Model & Dataset CRD Design

Motivation

This document serves as a place for brainstorming ideas for Model & Dataset CRD design. The general goal is to design reusable CRDs that can be
shared by various higher level machine learning tasks and frameworks.

Goals

® What do the CRD controllers do? Define the exact responsibilities of model & dataset CRDs and controllers.

® How will the higher level tasks, i.e. federated learning, model serving etc, utilize the services provided by model & dataset CRDs.

® Cloud edge communication mechanism for the CRD controllers: do they share the existing port 10000, or use a hew port exclusively for Al
purpose? Related: how do cloud workers and edge workers communicate? Cloud workers can be scheduled in cloud worker nodes, which means
they can be deployed as a standard K8s service and have an publicly routable endpoint. Can KubeEdge operate in hybrid mode, i.e. having both
cloud worker nodes and edge nodes?

Use Cases

Model serving

This is the simplest case. Upon creating a model CRD object, the edge part of the model controller should get notified and prepare the local workspace for
the new model. By specifying the target model version to pull, the controller will download the corresponding model files (the whole directory can be
compressed into a tar ball) from the provided URL endpoint.

Federated learning

Upon creating a model CRD object, edge needs to download the training scripts (runs on edge) and initial model weights files from provided URL endpoint.
Once the gradients have been calculated, they should be reported back to cloud worker.

It looks like the common behavior of the model CRD object is just to download and upload data and executable files (of different types) to a cloud location,
i.e. some storage service like AWS S3.

Model preprocess and postprocess

For example:

Preprocess: images need to be resized to be fit for CNN network input.

Postprocess: NMS module in the object detection framework, is used to delete highly redundant boxes.

The model inference service usually requires preprocess and postprocess scripts.

Model Metrics

For a trained model, model metrics (accuracy, precision, recall and etc..) usually indicate the performance of the model. We need to provide this feature for
two purposes: i. For users who query model information he can get the model performance; ii. During model selection, the metrics of the model are used
as a reference. Further, model metadata may also be used for model selection (for example, it is a object detection model or a facial recognition model? La
bels are dog and cat, or car and plane?). Therefore, a metadata field may also be provided.

Support for different dataset format
Different data sets have different formats. Structured data is usually in CSV format, image classification TXT, and object detection XML format. Our crd

needs to be aware of the format of the data set. For example, a basic feature of dataset management is to collect statistics on the number of samples,
which requires awareness of different dataset formats.

For joint inference, is it necessary to consider as a unified model.
Joint inference aims to be a model on the cloud and a model on the edge. In the current solution, model serving is simple. User only need to train two

models separately and deploy services separately. However, if a model is considered as a unified, can the interfaces for users to use the model be more
simplified? Users are unaware that the backend are two models, just like loading a single side model for inference.

Cross-edge synchronization of models, datasets, and dataset metadata.

For some algorithms, cross-edge synchronization is required. More details will be provided later.

Design Details

The model operator is supposed to run as a separate binary, fully decoupled from the KubeEdge platform code. It leverages the KubeEdge platform to
schedule work on edge nodes. Here is the high level design diagram for the work flow:

K8s API Server

1.Create an InferencelModel

object
8. Watch Pod Status -
2. Watch Event 3. Schedule work on edge node 2: 4. Watch Event 7. Update Job, Pod
new InferenceModel object a)h(;riﬁat:t:ogcjg tdoogenrl\?:g'lg dc:adle\ job, pod objects status
Higher Level Operators
1. Joint Inference
2. Federated learning
3. Incremental learning
Worker/Cloud Node Cloud Node
model operator cloudcore

o Message 6. Message
Ed Create Job, Pod !
gz reate o5 P98 | pdate Job, Pod
status
Edge Node 1 Edge Node 2
edgecore edgecore

There are generally two phases for machine learning model development, i.e. training and inference. Model behaviors are quite different depending on
whether it is used for training or for inference. So we might as well define two different types of model CRDs:

® InferenceModel
® TrainingModel

Also the whole system will run in a hybrid mode. By hybrid, we mean the KubeEdge cluster will manage worker nodes in both the cloud and the edge. For
the cloud running components, we can leverage the full power of standard K8s, i.e. pods, deployments, services, ingress/egress, loadbalancer etc. This
means cloud components will be deployed in a way exactly the same as done in a standard Kubernetes cluster. On the other hand, edge components
leverage the KubeEdge framework.

InferenceModel CRD

InferenceModel CRD

/'l 1nferenceModel Spec defines the desired state of an | nferenceMdel.
/1 Two ways of deployment are provided. The first is through a docker inage.
/1 The second is through a data store, with a manifest of nodel files.
/1 1f image is provided, manifest and targetVersion will be ignored.
type | nferenceMWbdel Spec struct {
Model Nare string "json:"nodel Nane""
Depl oyToLayer string "json:"depl oyToLayer""
Framewor kType string “json:"framewor kType"®

/] +optional
NodeSel ect or map[string]string "json:"nodeSel ector,om tenpty""

/1 +optional
NodeNare string "json:"nodeNane, om tenpty""®

/1 +optional
I mage string “json:"imge, onitenpty"’

/1 +optional
Mani fest []1nferenceModel File “json:"manifest,omtenpty"”

/'l +optional
Target Version string "json:"targetVersion,onmtenpty""

/1 +optional
/[+kubebui | der:validation: M ni nunv0
ServingPort int32 “json:"servingPort""

/] +optional
/| +kubebui | der: validation: M ni nun=0
Replicas *int32 “json:"replicas,omtenpty"’

}

/'l 1nferenceModel File defines an archive file for a single version of the nodel
type InferenceMddel File struct {

Ver si on string “json:"version,ontenpty"’

Downl oadURL string "json:"downl oadURL, onmi tenpty""

Sha256sum string "json:"sha256sum om tenpty""

}

/'l I nferenceModel Status defines the observed state of |nferenceMdel
type | nferenceMbdel Status struct {

URL string “json:"url,omitenpty"®

Servi ngVersion string “json:"servingVersion,omtenpty"’

Sample inferencemodel instance

api Versi on: ai.kubeedge.i o/ vlal phal
ki nd: I nferenceMdel
net adat a:
nare: faci al expression
spec:
nmodel Nare: faci al expression
depl oyToLayer: edge
framewor kType: tensorfl ow
i mage:
nodeSel ector:
kuber net es. i o/ host nane: preci si on-5820
nodeNane: precision-5820
mani f est:
- version: '3
downl oadURL: http://192.168. 1. 13/ nodel _enotion_3.tar.gz
sha256sum dec87e2f 3c06e60e554acac0b2b80e394c616b0ecdf 878f ab7f 04f d414a66ef f
- version: '4
downl oadURL: http://192.168. 1. 13/ nodel _enotion_4.tar.gz
sha256sum 108a433a941411217e5d4bf 9f 43a262d0247al4c35cchf 677f 63ba3b46ae6285
targetVersion: '4'
servingPort: 8080
replicas: 1

An instance of the InferenceModel specifies a single serving service for the provided model.
Two scenarios:

® DeployToLayer == cloud, the controller will create a deployment with specified replicas, and a service to expose the deployment to outside world.
® DeployTolLayer == edge, the controller will create a single pod running on the specified edge node (through NodeSelector)

Two ways of deployment

The InferenceModel CRD supports both of the following ways of deployment. If image is provided, manifest and targetVersion will be ignored.

Deployment Pros Cons
method

Docker image

® Docker images encapsulate all the runtime dependencies ® Users have to build the images themselves, write the
® Very flexible as users can build whatever image they want Dockerfile, build the image and upload to a docker registry
® Docker will manage all the life cycles of the "model ® Users have to provide a private docker registry if they don't
offloading"” want to use the public dockerhub.
Machine learning
model files manifest ® Data scientists directly work with model files. It would be ® Our framework has to manage the whole life cycles of
nice if they can just drop their model files somewhere model files deployment, update, delete, etc.
® By using a data store, it opens the door for serverless
computing

How can the InferenceModel CRD be used?

Simple machine learning offloading to edge

Just create an instance of InferenceModel with "DeployToLayer == edge"

Joint Inference by edge and cloud
Create three resources:
® An instance of InferenceModel to the cloud

® An instance of InferenceModel to the edge
® A pod running on the edge for serving customer traffic. It contains the logic for deciding whether or not to call cloud model serving API.

Joint inference by device, edge and cloud

We can have three models, with different size and accuracies, running on device, edge, and cloud respectively.

	Model & Dataset CRD Design

