
IEC Type 2 Architecture Document for R5
This document covers Integrated Edge Cloud(IEC) Type 2.

 is an Akraino approved blueprint family and part of Akraino Edge Stack, which intends to develop a fully integrated edge Integrated Edge Cloud(IEC)
infrastructure solution, and the project is completely focused towards Edge Computing. This open source software stack provides critical infrastructure to
enable high performance, reduce latency, improve availability, lower operational overhead, provide scalability, address security needs, and improve fault
management. The IEC project will address multiple edge use cases and industry, not just Telco Industry. IEC intends to develop solution and support of
carrier, provider, and the IoT networks.

Use Case
Overall Architecture

Microk8s
Terraform
gopaddle
Storidge
EdgeX Foundry

Blueprint System Requirements
Kubernetes Environment Provisioned
Automation

Terraform Automation
AWS Infrastructure
Workflow

Use Case
The purpose of this release is to automate the provisioning of ultra low latency MEC (environment on AWS cloud and centrally manage light weight MEC)
multiple . MEC run on low foot print hardware and can cater to mission critical workloads. It takes an opinionated approach MECs from a single dashboard
to spinning up an environment with pre-built configuration that are ready to use. It is cost effective compared to a fully configurable MEC environment as
the and can be setup quickly.

Overall Architecture

Microk8s

Microk8s is a lightweight Kubernetes distribution from Canonical that delivers a complete Kubernetes experience for IoT and micro cloud environments. Its
zero-ops capability offers all the Kubernetes networking and storage configurations out of the box with built-in add ons for serverless (knative) and
machine learning workloads (kubeflow) etc. More info: https://ubuntu.com/engage/micro-clouds

Installing and configuring microk8s leverages Canonical’s Snap package manager which can stand up a Kubernetes cluster through a single command
under a minute. As of microk8s version 1.21, a snap installer consumes as little as 192 MB RAM and the Kubernetes distribution consumes as little as 540
MB, making it an attractive solution to run on edge devices that are less than 1GM of RAM.

Terraform

Terraform is an Infrastructure as Code (IaaC) tool by Hashicorp that automates the provisioning of data centre or cloud infrastructure. Using terraform
AWS provider plugin one can programatically build, configure and manage the lifecycle of a micro cloud on AWS.

gopaddle

gopaddle is a No Code platform for managing Cloud Native Workloads. Using gopaddle, Terraform templates can be managed centrally and reused to
provision multiple decentralized microclouds across different AWS regions. Due to the low code nature of the platform, developers can build cloud native
workloads with ease and deploy much faster. gopaddle offers pre-built templates for monitoring and logging like Prometheus, Grafana and EFK stack.

Storidge

Storidge is a highly available persistent storage for K8s with auto-failover & recovery. Storidge automates storage infrastructure as code, delivering a
persistent storage platform for Docker Swarm and Kubernetes. Storidge’s software enables automated storage orchestration including provisioning,
application performance, data consistency and data protection via software. Storidge’s storage orchestrator enables stress-free storage administration for
modern DevOps workflows.

EdgeX Foundry

EdgeX Foundry is a Middleware for dual processing of data to/from edge devices. It takes the sensor input from the devices and delivers it to the
applications over the network to the end-users. Edgex Foundry has the microservices packed as docker images. EdgeX can be installed using the docker-
compose file or from the snap store in a Linux environment.

https://wiki.akraino.org/display/AK/Integrated+Edge+Cloud+%28IEC%29+Blueprint+Family
https://ubuntu.com/engage/micro-clouds

Blueprint System Requirements

Item Capacity

Number of nodes 3

Node Size t4g.medium - 2vCPUs - 4 GiB Memory

Disks in Storidge HA Clustering mode NOT YET SUPPORTED 3 Disks per node - 100 GB each.

VPC Pre-existing VPC

Subnet Public (for now). Will switch to private subnet with Gateway configuration in future releases.

AMI Ubuntu Server 18.04 LTS

Terraform terraform_0.14.

Kubernetes Environment Provisioned

Item Version

microk8s 1.21

A Note on AWS Wavelength

AWS Wavelength provides a consistent AWS experience across cloud and edge environments by extending a the AWS resources like EC2,
VPC services to the 5G Edge Network. An AWS VPC can be extended to a wavelength zone that embed elastic compute and storage at the 5G
edge network. Data intensive workloads, AI, and real time applications can now offer an immersive experience. Currently, Wavelength zones
are limited to US, Japan and South Korea. Release 5 blueprint under consideration does not make use of Wavelength, however it can be
extended to spin up a light weight MEC on Wavelength zones with additional Carrier Gateway configurations.

Automation

Terraform Automation

Terraform takes two input files to automate the infrastructure provisioning and produces a state file at the end of the automation.

Run time tunables that helps to customize the infrastructure configuration The provider and the resource Variables file () - Input file : variable.tf .
blocks in the file can be configured by changing the values of the exported 'TF' variables.For example, if you want to change the main.tf
aws_instace type from t2.small to t2.micro, set the TF_VAR with the appropriate values. Other resource-specific values like aws_region,
aws_ami, vpc_id and the subnet can also be changed the same way by editing the respective TF_VAR environment variables. List of variables
taken from the file and the list of ENVs read are listed below:variable.tf

TF_VAR_aws_region - AWS Region where the cluster needs to be provisioned
TF_VAR_aws_ami - Image to bring up the master and worker node EC2 instances. Based on the region, the AMI corresponding
to Ubuntu Server 18.04 LTS needs to be configured.
TF_VAR_aws_instance - AWS Instance type eg. t4g.medium
TF_VAR_vpc_id - VPC ID of a pre-existing VPC
TF_VAR_aws_subnet_id - Subnet ID of a pre-existing subnet.
TF_VAR_access_key - AWS IAM User Access Key
TF_VAR_secret_key - AWS IAM User Secret Key
TF_LOG - Log level while execute terraform templates. Supported values - TRACE, DEBUG, INFO, WARN, or ERROR.
TF_LOG_PATH - Path of the file to redirect the terraform execution logs.

 The Terraform configuration file contains the workflow and automation scripts to create the terraform configuration file () - Input file :main.tf
microk8s cluster.

This file maintained by the blueprint internally to dynamically configure the join worker_user_data.tmpl - user data for the worker nodes :
token on the worker nodes.

Terraform maintains the current state of the infrastructure in the state file. The state file remains empty until the first terraform state file:
terraform initialization. The stateful is used for further updates or tear down of the cluster.

AWS Infrastructure

The below graph shows the infrastructure resources and their dependencies while provisioning the stack using terraform.

The user provides the VPC ID, region, instance type, ami, subnet ID and the IAM access/secret as the input in the file. The values are variable.tf
configurable at the time of applying the template.
The variable ‘count’ indicates the number of worker nodes to be provisioned. A count of 2 brings up a 2 node cluster.
We also need the private key file to remote SSH into the EC2 instances. This file needs to be present in the same location as the and main.tf vaira

 files.ble.tf
The security group is automatically provisioned based on the VPC and the Subnet ID provided.
Currently, load balancer is not provisioned. Any workloads deployed in the cluster can be accessed via the Kubernetes Node port.

Workflow

Master and Worker nodes are provisioned in this order:

Provision master node. The template executes EC2 user_data on the master node that uses snap package manager to install microk8s.

The user_data in the file installs the microk8s inside the EC2 instance.main.tf

#!/bin/bash
sudo su
apt update -y >> microk8s_install.log
apt install snapd -y >> microk8s_install.log
snap install core >> microk8s_install.log
export PATH=$PATH:/snap/bin
snap install microk8s --classic --channel=1.20/stable >> microk8s_install.log
microk8s status --wait-ready
microk8s enable dns >> microk8s_install.log
microk8s add-node > microk8s.join_token
microk8s config > configFile-master

Once the microk8s master is installed on the first node, the template then does a remote SSH command to the master node and generates a
token by executing the command - ‘microk8s.add-node’ This makes use of the private key file in the local directory to execute the remote SSH
command. The token generated in this step is used to join the remaining nodes to the cluster. The following describes how a connection block is
configured in file to perform a remote exec to the master node. is the private file in the local client system to remote exec to main.tf terrform.pem
the master or worker nodes.

connection {
host = self.public_ip
type = "ssh"
user = "ubuntu"
password = ""
private_key = "${file("terraform.pem")}"
}
....
....
provisioner "remote-exec" {
 inline = ["until [-f /microk8s.join_token]; do sleep 5; done; cat /microk8s.join_token",
 "sudo sed -i 's/#MOREIPS/IP.7 = ${self.public_ip}\\n#MOREIPS/g' /var/snap/microk8s/current
/certs/csr.conf.template",
 "sudo sleep 1m",
 "sudo microk8s stop",
 "sudo microk8s start"
]
}

Copy the generated token on the remote machine to the local machine using the terraform ‘datasource’ plugin.
Now provision the worker nodes and install microk8s on the remaining nodes
Use the local datasource to read the join token and add the worker nodes to the master node using the command ''microk8s.join_token".
Following code block explains how a worker node is added to the cluster using remote exec.

provisioner "remote-exec" {
inline = ["until [-f /microk8s.join_token]; do sleep 5; done; cat /microk8s.join_token"]
}

Security Considerations

We create an 'ALLOW ALL' ingress and egress rule security group. In the future releases, this will be configured dynamically based on user
inputs.

ingress {
from_port = 0
to_port = 0
protocol = "-1"
cidr_blocks = ["0.0.0.0/0"]
}
egress {
from_port = 0
to_port = 0
protocol = "-1"
cidr_blocks = ["0.0.0.0/0"]
}

	IEC Type 2 Architecture Document for R5

