Smart Cities | Attributes | Description | | | | |--|--|--|--|--| | Туре | New | | | | | Industry
Sector | IoT and Infrastructure Smart Edge | | | | | Business
driver | Increasing and aging urban population Congestion and traffic Autonomous driving and package delivery Smart Energy, water and waste management Public health and safety, emergency services Smart buildings, working spaces and living Smart retail and logistics Continuous advances in Technology that are driving the digital economy | | | | | Business
use cases | A city is smart when investments in human and social capital, traditional infrastructure and disruptive technologies fuel sustainable economic growth and higher quality of life, with a wise management of natural resources, through participatory governance. This results from many diverse smart solutions across all sectors of society, filed by a combination of disruptive technologies and social innovation. | | | | | Business
Cost -
Initial Build
Cost
Target
Objective | Cost of a proof of concept, how to deploy an example of a smart city implementation across multiple suppliers and stakeholders. Cost is only for the hardware | | | | | Business
Cost –
Target
Operational
Objective | Varies widely depending on accessories. The IoT Gateway can be under \$500 to over \$5,000 | | | | | Security
need | Security mechanisms that can be implemented at each layer of abstraction. PSA and PARSEC both provide a security framework. | | | | | Regulations | Varies depending on local regulations | | | | | Other restrictions | N/A | | | | | Additional details | Project Cassini is the open, collaborative, standards-based initiative to deliver a cloud-native software experience across a secure Arm edge ecosystem. Whether exploring the impacts of urbanization and climate change with software-defined sensor networks, pinpointing origins of power outages in smart grids with data provenance, or enhancing public safety initiatives through data streaming, Project Cassini leverages the power of diverse Arm-based platforms to create a secure foundation for edge applications. | | | | ## Family - Project Cassini - IoT and Infrastructure Edge | Use Case Attributes | Description | Informational | | |----------------------------------|---|---|--| | Туре | New | | | | Blueprint Family - Proposed Name | Project Cassini - IoT and Infrastructure Edge | There are many possible UCs that would be covered under Project Cassini | | | Use Case | All of the use cases under Project Cassini | See below | | | Blueprint proposed | Smart Cities | | | | Initial POD Cost (capex) | Varies widely depending on the Blueprint | | | | Scale of Servers | Varies widely depending on the Blueprint | | | | Applications | Multiple workloads on devices and gateways, deployed through containers | | | | Power Restrictions | None/Varies | | | | Preferred Infrastructure orchestration | Docker/K8 - Container Orchestration OS - Linux | | |--|--|--| | Additional Details | | | ## **BluePrint (Species) - Smart Cities** | Case Attributes | Description | Informational | |-------------------------------------|--|--| | Туре | New | | | Blueprint Family -
Proposed Name | Project Cassini - IoT and Infrastructure Edge
Blueprint Family | SC - Smart Camera or other abbreviations | | Use Case | Traffic management to reduce congestion, monitor vehicle violations | With a few modifications, it is possible to change this blueprint to meet many similar Use Cases | | Blueprint proposed
Name | Smart Cities | | | Initial POD Cost
(capex) | Under \$300 IoT Gateway- Nexcom SMARTER Stack | | | Scale & Type of Server | 1 IoT Gateway, a server on the edge is not needed | This is on the customer edge, thus there is no server. The IoT Gateway will handle the connection to the internet. | | Applications | Applications that can be managed remotely using cloud native practices | | | Power Restrictions | NA | None of the devices require power that is outside of a normal wall socket | | Infrastructure orchestration | VM - Linux | | | SDN (Software Defined Networking) | None | | | Workload Type | Containers (Tensorflow, Keras containers) VM- Ubuntu | | | Additional Details | | | Olivier Bernard will be PTL beginning April 2021 (pending TSC approval) | Committer | Committer | Committer Contact Info | Time Zone | Committer Bio | Committer Picture | Self Nominate for PTL (Y/N) | |-----------------|-----------|-------------------------|-----------|---------------------------------|-------------------|-----------------------------| | | Company | | | | | | | Olivier Bernard | Arm | Olivier.Bernard@arm.com | GMT-8 | Director - High-Performance IoT | | Υ | | Cindy Xing | Microsoft | cixing@microsoft.com | Pacific | | | | | Sushant | Coredge | sushant@coredge.io | Asia | | | Υ | | @Alexander Su | Nexcom | alexander@nexcom.com | | | | | | Jason Wen | Myais | jason.wen@myais.com.cn | GMT+8 | | | | | Jack Liu | Myais | jack.liu@myais.com.cn | GMT+8 | | | |