ICN Nodus

Introduction:

® [ntroduction:
® Problem statement:
® Architecture:
® Features:
© InFinite Network Resources:
® Virtual Networks:
= Provider Networks:
® Service Function Chaining:
© Finite network Resources:
® SRIOV Overlay Networks:
® Required features in SRIOV Overlay networking:
O SRIOV Type Virtual network
SRIOV Type provider network
SRIOV Type Direct network
Parameter definition:

o O O

Comprehensive documentation:
Presentation:
® Updated 05/18/2022
® LFN Developer Forum - January 13th 2022
® Open vSwitch and OVN 2021 Fall conference - Dec 7th & 8th 2021
® QOctober 11th 2021
© Nodus slide deck:
® July 19th 2021
© Nodus slide deck:
® March 9th 2021
© OVN4NFV Slide deck:
© OVNA4NFV recorded Video:
® October 8th 2020
© OVNA4NFV slide deck:
© OVN4NFV Prerecorded Demo:

Nodus is the Network controller designed based on the K8s controller framework and provides Open flow control based on OVN. This address OVN based
Multiple Network creation, support Multiple network interfaces and support Virtual networking and Provider networkings.

Problem statement:

For 5 years, there has been quite the development in Cloud Native development to develop infrastructure to build and run the application that is fully
automated, secure, flexible, performant, and resilient. This gives an opportunity in the evolution journey of the Monolith application to be decomposed into
VMs and they are further decomposed into Microservices. This led to the path of Kubernetes to become a de-facto orchestration engine that facilitates this
journey. During these courses, it was identified that Kubernetes networking and Container Networking are not addressing the need for Network evolutions
in multiples cases starting from creating and managing the network infrastructure and automating it, and in general, it lacks Software Defined Networking
(SDN) concepts such as programmable networks, decoupling the control and data planes, and scalability. Kubernetes networking has evolved so far only
for the data ware centric cloud networking and it lacks network distribution to be suitable for Edge Cloud Networking

Nodus is the network controller in Kubernetes that addresses the need for Software Defined Networking that simplifies the network operations, builds
programmable networks for greater flexibility and scalability.

Application transformation is one of the major objectives in the edge computing in the cloud-native evolution. Taking a PNF(Physical Network Function) or
a VNF(Virtual Network Functions) to be ready to deploy in the edge is as challenging because the NFs(Network Functions) are composited into smaller
microservices and these microservers will be deployed in the multiple edge location. Controlling the network traffics such as both control plane and data
plane traffics in the scenarios is required to achieve low latency and multiple clusters networking

Architecture:

Nodus is a network controller and is designed to deliver Cloud-Native programmable networks that enable centralized control and network policy
enforcement across physical and virtual networks.

Nodus support Kubernetes Networking, Open Virtual Network (OVN) based networking features to support virtual switching, virtual network abstractions
and Service Function chaining. Nodus is planned to deliver features on Network Multi-tenancy, Network OoS, Network based Multicore Utilization, and
TCFlower based network access.

Adding Multi cluster networking is a challenging requirement for Edge networking in the cloud-native world. As Kubernetes delegates all the networking
features to CNI(Container Network Interfaces), and right now we have 16+ CNI types that offer various networking features starting from localhost to BGP
networking. Having a single network controller for the Multiple Cluster within an edge and also across geo-distributed edge location is a requirement to
create a virtual network, provider networks across the edges, and apply the same tuning parameter for the network resources in the edges.

Nodus is decomposed into 4 microservices, Network Function (NFN) Operators, Network Function (NFN) agent, OVN Control plane, and OVN controller.

Network Function (NFN) Operator is a Kubernetes Operator framework that hosts multiple Kubernetes Custom resource definition controller, and
Kubernetes core API watchers to monitor and predicate the events to synchronize the network operations. It gets the input from the user, and it acts as an
orchestration engine for Networking to create, manage virtual and physical network support for both VLAN and direct networking, Service Function
chaining using OVN control plane and NFN agent.

Network Function (NFN) agent is a Kubernetes daemon set to get the command from Network Function (NFN) operator to do network plumbing works
such as network configuration and managing the workloads network namespace in each host using Container Network Interfaces specs.

OVN control-plane hosts all the OVN Northbound API as the microservices and the OVN controller host all the OVN Southbound APl and OVS virtual
switch as the microservices. OVN control plane gets the network abstraction configuration from NFN operators and translates network configuration into
Openflow to implement distributed logical switches, Access control lists for network policy implementations, Service function chaining, and distributed
virtual routers.

NFN Operator:
/ Master * Exposes virtual, provider, chaining CRDs to
nfn-operator external world.

[Virtual NW manager | * Programs OVN to create L2 switches.
* Watches for PODs being coming up

VLAN Provider manager
* Assigns IP addresses for every network
(gRPC) of the deployment.

* Looks for replicas and auto create routes

ovn-control-plane

OVN North DB

OVN NorthD

Direct Provider Manager

OVN South DB

1235n)2 sgy

sfc Manager

sveiovn-nb-tep:6641

\\ svc:ovn-sh-tep:6642

1
/ ovn-controller nfn-agent

for chaining to work.
* Create LBs for distributing the load
across CNF replicas.

NFN agent:
OVN Controller = NFN grpc .
VLAN configurator agent . Performs CNI operations.

0ovsDB . Configures VLAN and Routes in Linux kernel {(in

case of routes, it could do it in both root and
network namespaces)

* Communicates with OVSDB to inform of
provider interfaces. (creates ovs bridge and
creates external-ids:ovn-bridge-mappings)

OVS-vswitchd

Route configurator
Linux Kernel Kubelet <

L

~

Features:

InFinite Network Resources:

Virtual Networks:

Nodus uses the NFN operator to define the virtual network CRs that will create a OVN networking for virtual networking as defined in the CR.

Virutal network

api Versi on: k8spl ugi n. opnfv. org/vlal phal
ki nd: Networ k
net adat a
name: ovn-priv-net
spec:
cni Type: ovn4nfv
i pvdsubnet s:
- subnet: 172.16.33.0/24
nane: subnetl
gateway: 172.16.33.1/24
excl udel ps: 172.16.33.2 172.16.33.5..172. 16. 33. 10

This CR defines the OVN networking and provides the gateway and exclude IPs to be reserved for any internal static IP address assignment.

Provider Networks:

Provider network supports both VLAN and direct provider networking

Virutal network

api Versi on: k8s. pl ugi n. opnfv. org/vlal phal
ki nd: Provi der Net wor k
nmet adat a
name: pnetwor k
spec:
cni Type: ovn4nfv
i pv4Subnet s:
- subnet: 172.16.33.0/24
nane: subnetl
gateway: 172.16.33.1/24
excludel ps: 172.16.33.2 172.16.33.5..172.16.33.10
provi der Net Type: VLAN
vl an:
vl anld: "100"
providerlnterfaceNanme: ethO
| ogi cal I nterfaceNane: eth0.100
vl anNodeSel ector: specific
nodelLabel Li st :
- kubernetes.i o/ host name=ubunt ul8

The major change between the VLAN provider network and direct provide networks is the VLAN information is provided in the VLAN CR and they are
excluded in the direct provider

Virutal network

api Version: k8s. pl ugi n. opnfv. org/vlal phal
ki nd: Provi der Net wor k
net adat a:
name: directpnetwork
spec:
cni Type: ovn4nfv
i pv4Subnet s:
- subnet: 172.16.34.0/24
nane: subnet 2
gateway: 172.16.34.1/24
excl udel ps: 172.16.34.2 172.16.34.5..172.16.34.10
provi der Net Type: DI RECT
direct:
provi derlnterfaceNane: ethl.
di rect NodeSel ector: specific
nodelLabel Li st :
- kubernetes.i o/ host name=ubunt ul8

Service Function Chaining:

Virutal network

api Version: k8spl ugi n. opnfv. org/vlal phal
ki nd: Net wor kChai ni ng
net adat a:
narme: chainl
nanespace: VFW
spec:
type: Routing
routi ngSpec:
| ef t Net wor k:
- networ kName: ovn-providerl
gatewayl P: 10.1.5.1
subnet: 10.1.5.0/24
ri ght Net wor k:
- networ kName: ovn-providerl
gatewayl P: 10.1.10.1
subnet: default
net wor kChai n: app=slb, ovn-netl, app=ngfw, ovn-net2, app=sdwancnf

Finite network Resources:
SRIOV Overlay Networks:

Required features in SRIOV Overlay networking:

® Currently, OVN4NFV by default create the Veth pair interfaces for all interfaces.
® SRIOV Overlay networks introduce a feature to include the interfaceType in the OVN networking and provide the deviceplugin sock name and
targets on the devices only having SRIOV hardware-enabled labels

SRIOV Type Virtual network

Virutal network

api Ver si on: k8spl ugi n. opnfv. org/vlal phal
ki nd: Network
net adat a
name: ovn-sriov-net
spec:
cni Type: ovn4nfv
i pvdsubnet s:
- subnet: 172.16.33.0/24
nane: subnetl
gateway: 172.16.33.1/24
excl udel ps: 172.16.33.2 172.16.33.5..172. 16. 33. 10
NodeSel ector: specific
nodelLabel Li st :
- feature. node. kuber net es. i o/ net wor k- sri ov. capabl e=true
- feature. node. kubernetes. i o/ custom x| 710. present =t rue

SRIOV Type provider network

Virutal network

api Versi on: k8s. pl ugi n. opnfv. org/vlal phal
ki nd: Provi der Net wor k
net adat a:
name: ovn-sriov-vl an-pnetwork
spec:
cni Type: ovn4nfv
interface:
- Type:sriov
devi ceNane: intel.comintel_sriov_700
i pv4Subnet s:
- subnet: 172.16.33.0/24
name: subnet1
gateway: 172.16.33.1/24
excl udel ps: 172.16.33.2 172.16.33.5..172.16.33.10
provi der Net Type: VLAN
vl an:
vl anl d: "100"
providerlnterfaceNanme: ethO
| ogi cal I nterfaceNane: eth0.100
vl anNodeSel ector: specific
nodelabel Li st :
- feature. node. kubernet es. i o/ net wor k- sri ov. capabl e=true
- feature.node. kubernetes.io/custom x| 710. present =t r ue

SRIOV Type Direct network

Virutal network

api Ver si on: k8s. pl ugi n. opnfv. org/vlal phal
ki nd: Provi der Net wor k
net adat a
name: ovn-sriov-direct-pnetwork
spec:
cni Type: ovn4nfv
interface:
- Type:sriov
devi ceNane: intel.confintel _sriov_700
i pv4Subnet s:
- subnet: 172.16.34.0/24
nane: subnet2
gateway: 172.16.34.1/24
excludel ps: 172.16.34.2 172.16.34.5..172.16.34.10
provi der Net Type: DI RECT
direct
provi derlnterfaceNane: enp
di rect NodeSel ector: specific
nodelLabel Li st :
- feature. node. kuber net es. i o/ net wor k- sri ov. capabl e=true
- feature. node. kubernetes.i o/ custom x| 710. present =t rue

Parameter definition:
interface - Define the type of sriov interface to be created.
deviceName - Define device plugin to be targeted to get the pod resource information from the kubelet api - For more information refer here -

https://github.com/kubernetes/kubernetes/blob/master/test/e2e_node/util.go

https://github.com/kubernetes/kubernetes/blob/master/test/e2e_node/util.go

sriov single pod spec

api Version: vl
ki nd: Pod
nmet adat a:
nane: pod-case-01
annot ati ons:
k8s. pl ugi n.opnfv.org/ nfn-network: '{ "type": "ovn4nfv", "interface": [{ "name": "ovn-sriov-virutal-net",

"interface": "net0", Type: sriov, Attribute: [{type: bonding, node: roundrobin}, {type:tuning, bandw dth:”
2@}

spec:
cont ai ners:
- nane: test-pod
i mge: docker.io/centos/tool s:|atest
command:
- /sbin/init
resources:
requests:
intel.confintel _sriov_700: '1'
limts:
intel.comintel _sriov_700: '1'

Kube - master
Node 1

ovnanfvk8s-default-nw

Pod1-vf ovn4nfv0-nodel ovnanfv0-node2 ovn4nfvo-node3

ovn4nfv0-nodel

v
IP-tables
v

eth0

3
~ o~ =] =]
< < @ = B 5
1 H = P T H B

— -+

I : o =
o =+ o 2
s S -— Sﬂ 5 > ‘H'E g o
q B i e H K
4 H - I K
o o w N

“

A
NIC il Node 2

Kube-node Kube-node il

Node 3 [N'C

1. Admission controller should be part of NFN operator that insert the request and limit to pod spec by reading the OVN4NFV net CR.

2. This design adds the SRIOV directly into the OVN overlay for both primary and secondary networking. The development should also address the
SNAT for all the interfaces

Comprehensive documentation:
Nodus

How to use?

Development

Configuration

Presentation:

https://github.com/akraino-edge-stack/icn-nodus
https://github.com/opnfv/ovn4nfv-k8s-plugin/blob/master/doc/how-to-use.md
https://github.com/opnfv/ovn4nfv-k8s-plugin/blob/master/doc/development.md
https://github.com/opnfv/ovn4nfv-k8s-plugin/blob/master/doc/configuration.md

Updated 05/18/2022

E

ICN_Modus_pres..n_Updated pptx

LFN Developer Forum - January 13th 2022

|x|:\]
Sl

EMCO-SFC-LFN-...-2022-DDTF. pdf

Open vSwitch and OVN 2021 Fall conference - Dec 7th & 8th 2021

|XI:\J
=7

ICN_MNodus_pres..n Dec 2021 .pdf

October 11th 2021

Nodus slide deck:

ICN_MNodus_pres..tober_2021 .pdf

July 19th 2021

Nodus slide deck:

Modus networle_... 19th 2021 .pdf

March 9th 2021

OVN4NFV Slide deck:

03 09 2020 ICN_..resentation.pdf

OVN4NFV recorded Video:

03 09 2021 Me..Recording.mp4

October 8th 2020

OVN4NFV slide deck:

ovndnfy_sfc_demo.pdf

OVN4NFV Prerecorded Demo:

sfc_demo.mpd

	ICN Nodus

