to GC(upstream controller):

2.

// POST <namespace>/federatedlearningtasks/<job-name>/status

// WorkerMessage defines the message from that the training worker. It will send to GC.
type WorkerMessage struct {
 Phase string `json:"phase"`
 Status string `json:"status"`
 Output *WorkerOutput `json:"output"`
}
//
type WorkerOutput struct {
 Models []*Model `json:"models"`
 TaskInfo *TaskInfo `json:"taskInfo"`
}

// Model defines the model information
type Model struct {
 Format string `json:"format"`
 URL string `json:"url"`
 // Including the metrics, e.g. precision/recall
 Metrics map[string]float64 `json:"metrics"`
}

// TaskInfo defines the task information
type TaskInfo struct {
 // Current training round
 CurrentRound int `json:"currentRound"`
 UpdateTime string `json:"updateTime"`
}

The flow of federated learning task creation

The federated-learning controller watches the creation of federatedlearningtask crd in the cloud, syncs them to lc via the cloudhub-to-edgehub channel,
and creates the aggregator worker on the cloud nodes and the training workers on the edge nodes specified by the user.
The aggregator worker is started by the native k8s at the cloud nodes.
These training workers are started by the kubeedge at the edge nodes.

Workers Communication

Todo: complete the two restful apis.

	Federated Learning

